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Mimicking Boyer’s Casimir repulsion with a nanowire material
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It is shown that the electromagnetic Casimir force acting on a conducting body (e.g., a realistic metallic piston)
sliding in a background formed by cut silver nanorods (with the body perforated by the nanorods) is repulsive
at distances larger than the separation of the nanorods, even if the host material of the nanorods is air. It is
demonstrated that the physical origin of this effect is in essence related to Boyer’s prediction that magnetic and
conducting walls repel each other. Indeed, we show that from the point of view of an observer inside the nanowire
structure, the interface formed by severing the nanowires mimics accurately the behavior of a magnetic wall for
P-polarized waves. In contrast to other piston configurations reported in the literature, the Casimir interaction
in the nanowire background is an ultralong-range force that decays with the distance to the nearby interface as
1/a2.
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I. INTRODUCTION

The Casimir-Lifshitz forces [1–3] and especially the so-
called Casimir repulsion [4–10] or “quantum levitation”
[11–14] phenomena in structures of different geometries have
been topics of continuous research for many decades. In
simple geometries involving planar dielectric or metallic plates
in a vacuum, the electromagnetic Casimir force is always
attractive, while when the plates are immersed in a dielectric
fluid, one can obtain a repulsive force if the permittivities of the
plates and the fluid are chosen appropriately [15]. A repulsive
force may be also obtained if a conducting plate is combined
with a permeable plate [4].

The geometry of interest in this paper is a variant of the so-
called Casimir piston geometry [16–21]. A piston is a sliding
reflecting wall placed inside a waveguide or cavity. The force
acting on such a wall can be calculated provided the cavity
modes on both sides of the piston are known. It can be shown
that a conducting piston in a conducting cylindrical cavity
always attracts to the wall at the nearest end of the cavity [17].
On the other hand, if the walls of the cavity and the piston
are weakly reflecting, the force can be repulsive at certain
separations [18].

Studies involving pistons in cavities of canonical geome-
tries are, of course, of great importance and interest. However,
from a rather intuitive physical consideration it can be seen that
the Casimir forces acting on pistons in elongated waveguides
or cavities of simply connected cross sections are always
weak and short range. Indeed, consider a rectangular cavity
with cross section a × b and length L � a � b. In such a
waveguide, the modes have the dispersion of the form kz =
(ω/c)

√
1 − ω2

c/ω
2 (the z axis is along the longest dimension

of the cavity), where ωc is the characteristic cutoff frequency of
a waveguide mode. On the positive half of the imaginary axis,
the frequency is ω = iξ , and the dispersion relation can be
rewritten as γz = (ξ/c)

√
1 + ω2

c/ξ
2, where γz = −ikz is the

attenuation factor of a mode [we assume a time dependence
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of the form exp(−iωt)]. Thus, at imaginary frequencies the
attenuation factor of a mode is always greater than ωc/c and
grows with ξ . The mode with the lowest possible attenuation is
the main transverse electric TE10 mode that has ωc/c = π/a.
Therefore, the effective range of interactions due to virtual
photons in such a waveguide is of order of a and is always
limited by the cross-section size of the cavity.

The situation changes in waveguides with cross sections
that are not simply connected, where there are modes
with ωc = 0: the so-called transverse electromagnetic (TEM)
modes. The effect of these modes in simple coaxial structures
has been considered in literature but found to be negligible
when compared to the effect of the other modes [22]. However,
in a recent work [23] we have shown that if the number
of independent TEM modes supported by a structure grows
linearly with the cross-sectional area of the structure, the
Casimir forces due to the TEM modes may become dominant,
especially at large separations. In particular, this happens when
the interacting bodies (e.g., dielectric plates) are immersed in
a periodic arrangement of metallic nanorods. In simple words,
the nanorods effectively channel the quantum fluctuations
of the electromagnetic field to distances that are orders
of magnitude larger than the transverse separation of the
nanorods, boosting in this manner the Casimir force at large
distances.

Some theoretical works predict that the force acting on
an ideally conducting piston sliding in a cavity with ideally
permeable walls is repulsive [21]. This is, of course, not
surprising, because it is known since the study of Boyer
that ideally permeable (perfect magnetic conductor, PMC)
and ideally conducting (perfect electric conductor, PEC)
plates repel in vacuum [4]. One could think that by using
metamaterials or patterned surfaces it might be possible to
mimic to some extent the behavior of a PMC wall in the context
of the Casimir effect. However, recently it has been shown
that causality and passivity severely limit the possibilities of
Casimir repulsion with slabs of metal-dielectric metamaterials
standing in a vacuum [10,24]. In simple terms, this is due to the
fact that at large separations (relative to the scale of the period
of a metamaterial) the sign of the Casimir force is determined
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by the low-frequency response, and at low frequencies all
metal-dielectric composites necessarily lose their magnetic
properties [25].

However, in this work we show that in a wire medium
background (i.e., in the effective medium formed by a
periodic array of parallel metallic nanorods: see Fig. 1) a
boundary condition equivalent to a PMC can be realized
rather easily for the TEM waves in a wide frequency
range, just by severing the nanorods at the desired plane.
Moreover, the lower the frequency, the better the PMC
approximation becomes! Thus, it is expected that a metallic
body embedded in such wire medium background will be
repelled away from the interfaces where the PMC condition is
mimicked.

This intriguing result can be unveiled by making a parallel
between the uniaxial nanowire medium and a multiwire
transmission line. Indeed, consider an open-end termination
of a transmission line. At such a termination, the line current
is zero and the line voltage is at maximum. This means
that the reflected wave is in phase with the incident one,
and the reflection coefficient is ρ = +1, that is, an open
end of a transmission line is effectively a PMC termination
for the waves propagating in the line (we neglect radiation
from the open end, which can be made arbitrarily small
at low frequencies). An analogous phenomenon happens in
uniaxial wire media: the reflection coefficient for the TEM
waves traveling inside the wire medium and incident on a
wire medium–air interface (with the wires orthogonal to the
interface) is close to +1 when the transverse wave number
kt � ω/c; that is, such an interface is effectively a PMC for
these waves. Thus, since at large separations the Casimir force
is mainly determined by the TEM waves [23], a dielectric or

conducting plate embedded in cut nanorods must effectively
repel from the open ends of the nanorods at such separations.
In what follows, we further develop this simple idea and
demonstrate that indeed the Casimir force acting on a piston
sliding in cut metallic nanorods is an ultralong-range repulsive
force.

II. CASIMIR’S FORCE ON PMC AND PEC PLATES
EMBEDDED IN NANOWIRES

In this section, we briefly outline some results related to
the interaction of ideally conducting and ideally permeable
plates in a nanowire background. In Ref. [23], we considered
Casimir’s force exerted on PEC plates embedded in PEC
nanowires (this force is attractive; the TEM contribution to the
force is given by Eq. (5) of Ref. [23]) and also generalized it to
arbitrary nondispersive magnetodielectrics in PEC nanowires,
with the contribution of the TEM modes given by Eq. (7) of
Ref. [23] (for simplicity, the nanowires are assumed to stand
in air):

FTEM

L2
= h̄c Li2(r1r2)

4πa2b2
, (1)

where FTEM/L2 has the meaning of Casimir’s force per unit
area, a is the separation between the plates, b is the period of
the nanowire lattice, Li2(z) = ∑∞

n=1 zn/n2 is the dilogarithm
function, and r1,2 are the reflection coefficients of TEM modes
at the plate surfaces.

