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Physical restrictions on the Casimir interaction of metal-dielectric metamaterials:
An effective-medium approach
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Using an effective-medium approach, we demonstrate that the Casimir interaction of structured metal-dielectric
metamaterial slabs which effectively behave as either uniform nongyrotropic materials or bi-isotropic materials
is attractive at all distances, independent of the emergence of artificial magnetism or strong magnetoelectric
coupling, when the slabs stand in a vacuum. In particular, it is shown that the magnetic response of a metal-
dielectric metamaterial is always diamagnetic at imaginary frequencies, and this explains in simple physical
terms the impossibility of Casimir repulsion.
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I. INTRODUCTION

The Casimir effect is a manifestation of the quantum
fluctuations of the electromagnetic field [1]. These fluctuations
are modified by the presence of material boundaries, and
typically result in an attractive Casimir interaction. However,
the Casimir force can in principle be repulsive, even when
the materials are separated by a vacuum. For example, in
1974 Boyer showed theoretically that a paramagnetic body
may repel a conducting body [2]. Recently, it was shown
that by microstructuring conventional metals and dielectrics
it may be possible to tailor their electromagnetic properties
and induce an effective magnetic response, at least in some
frequency range (artificial magnetism). Thus, it is only natural
to ask if such “metamaterials” may provide a route for Casimir
repulsion [3–6]. Driven by this exciting possibility, several
ideas for “quantum levitation” based on either magnetic or
chiral metamaterials have been suggested [7–9].

In a recent work [10], we have theoretically demonstrated,
by extending the T GT G formalism of Ref. [11] to the case
of periodic structures, that as long as the metamaterials are
formed by either dielectric or metallic inclusions with no
intrinsic magnetism, the Casimir force is necessarily attractive
for d > d0, where d0 is some distance comparable to the
transverse lattice constant of the metamaterial. We argued that
if the structured slabs can be described using effective-medium
theory, then their interaction is necessarily in the far zone
relative to the length scale of the lattice constant, and thus the
bodies must attract each other. In a related study, Rahi et al.
investigated whether fluctuation-induced forces can lead to
stable levitation, and found that in the case of nonmagnetic
dielectric objects in a vacuum the equilibrium position is
always unstable [12]. It is important to point out that in general
it is possible to have a repulsive force without any stable point
of equilibrium.

In this paper, we further develop the theory of Ref. [10] and
explicitly demonstrate using an effective-medium approach
that if the structured slabs may be regarded as uniform effective
media with either a nongyrotropic or bi-isotropic response
the Casimir force is attractive at all distances, independent
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of the emergence of optical magnetism or strong chirality.
In particular, we demonstrate that the magnetic response of
a metal-dielectric metamaterial at imaginary frequencies is
always diamagnetic.

II. RESTRICTIONS ON THE EFFECTIVE-MEDIUM
PARAMETERS AT IMAGINARY FREQUENCIES

To begin with, we consider an arbitrary metamaterial
formed by metal-dielectric inclusions. Even though some met-
als have an extremely tiny magnetic response, it can be safely
neglected since |ε|/ε0 � |µ|/µ0 (i.e., the electromagnetic
response of metals is determined by the electrical properties).
Thus, it is supposed in what follows that the inclusions do not
have an intrinsic magnetic response (µ = µ0). However, the
metamaterial can have an effective magnetic response.

Typically, it is assumed that for long wavelengths the
effective response of the metamaterial can be characterized
by an effective permittivity ε, an effective permeability µ,

and possibly by some parameters, ϑ and ζ , that describe
magnetoelectric coupling (“bianisotropic model” [13]). How-
ever, here we find it useful to consider first a more general
framework that describes the metamaterial by a dielectric
function denoted in the spectral domain by εeff(ω,k), k
being the wave vector [14,15]. Such approach takes into
account the spatial dispersion effects, and thus provides a more
accurate description of the electrodynamics of the structured
material. Next, we prove that because the inclusions are
passive and have a causal response the nonlocal dielectric
function evaluated for an arbitrary real valued k and imaginary

frequencies ω = iξ must be such that εeff(iξ,k)/ε0 − I > 0
(i.e., the “susceptibility function” must be positive definite).
The proof is a generalization of a similar result for local
isotropic materials [16]. Ahead, we will use this property to
derive physical restrictions on the usual effective parameters
associated with the bianisotropic model.

We consider an arbitrary uniform linear reciprocal spatially
dispersive material and write εeff = ε ′ + i ε ′′, where ε ′ =
(εeff + ε

†
eff)/2 and i ε ′′ = (εeff − ε

†
eff)/2. From the definition,

both ε ′ and ε ′′ are Hermitian symmetric. By thermodynamical
considerations, it is known that the heat liberated per unit
volume must be positive [14]. For electromagnetic fields
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with a spatial variation of the form eik·r the heating rate is
given by [14,17] q = 1

2 Re{−iωE∗ · εeff(ω,k) · E} = 1
2ωE∗ ·

ε ′′(ω,k) · E. Hence, since ω and k are independent parameters,
the passivity of the material implies that for every ω > 0 and
k real valued, the dyadic ε ′′ must be positive definite [14].