Formula (1) reduces to Eq. (5) of Ref. [23] when r1r2 = 1
(two PEC plates, or two PMC plates), in which case the
force is attractive because Li2(1) = π2/6 > 0 (in [23] we

FIG. 1. (Color online) Left: A square b × b array of metallic nanorods of length L and radius r0 with a metallic or dielectric piston of
thickness h embedded in the array (side view; the three-dimensional structure is shown within the small inset). The structure is periodic and
infinite in the plane orthogonal to the nanorods (in the xoy plane). We assume that the nanorods are held fixed and cannot move (e.g., the ends
of nanorods may be attached to thin dielectric sheets), while the piston is perforated by the nanorods and is able to slide on them. Top right:
Effective medium portrait of the structure shown at the left. The array of nanorods is represented by a continuous background material: the wire
medium (WM). Bottom right: An electrostatic analogy of the repulsion phenomenon under study. Three equally charged beads on a stretched
thread. The beads on the left and right are fixed on the thread, while the bead in the middle can slide. The equilibrium is reached when the
sliding bead is at the geometrical center. Notice that if there is no thread and the relative movement of the beads is not limited, then there is no
stable equilibrium.
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used a convention that a positive force corresponds to
attraction).

The case of r1r2 = −1 corresponds to the generalization
of Boyer’s configuration [4]: an ideally conducting plate and
an ideally permeable plate are embedded in the nanowire
background. In this case, Li2(r1r2) = Li2(−1) = −π2/12 < 0;
that is, the force is repulsive. From (1) it is also seen that this
force is ultralong range, as it varies with the separation between
the plates as 1/a2, while the repulsive force in the original
configuration by Boyer has a characteristic dependence of
1/a4: Fv/L

2 = −(7π2/8)(h̄c/240a4). In particular, we see
that

FTEM

Fv,P

= 80

7π

a2

b2
, (2)

where Fv,P = Fv/2 represents the component of the force
due to oscillators associated with P-polarized modes. Thus,
in presence of the nanowires, the force due to P-polarized
modes is boosted by the factor given by (2). For thin wires, the
component of the force due to S-polarized modes is roughly
the same in the two cases [23].

The enhancement of the Casimir interaction can be ex-
plained by the dramatically large density of photonic states in
the nanowire background as compared to the density of states
in vacuum. Indeed, the contribution of the TEM modes to the
density of photonic states (per unit of volume) in the nanowire
background is

DTEM,WM (ω) = 1

(2π )3

∫
δ(ω − ωk,TEM) d3k. (3)

For PEC wires, the dispersion of the TEM modes is ωk,TEM =
c|kz|. Hence, assuming that the wires are arranged in a
square lattice with period b, and using the fact that the TEM
branch can always be assumed to be within the first Brillouin
zone [23], we find that

DTEM,WM(ω) = 1

(2π )3

∫ +π/b

−π/b

∫ +π/b

−π/b

∫ +∞

−∞

× δ(ω − |kz|c) dkx dky dkz = 1

πb2c
. (4)

Perhaps a more intuitive way of deriving the same result
is by noticing that in the volume V = L × L × a in between
the plates there are N = L2/b2 distinct nanowires and thus
exactly N independent normal TEM oscillations (standing
waves) at a given frequency [23]. From the dispersion
relation, it follows that on the frequency axis the modes are
spaced by �ω = πc/a, and therefore the density of states is
N/(V �ω) = 1/(πb2c).

On the other hand, the contribution of P-polarized waves
to the density of photonic states in vacuum is DP,f s(ω) =
ω2/(2π2c3). Thus, we find that

DTEM,WM(ω)

DP,f s(ω)
= 2πc2

b2ω2
. (5)

Therefore, for long wavelengths the density of states in the
nanowire material is independent of frequency and thus much
larger than in free space.

The enhancement of the Casimir force readily follows from
this result, because to each classical eigenmode corresponds

a quantum oscillator. It is also relevant to note that the
TEM modes propagate along the wires, and thus they always
promote the interaction between the two plates. Curiously,
it is possible to estimate the enhancement of the Casimir
force using Eq. (4). In fact, roughly speaking, the oscillators
that will contribute most to the Casimir force are associated
with frequencies such that ω � πc/a, being a the distance
between the PEC and PMC plates. Hence, we can estimate
that the enhancement of the Casimir force is roughly the ratio
between the number of photonic states with frequency less
than ωc = πc/a. This yields

FTEM

Fv,P

∼
∫ ωc

0 DTEM,WM(ω)dω∫ ωc

0 DP,f s(ω)dω
= 6πc2

b2

1

ω2
c

= 6a2

πb2
, (6)

which is of the same order of magnitude as the exact result
[Eq. (2)]. It is important to mention that the increase of the
density of photonic states in periodic media has been discussed
before in the literature in the context of the Purcell effect
and metamaterials and remarkably in the case of hyperbolic
media [26,27]. In particular, in a recent work it was shown that
the spontaneous emission can be enhanced when the emitter
is placed near an array of nanorods [28].

In the following sections, we demonstrate that it is possible
to mimic the interaction between a PEC plate and a PMC
plate embedded in a nanowire background simply by severing
the nanorods. As mentioned in the introduction, our aim is
to show that the interface with cut nanorods is effectively
a PMC for the TEM modes, and thus a metallic piston
sliding in the nanorods is repelled away from such interface.
We consider the effect of realistic dispersion in all the
materials.

III. CASIMIR INTERACTION ENERGY FOR A
SEMITRANSPARENT PISTON IN A WIRE

MEDIUM BACKGROUND

The geometry of the structure under study in this work
is shown in Fig. 1. It is a dense square b × b lattice of cut
nanorods of radius r0 � b. The length of the nanorods is
L � b. As discussed, from the point of view of an observer
inside the nanowire array, the interfaces z = 0 and z = L

effectively behave as magnetic walls, even if the nanowires
stand in a vacuum. Thus, it is expected that if a metal-dielectric
body or particle is placed inside this periodic structure, it will
be repelled away from the interfaces due to the quantum fluctu-
ations of the electromagnetic field. For simplicity of modeling,
in this work we restrict the discussion to the case of a sliding
wall (a piston) at distance a from the ends of the nanorods, as
illustrated in Fig. 1. The piston is either a metallic or dielectric
slab of thickness h perforated with the nanorods so that it can
slide freely along the nanorods, while the movements in the
orthogonal directions or rotations are forbidden. The structure
is infinite in the transverse direction; thus, we are interested in
the force per unit cross-sectional area of the piston (i.e., in the
pressure).

We restrict our analysis to the case with a � b and also
L − a − h � b. In our previous work [23], it was demon-
strated that under these assumptions the Casimir force can
be calculated using an effective medium approach. Namely,
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when homogenized, a dense lattice of metallic nanorods can
be described by the following uniaxial nonlocal permittivity
dyadic [29–31]:

ε(ω,k)

ε0εh
= εtI t +

(
1 − β2

p

β2 + β2
c − k2

z

)
ẑẑ, (7)

where I t is the unity dyadic in the xoy plane, kz is the z

component of the wave vector k, εh is the relative permittivity
(with respect to the permittivity of vacuum ε0) of the host
material where the nanorods are embedded, β = ω

√
ε0εhµ0 is

the wave number in the host material, and εt is the normalized
effective transverse permittivity. For thin metallic nanorods,
εt ≈ 1 + (2πr2

0 /b2)(εr − εh)/(εr + εh), where εr is the relative
complex permittivity of metal; in our case, when r0 � b one
may use the approximation εt ≈ 1. The remaining parameters
in Eq. (7) are (βpb)2 = 2π/[log(b/2πr0) + 0.5275] and β2

c =
−β2

p (b2/πr2
0 )[εh/(εr − εh)] (here and in what follows log(x)

denotes the natural logarithm).
It can be shown (e.g., with the argument principle

[24,32,33]) that, at zero absolute temperature, the regular part
of the zero-point energy per unity of the cross-sectional area
of the structure under study can be written as

δEc(a) = h̄

2π3

∫ π/b

0

∫ π/b

0

∫ ∞

0
log D(a,iξ,kx,ky) dξ dkx dky,

(8)

where D(a,ω,kx,ky) determines the characteristic equation of
the normal modes: the solutions of D(a,ω,kx,ky) = 0 yield the
resonant frequencies of the normal Bloch modes characterized
by a given pair of transverse wave numbers (kx,ky). Notice that
we only consider values of (kx,ky) in the first quadrant of the
Brillouin zone, because due to the symmetry of the structure
the contribution from the first quadrant is one-fourth of the
contribution of the entire Brillouin zone.

In order that Eq. (8) represents the interaction energy,
the function D(a,ω,kx,ky) must be such that (i) the integral
in Eq. (8) exists and is finite at finite separations 0 < a <

L− h, which implies that D(a,iξ,kx,ky) → 1 when ξ → ∞;
(ii) δE(a) → 0 when both a → ∞ and L − a → ∞; (iii) the
poles of D(a,ω,kx,ky) in the variable ω must be independent
of a, that is, of the position of the piston. The last requirement
comes from the derivation of Eq. (8) as a path integral in the
complex plane ω.

The characteristic equation of the whole structure can be
obtained as follows (here and in what follows, we assume
r0 � b, so that εt ≈ 1). Inserting Eq. (7) into the source-free
Maxwell’s equations and considering the plane-wave solutions
with fixed kt = kx x̂ + ky ŷ, one obtains the dispersion equation
for the eigenwaves in a slab of nanorods. The solutions are [29]

kz = ±
√

β2 − k2
t , (9)

for the S-polarized eigenwaves (with Ez = 0), and

kz = ±
[
β2 − 1

2

(
β2

p + k2
t − β2

c

±
√(

β2
p + k2

t − β2
c

)2 + 4β2
c k2

t

)]1/2
, (10)

for the P-polarized eigenwaves (with Hz = 0). Notice that
due to the spatial dispersion effects the wire medium supports
two distinct P-polarized eigenwaves for a fixed direction of
propagation [29,31]. In the above formulas, k2

t = k2
x + k2

y .
Thus, the electromagnetic field at any fixed cross section
z = z0, 0 < z0 < L can be decomposed into a superposition
of these eigenwaves. There are six waves in total as is seen
from Eqs. (9) and (10): three waves propagating in the positive
direction of the z axis and three waves propagating in the
opposite direction.

Before going into the details of the Casimir energy calcula-
tion, we demonstrate that the “internal” reflection coefficient of
the P-polarized eigenwaves (10) at an interface of the nanowire
slab with air is indeed positive and approaches unity for one
of these transverse magnetic (TM) waves when kt � |ω/c|.
Although the scattering of waves by an interface formed by
abruptly cutting the metallic wires has been considered before,
to the best of our knowledge the case of internal reflection (i.e.,
when the incident wave propagates inside the nanowires) has
not been yet studied analytically. Therefore, in the appendix we
derive the complete reflection matrix [Eq. (A21)] for this case.
For the purpose of illustration, here we select only the diagonal
rp11 and rp22 components of this matrix. These components
correspond to reflection of the two P-polarized eigenwaves
into the same eigenwaves.

The dependence of these reflection coefficients on kt

is shown in Fig. 2. The plotted curves are for imaginary
frequencies ω = iξ that correspond to four values of the
parameter bξ/c indicated in the figure caption. As one can see,
the reflection coefficients of both modes are positive. When
kt increases, the reflection coefficient of the first P-polarized
mode (the TM mode) decreases with kt. Since this mode is
cut off at low (real-valued) frequencies, its contribution to
the Casimir force is irrelevant at distances larger than the
period of the array [23]. On the other hand, the reflection
coefficient of the second P-polarized mode (the quasi-TEM

FIG. 2. (Color online) Reflection coefficients for the two P-
polarized waves (indicated by TM and qTEM) incident on an interface
of silver nanowires and air from within the nanowire slab as functions
of the normalized transverse wave number. The plotted curves are
for the imaginary frequencies ω = iξ , with the following values for
the parameter bξ/c: 0.25, 0.5, 1, and 2. The direction of increasing
ξ is indicated by the arrows. In the calculations, b = 200 nm and
r0 = 0.1b.
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mode, indicated as qTEM in the figure) increases with kt

and approaches unity when kt � ξ/c. This is the mode that
determines the intensity of the Casimir force when a � b.
Thus, this example supports our initial idea that an interface
of cut wires may effectively model a magnetic wall for the
quasi-TEM waves, when kt � ξ/c. It is important to mention
that in the same manner as in an ideal magnetic wall, apart from
small fluctuations in the vicinity of the wires, the tangential
component of the magnetic field is near zero at the interface.
Indeed, the magnetic field associated with a TEM mode is
proportional to the current flowing in the wire, and since
the currents vanish at the interface the magnetic field also
does.

Next, we proceed with the calculation of the interaction
energy (8). Let us represent the eigenwaves propagating in the
positive z direction as E+, and the waves propagating in the
negative z direction as E− (in the basis of the eigenwaves, E±
are simply 3 × 1 column vectors with the complex amplitudes
of the eigenwaves; see the appendix). Then, the amplitudes
of the eigenwaves at two arbitrary cross sections z = z1 and
z = z2, 0 < z1 < z2 < L, are linked by the transfer matrix(

E+
1

E−
1

)
=

(
τ̂++ τ̂+−
τ̂−+ τ̂−−

)
.

(
E+

2

E−
2

)
, (11)

where the operators τ̂±± describe the interaction between the
waves in the two regions.

It is obvious that the total transfer matrix for the structure
shown in Fig. 1, written in terms of the wave amplitudes
calculated at the planes z1 = 0+ and z2 = L−, is an ordered
product of the transfer matrices of the layers and of the
discontinuity planes:

T = TA · TAB · TB · TBC · TC. (12)

The matrices TA, TB , and TC are diagonal and formed by the
exponential propagators of the eigenwaves in each uniform
region (the two regions of nanorods and the piston). The
matrices TAB and TBC can be found from a complete set
of the boundary conditions at an interface between two slabs of
nanorods (one of them represents the piston). The details of
this calculation are given in the appendix.

At the planes z = 0 and z = L, the waves are reflected so
that we can write

E+
1 = ρ̂1E

−
1 , E−

2 = ρ̂2E
+
2 , (13)

where ρ̂1,2 are the reflection operators defined at the planes
where the nanorods are cut. These operators can be found from
the known boundary conditions at the ends of the nanorods (see
the appendix) [34,35]. Although in our structure ρ̂1 = ρ̂2 = ρ̂,
we want for the time being to keep (13) in a general form.

Using now Eq. (11) (with the global transfer matrix T )
and Eq. (13), it is possible to obtain after some manipulations
a homogeneous system of the form M̂E+

2 = 0. This yields
the characteristic equation of the normal modes of the whole
structure:

det{τ̂++ + τ̂+−ρ̂2 − ρ̂1τ̂−+ − ρ̂1τ̂−−ρ̂2} = 0. (14)

Using the fact that TA and TC are diagonal and have
the form TA = [�̂−1

1 ,0; 0,�̂1], TC = [�̂−1
2 ,0; 0,�̂2] (in this

notation, the semicolon separates the first and second rows
of the operator matrices, and the comma separates different
elements within the same row), and det{�̂1,2} �= 0 (see the
appendix), the characteristic equation can be reformulated as

D̃(a,ω,kx,ky)

≡ det{τ̂ (0)
++ + τ̂

(0)
+−R̂2 − R̂1τ̂

(0)
−+ − R̂1τ̂

(0)
−−R̂2} = 0, (15)

where R̂1 = �̂1ρ̂1�̂1, R̂2 = �̂2ρ̂2�̂2, and T (0) = TAB · TB ·
TBC = [τ̂ (0)

++,τ̂
(0)
+−; τ̂ (0)

−+,τ̂
(0)
−−] is the transfer matrix of the piston.

Physically, Eq. (15) corresponds to redefining the reference
planes of the reflection operators, so that they include the
effect of propagation in the layers of nanorods adjacent to the
piston. Notice that as required the poles of D̃ are independent
of a, because the only operators that depend on the position
of the piston are TA and TC , and these operators have no poles
in ω.