On the other hand, εeff can be regarded as the response
function of the material, and thus, because of causality
considerations, it cannot have singularities in the upper half
plane of the complex variable ω [14]. Moreover, it must

satisfy limω→∞ εeff(ω,k) = ε0I. Here, we are interested in the
properties of the nonlocal dielectric function for imaginary
frequencies ω = iξ , which, as shown next, are intrinsically
related to the behavior of ε ′′ over the real axis. Indeed,
consider the auxiliary function χ (ω,k) = εeff(ω,k)/ε0 − I
and calculate the integral of χ(ω,k)ω/(ω2 + ξ 2) over a closed
contour in the complex ω plane that consists of the real axis and
an arc of circumference with infinite radius in the upper half
plane, as in Ref. [16]. Applying Cauchy’s theorem, and noting
that the considered function has a single pole (at ω = iξ ) in
the region enclosed by integration contour, it can be proven
that

χ(iξ,k) = 1

πi

∫ +∞

−∞

ω

ω2 + ξ 2
χ (ω,k) dω

= 2

π

∫ ∞

0

ω

ω2 + ξ 2

ε ′′(ω,k)

ε0
dω. (1)

The second identity is a consequence of the definition of χ and
of the fact that ε ′ (ε ′′) is an even (odd) function of ω, because
for reciprocal materials and ω and k real valued the dielectric

function satisfies εeff(ω,k) = ε
†

eff(−ω,k) [14]. Thus, since ε ′′
is positive definite for ω > 0, as discussed before, it follows

that εeff(iξ,k)/ε0 − I is also positive definite for every ξ and
k real valued, and this concludes the proof.

In the derivation of this result we have implicitly assumed
that the function ωχ does not have poles in the real frequency
axis, which in the presence of dissipation is surely the case
for ω �= 0. At ω = 0, the dielectric function εeff may have
a pole, but the singularity of εeff at ω = 0 cannot be more
severe than that of the microscopic dielectric function ε of
the inclusions. The most critical situation corresponds to the
case where the inclusions are characterized by a lossy Drude
dispersion model, which corresponds to a pole of order one.
In any case, it is clear that for a metamaterial made of lossy
dielectric or metallic inclusions (with no intrinsic magnetism)
ωχ does not have, indeed, poles in the real frequency axis.

Let us now suppose that the considered metamaterial
can be as well characterized by a bianisotropic model with
constitutive relations [13]

D = ε0ε · E + 1

c
ϑ · H,

(2)
B = 1

c
ζ · E + µ0µ · H,

where c is the speed of light in vacuum. Since the material is

reciprocal, ε and µ are symmetric tensors and ζ = −ϑ
t

[13].
It is well known that in this case the dielectric function asso-

ciated with the nonlocal homogenization model must satisfy
[15,17,18]

εeff

ε0
(ω,k) = ε − ϑ · µ

−1 · ζ + c2

ω2
k × (µ

−1 − I) × k

+ c

ω
(ϑ · µ

−1 × k − k × µ
−1 · ζ ), (3)

which for ω = iξ may be rewritten in a compact form as

εeff

ε0
(iξ,k) − I = Ũ †χ̂EBŨ , Ũ =

⎛
⎝ I

ic
ξ

k × I

⎞
⎠ , (4)

where (the superscript t represents the transpose matrix)

χ̂EB =
⎛
⎝ε − I − ϑ · µ

−1 · ζ −ϑ · µ
−1

µ
−1 · ζ µ

−1 − I

⎞
⎠ ≡

⎛
⎝ A B

B
t

C

⎞
⎠.

(5)

It can be easily checked that the matrix χ̂EB(iξ ) is real valued
and symmetric.1

Next, we use the very general property εeff (iξ,k) /ε0 − I >

0 to derive the restrictions on the parameters associated with
the bianisotropic model at imaginary frequencies. Specifically,
we will show that if the metamaterial is reciprocal and
either bi-isotropic (i.e., ε, µ, and ϑ and ζ are scalars) or

nongyrotropic (ϑ = ζ = 0) then χ̂EB(iξ ) � 0. First, we note

that εeff (iξ,k) /ε0 − I > 0 implies that χ̂EB(iξ ) is such that
〈ŨE0|χ̂EB|ŨE0〉 > 0, for every nontrivial complex (constant)
vector E0. However, we should not rush to the conclusion
that χ̂EB > 0, because the range of mappings of the form
Ũ = Ũ (k) (with k real valued) is not necessarily the whole
complex vector space of dimension 6.