However, the function D̃(a,ω,kx,ky) as defined by (15)
does not satisfy the first two conditions listed after Eq. (8)
and therefore cannot be used directly in the calculation of
the Casimir interaction energy. Indeed, when ξ → ∞, the
first term in (15), τ̂

(0)
++, grows exponentially. In order to

overcome this difficulty, we normalize the left-hand side of
the characteristic equation as follows:

D(a,ω,kx,ky) = det{τ̂ (0)
++}−1D̃(a,ω,kx,ky). (16)

It is important that the normalization factor in (16) does not
depend on the position of the piston and thus may only result
in a shift of the origin of the energy (8); that is, it results in
a renormalization of the energy. In other words, the proper
normalization must not introduce poles (or zeros) that depend
on the variable parameter a in the function D(a,ω,kx,ky), as
these points would modify the dependence of the integral (8)
with respect to a. Moreover, it can be seen that when (16)
is substituted into (8), the renormalized energy δEc is such
that δEc → 0 when both a → ∞ and L − a → ∞; that is,
this energy has simple physical meaning of an interaction
energy.

In the next section, we consider the limiting case of
an ideally conducting piston sliding in a wire medium
background, for which the characteristic equation simpli-
fies, and some further analytical development becomes
possible.

IV. CASIMIR PRESSURE ON A PERFECTLY
CONDUCTING PISTON IN A WIRE

MEDIUM BACKGROUND

A PEC piston can be modeled as a sheet of dielectric with
εh(iξ ) → ∞. It can be directly verified that the elements of the
piston transfer matrix behave in this limit as τ̂

(0)
++ ∼ τ̂∞, τ̂ (0)

+− ∼
τ̂∞, τ̂

(0)
−+ ∼ −τ̂∞, and τ̂

(0)
−− ∼ −τ̂∞, where τ̂∞ is the limiting

form of all these operators. This form, in general, is such that
det{τ̂∞} → ∞, when εh(iξ ) → ∞. Thus, the characteristic
Eq. (15) factorizes in this limit as

det{(1̂ + R̂1)τ̂∞(1̂ + R̂2)} = 0, (17)
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and the function D(a,ω,kx,ky) reads, according to (16), as

D(a,ω,kx,ky) = det{1̂ + R̂1} det{1̂ + R̂2}
= det

{
1̂ + ρ̂ �̂2

1

}
det

{
1̂ + ρ̂ �̂2

1

}
, (18)

where the last equality is obtained using the definitions of
R̂1,2 and the fact that det{1̂ + �̂1,2ρ̂1,2�̂1,2} = det{�̂−1

1,2 +
ρ̂1,2�̂1,2} det{�1,2} = det{1̂ + ρ̂1,2�̂

2
1,2}.

Such factorization has a simple physical meaning: the two
regions z < a and z > a + h are electromagnetically screened
one from another by a PEC piston and therefore behave
independently. In such a case, the characteristic equation of
the whole system must be a product of the two independent
equations for the two separate regions. Hence, the Casimir
energy of the whole system given by (8) is just a sum of the
energies of the two regions.

Taking into account that �̂1 = e−aγ̂z and �̂2 = e−(L−a−h)γ̂z ,
where γ̂z = −ik̂z is the complex propagation factor operator
(see the appendix), we can write for a PEC piston

D(a,ω,kx,ky) = det{1̂ + ρ̂ e−2aγ̂z} det{1̂ + ρ̂ e−2(L−a−h)γ̂z}.
(19)

Therefore, the interaction part of the zero-point energy in this
structure reads

δEc(a) = E(a) + E(L − a − h), where
(20)

E(z) = h̄

2π3

∫ π/b

0

∫ π/b

0

∫ ∞

0
log det{1̂ + ρ̂ e−2zγ̂z} dξ dkx dky.

When L → ∞, E(L − a − h) → 0 and δEc(a) → E(a). At
imaginary frequencies ω = iξ the operators that occur in (20)
are represented by real-valued matrices. Clearly, if the
eigenvalues of the operator ρ̂ e−2zγ̂z are all real and non-
negative, then the interaction energy is also non-negative:
E(z) � 0. At very small separations z → 0, this operator
reduces to the reflection operator ρ̂. As shown in the
appendix, the eigenvalues of ρ̂ can be calculated in a
closed analytical form, and they are, indeed, all real and
non-negative when εh(iξ ) � 1 (because in the present paper
εh is defined with respect to the vacuum permittivity ε0

this condition is always observed due to Kramers-Kronig’s
formulas).

Moreover, in the important case in which εh = 1 and z

increases, the eigenvalues of the operator ρ̂e−2zγ̂ change with
z but remain real and non-negative, as proven in the appendix.
Given that from physical reasons the interaction energy in our
structure must decrease in absolute value with the increase of
z (here we consider the function E(z) as defined by (20), i.e.,
the Casimir energy with respect to a single interface), the sign
of E(z) determines the sign of the Casimir force acting on the
piston. Hence, the positive E(z) corresponds to repulsion in this
case. Thus, even when εh = 1 (host medium is air), the piston
slides on the nanorods as if it were repelled by an ideal PMC
wall.

The Casimir pressure on the piston can be calculated
by differentiating (20) with respect to the position of the
piston z = a: Fc(a) = −d δEc(a)/da. Under this definition,
the positive direction for the force coincides with the direction
of the z axis. In the case of the PEC piston, the differentiation

can be done in a closed form using Jacobi’s formula d(det Â) =
tr{Â−1dÂ} det{Â}:

Fc(a) = F (a) − F (L − a − h), where

F (z) = h̄

π3

∫ π/b

0

∫ π/b

0

∫ ∞

0
(21)

× tr{(1̂ + ρ̂e−2zγ̂z )−1ρ̂e−2zγ̂z γ̂z}dξ dkx dky,

where tr{. . .} denotes the trace of an operator. When L → ∞,
Fc(a) → F (a), because F (L − a − h) → 0 in this limit. A
negative F (z) means that the piston attracts to the nearby
ends of the nanorods, while a positive F (z) corresponds to a
repulsive force that pushes the piston toward the geometrical
center of the structure.

In the numerical examples given in the next section, we
calculate the Casimir energy and the force acting on different
pistons in silver and PEC nanorods.

V. NUMERICAL EXAMPLES AND DISCUSSION

In the first numerical example, we calculate the Casimir
interaction energy for several types of conducting pistons
embedded in silver (Ag) or PEC nanorods, by direct numerical
integration of (8) [we use (20) for the PEC pistons]. We do
this for the following values of the geometrical parameters
(Fig. 1): separation of the nanorods b = 200 nm, radius of
the nanorods r0 = 0.1b, length of the nanorods L = 20 b, and
piston thickness h = b. Although this is not crucial in the
calculations, the host material is assumed to be vacuum or
air: εh = 1 (to model this situation in practice, the ends of
the nanorods may be mechanically attached to thin sheets
of low permittivity dielectrics; the effect of such sheets on
the Casimir energy is negligible at distances larger than
the thickness of the sheets; we give more detail on this
later in the text). We consider pistons made of tungsten
(W), copper (Cu), and PEC. The response of metals at
imaginary frequencies is calculated from the respective Drude
models [36] (which may not be rigorously valid at low
temperatures; however, as argued in [37], they still yield
physically sound results up to moderate separations); that is,
the dispersion and loss of real metals is taken into account. It
is worth noting that when εh = 1 the quantum fluctuations of
the electromagnetic field associated with S-polarized normal
modes do not contribute to the Casimir force acting on the
piston in the limit of vanishingly thin wires. Thus, the dominant
contribution to the Casimir force is due to the oscillators
associated with the P-polarized normal modes for which
the interfaces z = 0 and z = L effectively behave as PMC
walls.

The results of the calculations are represented in Fig. 3.
As can be seen, the interaction energy is strictly positive
in all the scenarios considered here. When the distance to
the closest air interface increases, the energy decreases and
has a minimum at a/b = (L − h)/(2b) = 9.5, that is, when
the piston is exactly at the center of the nanowire structure.
Hence, the quantum fluctuations of the electromagnetic field
in all the cases represented in Fig. 3 (excluding the curve
with label “Diel,” which is discussed ahead) result in repulsive
forces that push the piston toward the geometrical center of the
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FIG. 3. (Color online) The normalized Casimir interaction energy
in the system shown in Fig. 1 as a function of the relative separation
a/b. The following combinations are considered: W\Ag, tungsten
piston sliding on silver nanorods; Cu\Ag, copper piston sliding on
silver nanorods; PEC\Ag, PEC piston sliding on silver nanorods;
PEC\PEC, PEC piston sliding on PEC nanorods; and PMC, PEC
piston sliding on PEC nanorods with ideal PMC walls at z = 0
and z = L. The bottom curve marked as “Diel.” is explained in the
main text. The values of the parameters are b = 200 nm, r0 = 0.1 b,
L = 20 b, and h = b (see Fig. 1).

structure. This middle point is the point of a stable equilibrium
with respect to the piston movements along the z axis. It
is worth noting that there is no contradiction between our
theory and the recent findings by Rahi et al. [38] that forbid
stable arrangements of interacting metal-dielectric bodies in a
vacuum. In our case, a stable equilibrium exists because we
limit the relative movement of the bodies (precisely, we fix
the nanorods, and the piston is able to slide only along them
but not in directions in the xoy plane). On the other hand, the
theory of Rahi et al. only applies to the case of unconstrained
displacements. A simple electrostatic analog of our system is
shown in the lower panel of Fig. 1.

Another argument in support of our result is that, from a
macroscopic point of view, the piston in our system is moving
not in vacuum but effectively in a cavity filled with a medium
characterized by the dyadic permittivity (7). It is known that
for dielectric bodies moving in cavities filled with dielectric
fluids, stable arrangements are possible [13,14].

In order to estimate how well the interface of cut nanorods
models the PMC condition, we have calculated the interaction
energy of a PEC piston sliding in PEC nanorods terminated
with ideal PMC walls (the upper curve in Fig. 3 marked as
“PMC”). This calculation is done based on the expression for
the TEM contribution to the Casimir force (1). As can be seen,
the energy in a structure with freestanding cut nanorods (the
curve marked as “PEC\PEC”) is practically the same as for an
idealized PMC-terminated structure. Thus, an interface with
abruptly cut nanorods mimics a PMC wall with high accuracy.

As can be seen from Fig. 3, the dispersion in both the
piston and the nanowires made of real metals reduces the
interaction energy. However, the most significant reduction
happens due to the dispersion of the thin nanowires. When
the nanowire radius becomes comparable to the plasma skin

depth δp ∼ c/ωp (ωp is the plasma frequency of the metal),
the high-frequency normal oscillations of a nanowire crystal
contribute less to the electromagnetic part of the zero-point
energy, because the total zero-point energy has a component
associated with the kinetic energy of moving electrons. At
small and medium separations, this effect is dominant and
is responsible for a significant decrease in the value of the
interaction energy in our structure when the PEC nanowires
are replaced by silver nanowires.

It is worth noting here that at large separations the Casimir
energy is mostly determined by the response at low frequencies
ξ � c/a and thus, at large separations that we do not consider
in this paper, by imaginary frequencies such that ξ � c/a � �,
where � is the collision frequency of metal from which the
nanorods are made. At this point, it is of critical importance to
know accurately the limiting value of � at zero temperature.
In fact, up to the present day there is a lingering controversy
in the literature on the type of dispersion models for real
metals that should be used in Casimir force calculations at
low temperatures [37,39–42]. However, the results of this
paper are not affected by this controversy because we deal
with ultralong-range forces emerging from the (quasi)-TEM
modes. Indeed, the origin of the controversy is in different
reflectivities of the plates predicted by the Drude model and
the lossless plasma model for the TE modes in the limit of
zero frequency. In our system, the effect of the TE modes is
negligible (they do not interact with the thin nanowires and
are not reflected at the nanowire-air interface). On the other
hand, the reflectivity of the TEM modes is the same for both
models [23]: ρ = (1 − √

εr(iξ ))/(1 + √
εr(iξ )) → −1, when

εr(iξ ) → ∞.
It is also seen from Fig. 3 that the conductivity of the piston

has a much smaller influence on the value of the Casimir
energy than the conductivity of the nanorods. In fact, the
curves for tungsten and copper pistons practically coincide,
despite a significant difference in the plasma frequency of
these metals, and are very close to the curve for the PEC
piston. This agrees perfectly with the estimations done in our
previous work [23], where it was found that at separations
on the order of microns the plates made of real metals
behave closely to PEC when Casimir forces in nanowires are
considered.

Next, we calculate the Casimir force per unit area (the
pressure) acting on either a metallic or a PEC piston sliding
in the same structure as before. The force is calculated
by differentiating the interaction energy with respect to the
separation a [for the PEC pistons, the pressure is calculated
from (21)]. The results of these calculations are depicted in
Fig. 4.

As can be seen, the force acting on the piston is positive
at a < (L − h)/2 and negative at a > (L − h)/2; that is, it is
always directed toward the equilibrium point at the geometrical
center of the structure. Away from the equilibrium point, the
force is repulsive and behaves as 1/d2, where d is the distance
to the neighboring ends of the nanorods: d = a, when a �
L − a − h, and d = L − a − h, when L − a − h � a (see
the inset of Fig. 4, which demonstrates that the force decays
by a factor of about ∼0.05/0.002 = 25 when the distance is
varied by a factor of 5). This further supports the statement
that the forces considered in this paper are of the same nature
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FIG. 4. (Color online) The normalized Casimir pressure on
metallic and PEC pistons in the structure shown in Fig. 1 as a
function of the relative separation a/b. The sign of the pressure
is with respect to the z axis. The inset shows the same pressure in
logarithmic scale, for the range of separations 1 � a/b � 5, which
confirms the characteristic 1/a2 decay of the force. The plot legend
is the same as in Fig. 3.

as the ultralong-range Casimir-Lifshitz forces that we have
investigated in Ref. [23].

The finite conductivity of real metals affects the Casimir
pressure on the piston in the same manner as it affects the
Casimir energy. One can see that the reduction in the value
of the force is mainly due to the dispersion in thin nanorods,
while at small separations the effect of the finite conductivity
of the piston is also noticeable, which is in perfect agreement
with our previous findings on attractive Casimir forces acting
on metallic plates in silver nanorods [23].

In Sec. IV, our theoretical calculations assumed an infinites-
imal gap between the nanorods and the piston body, but in
a realistic structure this gap is necessarily finite. This will
result in a lower value of the Casimir pressure on the piston
when compared to the ideal case. This decrease, however,
is not dramatic, as is seen from the following calculation.
To account for the gaps, one may consider the jump in
the characteristic impedance that is seen by a TEM wave
propagating along a nanorod and entering a gap. The char-
acteristic impedance of a single unit cell of a nanowire crystal
is Z0 = √

L0/C0 = (η0/2π ) log[b2/4r0(b − r0)] (see [31]),
while the characteristic impedance of a nanowire entering into
a round hole in the piston may be estimated with the well-
known formula for a coaxial cable: Zh = (η0/2π ) log(rh/r0),
where rh > r0 is the hole radius (the nanowires and the
piston are assumed highly conducting), and η0 = √

µ0/ε0.
Thus, the ratio of the two impedances that determines the
magnitude of the reflection coefficient of the TEM waves
at the piston is Zh/Z0 = log(rh/r0)/ log[b2/4r0(b − r0)]. For
the case of a rather large 50% gap (rh = 1.5r0), we obtain
Zh/Z0 ≈ 0.17, which corresponds to the reflection coefficient
ρ = (Zh/Z0 − 1)/(Zh/Z0 + 1) ≈ −0.7, that is, only about
30% lower in absolute value than in the ideal case with
no gap. As the Casimir pressure is roughly proportional to

this reflection coefficient [Eq. (1)], one may expect a similar
reduction in its value.

It is interesting to compare the absolute value of the
repulsive Casimir force with other forces that may act on the
piston in a realistic structure. For example, it is instructive to
compare the Casimir force with the gravitational force acting
on the piston in a configuration in which the nanowires
are vertically aligned. The gravitational force per unit area
of the piston in this configuration is FG = gρmath, where
g ≈ 9.8 m s−2 is the acceleration of free fall, ρmat is the
mass density of the piston, and h is the piston thickness. For
the parameters used in Figs. 3 and 4, assuming the piston
made of tungsten (ρmat ≈ 19.25 × 103 kg m−3), one finds
FG ≈ 3.8 × 10−2 N m−2, which in the dimensionless units of
Fig. 4 is FGb4/(h̄c) ≈ 1.9 × 10−3. From the inset plot of Fig. 4,
we realize that the repulsive Casimir force in our configuration
is strong enough to lift the piston to about one micrometer
above the tips of the nanorods!

In a structure with horizontally oriented nanorods, there
may be some elastic deformation due to the weight of
the piston. The maximal deformation of a single nanorod
(assuming that the piston is in the middle of the structure)
can be estimated [43] as δmax = PL3/(48EI ), where P is the
piston weight per a single nanorod, P = gρmathb2, L is the
length of the nanorods (the nanorods are assumed to be simply
supported at both ends), E is the effective Young modulus of
nanorod’s material, and I = πr4

0 /4 is the moment of inertia
of a rod with a circular cross section. For silver nanorods
with radius on the order of tens of nanometers, the bulk
value of Young’s constant for silver [44] may be used: E =
83 × 109 N m−2, from which we obtain δmax ≈ 0.19 pm for
the structure with a tungsten piston. Such a small deformation
may be safely neglected.

Other forces that are of importance in a real structure are
the stiction forces at the nanoholes of the perforated piston.
To allow for a movement, the nanoholes must have larger
radii than the nanorods. Still, a nonideally aligned nanorod
may touch the walls of the associated nanohole at some
points. An estimation of the contact area at these points is
difficult since there are virtually no experiments on stiction
of metallic nanorods in nanoholes in metallic bodies. For
instance, strong enough adhesion may result in a deformation
of the nanorod so that the contact area is larger than it would
be for a nondeformed nanorod. Therefore, instead of obtaining
the contact area in a particular contact scenario, we estimate
the maximum allowable total contact area by equating the
Casimir force per nanorod to the stiction force acting on the
same nanorod.

This is done as follows. First, using Eq. (1), we may express
the ratio of the Casimir force to the stiction force per a single
nanorod as |FTEM/Fst| = πh̄c/(48a2σshAc), where σsh is the
average sheer stress at the points of contact and Ac is the total
contact area. From here, Ac = πh̄c/(48a2σsh|FTEM/Fst|). The
sheer stress due to adhesion can be estimated very roughly
from the data of Refs. [45–47] as being of order of σsh ≈
106 N m−2. Demanding that |FTEM/Fst| � 2 and a ≈ 0.5 µm,
we obtain for the contact area Ac � 4 × 10−3 nm2, which is,
for all practical reasons, prohibitively small if each nanorod
is allowed to adhere to the piston body. However, if only a
fraction of the nanorods is in an adhesive contact with the
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piston (i.e., their respective holes are made tighter than of
the most of others; these nanorods may serve as mechanical
support for the rest of the structure), then the Casimir force may
outweigh the stiction forces. For example, if there is a single
adherent nanorod per 50 × 50 array of other nanorods, then the
contact area of this nanorod may be of order of 10−17 m2, which
corresponds to a square area of about 3 × 3 nm2. Nevertheless,
the above estimations show that adhesion of the nanorods to
the piston body must be avoided as much as possible.

It should be also noted that in the presence of the gaps there
exists a Casimir attraction between the nanorods and the walls
of the piston nanoholes. These attractive forces act radially
and compensate each other when the nanorods are ideally
centered within their nanoholes. A realistic fabrication process,
however, will result in nanorods slightly shifted from their
symmetric positions. Thus, in each unit cell there will appear
a radial Casimir force that will try to displace the nanorod even
further away from the hole center.

It is possible to estimate the width of the gap at
which the radial Casimir forces may be compensated by
the elasticity of the nanorods. Within the proximity-force
approximation, the radial Casimir force between two eccentric
highly conducting cylinders is, in our notations, FPFA =
hδ(π3h̄c/60r4

0 )/[(rh/r0) − 1]5 (Ref. [48]), where δ is the offset
of a nanorod from its symmetric position. Equating this to
the elastic force Fe = 12πr4

0 Eδ/L3 (this case is analogous
to the deformation due to the gravitational force that we
considered above), we find that the two forces are equal
if [(rh/r0) − 1]5 = π2h̄cL3h/(12 × 60r8

0 E). Substituting the
parameters of our structure into this formula, we find rh/r0 ≈
2.2, which corresponds to a rather large gap. To achieve a
stable configuration with a 50% gap, the nanorod radius must
be increased at least up to r0 ≈ 35 nm.

Finally, to estimate the influence of supporting dielectric
layers, we have calculated the Casimir energy and the pressure
for the structure shown in Fig. 1, assuming that the ends of
silver nanorods are attached to silica (εh ≈ 2.08) layers of
thickness d = 0.5b = 100 nm (in our model the nanowires
are prolonged into the silica slabs). The piston is modeled as
an ideal PEC material. The calculated results are represented
in Figs. 3 and 4 by the curves marked as “Diel.” As could
be expected, at small separations the piston is attracted to the
silica layers. Notice that in this configuration the S-polarized
waves play a role in the sign of the Casimir force because they
are reflected by the silica layers: They promote the attraction
of the piston and the silica layers. However, at separations
significantly larger than d, the piston is pushed toward the
geometrical center of the structure, as in the cases without the
layers. Indeed, the contribution of the S-polarized waves to
the Casimir force is short range, unlike the contribution of the
P-polarized waves [23].

VI. CONCLUSIONS

In this work, we have studied the Casimir force acting
on a piston sliding in a background formed by a uniaxial
arrangement of cut metallic nanorods. It was shown that in
such an environment it is possible to mimic the behavior of
a PMC wall simply by cutting the wires at a desired plane.

Hence, it is expected that a metal-dielectric body placed inside
the structure will be repelled away from the interfaces with air
(i.e., the effective “PMC walls”), even if the nanowires stand
in a vacuum. For simplicity, the analysis of this work was
restricted to either semitransparent or PEC pistons. Consistent
with our intuition, it was found that such pistons are pushed
toward the geometrical center of the structure, which is shown
to be a point of a stable equilibrium. Our results do not
contradict to the recent theorem by Rahi et al. [38] that
establishes that there is no stable equilibrium in an arrangement
of metal-dielectric bodies interacting in a vacuum. Unlike the
situation considered by Rahi et al., in our system the relative
movement of bodies is limited: We assume that the movement
of the piston is constrained to the direction parallel to the
nanowires.

The nature of the repulsive force exerted on the metallic
piston studied in this paper is the same as that of the
ultralong-range forces that we have considered in our recent
work [23]. Thus, the force between planar slabs embedded in a
wire medium background varies with the distance, a, as 1/a2,
as compared to 1/a4 in similar structures in a vacuum. Finally,
we note that the described effect of repulsion with respect
to the interface of cut nanowires could also be interpreted
(from a microscopic, rather than from an effective medium
perspective) as an effect of attraction of the piston by the
nanowires.

APPENDIX

On the basis of S- and P-polarized eigenwaves, the forward-
and backward-propagating wave amplitudes E± at an arbitrary
cross section of the structure can be written as E± = E s± +
η0H

p±, where the column vectors

E s± = (As±,0,0)T, η0H
p± = (0,Ap1±,Ap2±)T (A1)

store the complex amplitudes of the electric field of the
S-polarized wave and the magnetic field (multiplied by
η0 = √

µ0/ε0) of the P-polarized waves, respectively (it is
convenient to use the magnetic field for the P-polarized waves
because its tangential component does not vary with the angle
of incidence). The matrices TA, TB , and TC are thus simple
diagonal block matrices in this basis:

TA,B,C =
(

e−ihA,B,C k̂z 0
0 e+ihA,B,C k̂z

)
, (A2)

where hA,B,C is the geometrical thickness of the corresponding
layer and k̂z is a 3 × 3 diagonal matrix that holds the
propagation factors k

s,p1,p2
z , Im(ks,p1,p2

z ) � 0, of the three
positively propagating eigenwaves of a layer: one for the
S-polarized wave and two for the P-polarized waves, as is
given by (9) and (10).

It is also clear that the operators τ̂±± of the total transfer
matrix (12) must have the following matrix representa-
tion when expressed on the basis of S- and P-polarized
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eigenwaves:

τ̂±± =

⎛
⎜⎜⎝

t s
±± 0 0

0 t
p11
±± t

p12
±±

0 t
p21
±± t

p22
±±

⎞
⎟⎟⎠ . (A3)

This form implies that the S- and P-polarized waves do not
interact in the structure that we consider.

The components of the matrices TAB and TBC have the same
form (A3) and can be found from the boundary conditions at
an interface between two layers of nanorods with different
permittivities of the host material. As follows from our recent
work [49], due to the effects of spatial dispersion in the
nanowire material, the complete set of boundary conditions
at such an interface includes a pair of additional boundary
conditions that are written in terms of the averaged current
density in the nanorods:

ẑ · (J1 − J2) = 0, ẑ ·
[

1

εh1

∂J1

∂z
− 1

εh2

∂J2

∂z

]
= 0. (A4)

The first condition in this pair is simply the continuity of the z

component of the current across the interface, while the second
one is related with the continuity of the effective potential of
a nanorod. As usual, one should also impose the continuity of
the tangential components of the electric and magnetic fields
at an interface:

ẑ × (E1 − E2) = 0, ẑ × (H1 − H2) = 0. (A5)

It can be proven that for plane waves with fixed kt, the z

component of the current density can be expressed as

Jz = ikt

k2
t

·
[
∂2Ht

∂z2
+ (β2 − k2

t )Ht

]
. (A6)

Thus, taking into account (A5) and (A6), the additional
boundary conditions (A4) can be rewritten in terms of the
tangential field components:

v̂ ·
[
∂2Ht1

∂z2
+ β2

1 Ht1

]
= v̂ ·

[
∂2Ht2

∂z2
+ β2

2 Ht2

]
, (A7)

û ·
[
∂2Et1

∂z2
+ β2

1 Et1

]
= û ·

[
∂2Et2

∂z2
+ β2

2 Et2

]
. (A8)

where û = kt/|kt| and v̂ = ẑ × û. As is seen, the additional
boundary conditions are only relevant for the P-polarized
waves.

With the notations introduced above, the tangential vector
fields at the two sides of an interface (marked with an index
m = 1,2; without any loss of generality, here we let the
interface be at z = 0) satisfy

Etm = (
v̂,κp1

z,mε−1
hmû,κp2

z,mε−1
hmû

) · (eizk̂z,mE+
m + e−izk̂z,mE−

m),

(A9)

η0Htm = (−κs
z,mε−1

hmû,v̂,v̂
) · (eizk̂z,mE+

m − e−izk̂z,mE−
m), (A10)

where κ
s,p1,p2
z,m = k

s,p1,p2
z,m /(ω

√
ε0µ0), and the dot

product is understood as (a,b,c) · (As±,Ap1±,Ap2±)T =
aAs± + bAp1± + cAp2±. Substituting the expressions (A9)
and (A10) into the boundary conditions (A5)–(A8), we obtain
a system of six linear equations for the twelve complex
amplitudes A

s,p1,p2±
1,2 . The transfer matrix in question is then

found by solving for six unknown amplitudes A
s,p1,p2±
1 in terms

of the other six given amplitudes A
s,p1,p2±
2 . Below we give

the result for the components of TAB = [τ̂++,τ̂+−; τ̂−+,τ̂−−],
which are all of the form (A3) (m = 1 for layer A and m = 2 for
layer B):

t s
++ = t s

−− = κs
z,1 + κs

z,2

2κs
z,1

, (A11)

t s
+− = t s

−+ = κs
z,1 − κs

z,2

2κs
z,1

, (A12)

t
p11
++ = t

p11
−− =

(
εh2κ

p1
z,1 + εh1κ

p1
z,2

)[
(εh1 − εh2) + (

κ
p1
z,2 − κ

p2
z,1

)(
κ

p1
z,2 + κ

p2
z,1

)]
2εh2κ

p1
z,1

(
κ

p1
z,1 − κ

p2
z,1

)(
κ

p1
z,1 + κ

p2
z,1

) , (A13)

t
p12
++ = t

p12
−− =

(
εh2κ

p1
z,1 + εh1κ

p2
z,2

)[
(εh1 − εh2) + (

κ
p2
z,2 − κ

p2
z,1

)(
κ

p2
z,2 + κ

p2
z,1

)]
2εh2κ

p1
z,1

(
κ

p1
z,1 − κ

p2
z,1

)(
κ

p1
z,1 + κ

p2
z,1

) , (A14)

t
p21
++ = t

p21
−− =

(
εh2κ

p2
z,1 + εh1κ

p1
z,2

)[
(εh2 − εh1) + (

κ
p1
z,1 − κ

p1
z,2

)(
κ

p1
z,1 + κ

p1
z,2

)]
2εh2κ

p2
z,1

(
κ

p1
z,1 − κ

p2
z,1

)(
κ

p1
z,1 + κ

p2
z,1

) , (A15)

t
p22
++ = t

p22
−− =

(
εh2κ

p2
z,1 + εh1κ

p2
z,2

)[
(εh2 − εh1) + (

κ
p1
z,1 − κ

p2
z,2

)(
κ

p1
z,1 + κ

p2
z,2

)]
2εh2κ

p2
z,1

(
κ

p1
z,1 − κ

p2
z,1

)(
κ

p1
z,1 + κ

p2
z,1

) , (A16)

t
p11
+− = t

p11
−+ =

(
εh2κ

p1
z,1 − εh1κ

p1
z,2

)[
(εh2 − εh1) + (

κ
p2
z,1 − κ

p1
z,2

)(
κ

p2
z,1 + κ

p1
z,2

)]
2εh2κ

p1
z,1

(
κ

p1
z,1 − κ

p2
z,1

)(
κ

p1
z,1 + κ

p2
z,1

) , (A17)

t
p12
+− = t

p12
−+ =

(
εh2κ

p1
z,1 − εh1κ

p2
z,2

)[
(εh2 − εh1) + (

κ
p2
z,1 − κ

p2
z,2

)(
κ

p2
z,1 + κ

p2
z,2

)]
2εh2κ

p1
z,1

(
κ

p1
z,1 − κ

p2
z,1

)(
κ

p1
z,1 + κ

p2
z,1

) , (A18)
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t
p21
+− = t

p21
−+ =

(
εh2κ

p2
z,1 − εh1κ

p1
z,2

)[
(εh1 − εh2) + (

κ
p1
z,2 − κ

p1
z,1

)(
κ

p1
z,2 + κ

p1
z,1

)]
2εh2κ

p2
z,1

(
κ

p1
z,1 − κ

p2
z,1

)(
κ

p1
z,1 + κ

p2
z,1

) , (A19)

t
p22
+− = t

p22
−+ =

(
εh2κ

p2
z,1 − εh1κ

p2
z,2

)[
(εh1 − εh2) + (

κ
p2
z,2 − κ

p1
z,1

)(
κ

p2
z,2 + κ

p1
z,1

)]
2εh2κ

p2
z,1

(
κ

p1
z,1 − κ

p2
z,1

)(
κ

p1
z,1 + κ

p2
z,1

) . (A20)

The matrix TBC is obtained analogously, with m = 1 for layer
B and m = 2 for layer C.

The reflection operators ρ̂1 = ρ̂2 = ρ̂ have the matrix
representation similar to that of the transfer operators:

ρ̂ =
⎛
⎝rs 0 0

0 rp11 rp12

0 rp21 rp22

⎞
⎠ . (A21)

The components of this matrix can be found by applying
suitable boundary conditions at an interface of the nanorods
and air. The complete set of these conditions consists of a pair
of the standard boundary conditions (A5) and an additional
physical condition that requires the current density to vanish
at the ends of the nanorods: Jz = 0 [34,35]. It can be proven
that this implies an ABC as in Eq. (A7). Indeed, when (A6) is
applied to the field in the air region, it immediately results in
a zero current; thus, (A7) enforces Jz = 0 on the side of the
nanorods.

The wave field on the side of the nanorods is expressed
as in (A9) and (A10), while the field on the air side is a
superposition of S- and P-polarized waves propagating away
from the interface (as above, without any loss of generality we
let the interface be at z = 0 and consider the case where the
air region is at z > 0):

Et,a = (v̂,κz,aû) · eizk̂z,aT , (A22)

η0Ht,a = (−κz,aû,v̂) · eizk̂z,aT , (A23)

where k̂z,a = [kz,a,0; 0,kz,a] is a diagonal matrix with the
z component of the propagation factor in air kz,a =√

ω2ε0µ0 − k2
t on its main diagonal, κz,a = kz,a/(ω

√
ε0µ0),

and T = (T s,T p)T is a column vector of the complex ampli-
tudes of the two waves propagating in the air region.

Inserting these expressions into the boundary condi-
tions (A5)–(A7) and repeating the same procedure as for
the interface of two layers of nanorods above, we obtain the
following expressions for the reflection coefficients (A21):

rs = κs
z − κz,a

κs
z + κz,a

, (A24)

rp11 = −
(
κ

p1
z + κ

p2
z

){
1 + κ2

z,a − κ
p1
z κ

p2
z − εh

[
1 + κz,a

(
κ

p1
z − κ

p2
z

)]}
(
κ

p1
z − κ

p2
z

){
1 + κ2

z,a + κ
p1
z κ

p2
z − εh

[
1 − κz,a

(
κ

p1
z + κ

p2
z

)]} , (A25)

rp22 =
(
κ

p1
z + κ

p2
z

){
1 + κ2

z,a − κ
p1
z κ

p2
z − εh

[
1 − κz,a

(
κ

p1
z − κ

p2
z

)]}
(
κ

p1
z − κ

p2
z

){
1 + κ2

z,a + κ
p1
z κ

p2
z − εh

[
1 − κz,a

(
κ

p1
z + κ

p2
z

)]} , (A26)

rp12 = − 2κ
p2
z

(
1 + κ2

z,a − (
κ

p2
z

)2 − εh
)

(
κ

p1
z − κ

p2
z

){
1 + κ2

z,a + κ
p1
z κ

p2
z − εh

[
1 − κz,a

(
κ

p1
z + κ

p2
z

)]} , (A27)

rp21 = 2κ
p1
z

(
1 + κ2

z,a − (
κ

p1
z

)2 − εh
)

(
κ

p1
z − κ

p2
z

){
1 + κ2

z,a + κ
p1
z κ

p2
z − εh

[
1 − κz,a

(
κ

p1
z + κ

p2
z

)]} . (A28)

The expressions for rpmn greatly simplify when the relative
host permittivity on the side of nanorods is εh = 1:

rp11 =
(
κ

p1
z − κz,a

)(
κ

p1
z + κ

p2
z

)
(
κ

p1
z + κz,a

)(
κ

p1
z − κ

p2
z

) , (A29)

rp22 = −
(
κ

p2
z − κz,a

)(
κ

p1
z + κ

p2
z

)
(
κ

p2
z + κz,a

)(
κ

p1
z − κ

p2
z

) , (A30)

rp12 = 2κ
p2
z

(
κ

p2
z − κz,a

)
(
κ

p1
z + κz,a

)(
κ

p1
z − κ

p2
z

) , (A31)

rp21 = − 2κ
p1
z

(
κ

p1
z − κz,a

)
(
κ

p2
z + κz,a

)(
κ

p1
z − κ

p2
z

) . (A32)

It is also seen that in this case the reflection coefficient
for the S-polarized waves is rs = 0. This is because the
S-polarized waves do not interact with thin wires; that is,
these modes reflect only due to the dielectric permittivity
contrast at the interface. Thus, in this situation, the S-polarized
waves do not contribute to the Casimir force acting on the
piston.

It is interesting that with the help of (A24)–(A28) it is
possible to write down the eigenvalues of the operator ρ̂ given
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by (A21) in a closed form:

λ1 = rs, λ2 = −1 + κ2
z,a + κ

p1
z κ

p2
z − εh

[
1 + κz,a

(
κ

p1
z + κ

p2
z

)]
1 + κ2

z,a + κ
p1
z κ

p2
z − εh

[
1 − κz,a(κp1

z + κ
p2
z

)] , λ3 = 1. (A33)

When εh = 1, the expression for λ2 simplifies to

λ2 =
(
κ

p1
z − κz,a

)(
κz,a − κ

p2
z

)
(
κ

p1
z + κz,a

)(
κz,a + κ

p2
z

) , (A34)

It can be verified that at the positive imaginary frequencies
ω = iξ the respective eigenvalues are such that |λ1,2| < 1, as
is seen from (9) and (A24) for λ1, and from (10) and (A33)
for λ2, because the expression for λ2 can be rewritten
as λ2 = (A − B)/(A + B), where A and B are such that
A = κz,a(κp1

z + κ
p2
z ) > 0, and B = (1 + κ2

z,a + κ
p1
z κ

p2
z )/εh −

1 > 2/εh > 0. When εh � 1, it is possible to prove that
0 � λ1,2 < 1.

In the main text, it was mentioned that the eigenvalues of the
operator ρ̂e−2zγ̂z determine the sign of the Casimir force. At
z = 0, the eigenvalues of this operator are given by (A33). To
study what happens at z > 0, we consider the important case
when εh = 1. As discussed above, in this case all eigenvalues
of the reflection operator ρ̂ are such that 0 � λ1,2,3 � 1.

We denote the eigenvalues of the operator ρ̂e−2zγ̂z as λ̃1,2,3.
Let us show that the eigenvalues λ̃1,2,3 are all real and non-
negative when εh = 1. We introduce the attenuation factors
γ1,2,3 as follows: γ1 = −iks

z, γ2,3 = −ik
p1,2
z (they are real and

positive at the positive imaginary frequencies ω = iξ ). Now
we notice that due to the special form (A21) of the operator ρ̂,
the first eigenvalue is λ̃1 = rse−2zγ1 = 0. The remaining two
eigenvalues λ̃2,3 are the solutions of the quadratic equation

λ̃2 − λ̃Tr + Dt = 0, (A35)

where Tr = (x1r
p11 + x2r

p22) and Dt = x1x2(rp11rp22 −
rp12rp21), x1,2 = e−2zγ2,3 , are the trace and the determinant
of the lower-right submatrix of ρ̂e−2zγ̂z of rank 2, respec-
tively. The discriminant of this equation is D = Tr2 − 4Dt =
(x1r

p11 − x2r
p22)2 + 4x1x2r

p12rp21 � 0, because rp12rp21 �
0, as can be verified using Eqs. (10) and (A31)–(A32).
Therefore, the eigenvalues λ̃2,3 are real. It is also clear that they
are non-negative, because Dt = x1x2λ2λ3 � 0 and

√
D � Tr.
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