To circumvent this difficulty, we note that for every real
valued scalar α we have 〈Ũ (αk)E0|χ̂EB|Ũ (αk)E0〉 > 0. Notice
that Ũ is evaluated for the wave vector αk and that Ũ (k)E0 =( E0

c
ξ
ik×E0

)
. But, since the expression 〈Ũ (αk)E0|χ̂EB|Ũ (αk)E0〉

is a quadratic polynomial in α, (E0 is an arbitrary complex
vector and k is an arbitrary real vector), a straightforward
analysis shows that in order that this quadratic form is always

positive it is necessary that A > 0, C � 0, and that

|Im{〈E0|B|k × E0〉}|2 � 〈E0|A|E0〉〈k × E0|C|k × E0〉, (6)

where the dyadics A, B, C are defined as in Eq. (5). Hence, it is

clear that for nongyrotropic media (B = 0) we have χ̂EB(iξ ) �
0. On the other hand, for an isotropic material all the dyadics
reduce to scalars and choosing, for example, E0 = (1,i,0) /

√
2

and k = (0,0,1), it follows that B2 � AC. It can be verified
that this ensures that χ̂EB(iξ ) is nonnegative in the bi-isotropic
case, as we wanted to prove.

An immediate but extremely important implication of
the condition χ̂EB � 0 is that an isotropic metamaterial is

1For k real valued the nonlocal dielectric function satisfies
ε

∗
(iξ,k) = ε (iξ, − k) [14], and thus the effective parameters ε, µ,

ϑ , and ζ must be real valued for imaginary frequencies, ω = iξ .
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necessarily diamagnetic at imaginary frequencies: 0 <

µ(iξ ) � 1. Thus, it follows that by structuring either dielectrics
or metals it is impossible to obtain isotropic paramagnetism
at imaginary frequencies, and consequently any form of
“quantum levitation” based on the mechanism proposed by
Boyer [2]!

It is important to note that our theory does not invalidate
in any manner the existence of paramagnetic materials at
imaginary frequencies. It only establishes that it is impos-
sible to synthesize a metal-dielectric metamaterial with such
effective response. In fact, one could very well argue that
any bianisotropic material (not necessarily a metamaterial)
can always be described by a nonlocal dielectric function
defined as in Eq. (3), and thus that our conclusion that

εeff(iξ,k)/ε0 − I > 0 would imply that any isotropic material
is necessarily diamagnetic at imaginary frequencies. There
is, however, a flaw in such reasoning. Indeed, as discussed

before, the proof that εeff(iξ,k)/ε0 − I > 0 is valid only
if ωχ is regular in the real frequency axis. But, for a
general bianisotropic material [such that the nonlocal dielectric
function and the local parameters are linked as in Eq. (3)] the
finiteness of ωχ at the origin is equivalent to the requirement
that the effective permeability of the material in the static
limit is trivial (µ = 1), because otherwise ωχ has a pole at
ω = 0. Thus, in the case of a general bianisotropic material,

the conclusion that εeff(iξ,k)/ε0 − I is positive definite holds
only if the material does not have a magnetic response in the
static limit. This precludes the direct application of the theory
to conventional materials with an intrinsic magnetic response
in the static limit (e.g., paramagnetics).

However, as discussed before, in case of metal-dielectric
metamaterials ωχ is always regular at the origin. In fact,
due to the dissipation effects the metamaterial cannot have
a magnetic response in the limit ω = 0 when the origin of the
magnetism is the circulation of microscopic electric currents.
For example, the current I induced in a closed loop of area
S, by an external magnetic field Bext, vanishes in the static
limit in the presence of ohmic loss. Indeed, supposing that
the resistance of the loop is R and that its inductance is
L we have (R − iωL)I = iωBextS. Thus, in the quasistatic
limit the magnetic dipole moment of the loop is such that
m = iωS2Bext/(R − iωL), which evidently vanishes in the
presence of realistic loss (R �= 0) at ω = 0, and thus the static
permeability is trivial. Note, however, that if the inclusions
were made of perfect electric conductors the metamaterial
could have a diamagnetic response at ω = 0. Very differently,
natural magnetics can have a nontrivial permeability in the
static limit, even in the presence of dissipation, because the
magnetic response is rooted in other physical mechanisms
(e.g., spin magnetic moments). The restrictions on the effective
parameters of (natural) materials with intrinsic magnetism in
the static limit are discussed in the appendix.

It should be noted that the property µ(ω = 0+) = 1 is com-
patible with Kramers-Kronig relations for the permeability as
formulated in the book of Landau and Lifshitz [19]. However,
such property also indicates that the effective-medium model
must break down for a sufficiently large frequency, because if
the permeability had meaning in all the frequency spectrum it
should satisfy µ(ω = 0+) > 1.

III. CASIMIR INTERACTION OF TWO NONUNIFORM
BIANISOTROPIC METAMATERIAL SLABS

In the second part of the paper, we extend the theory
of Ref. [10] and study the Casimir interaction of two
generic structured bianisotropic metamaterial slabs (Fig. 1).
The structuring is such that the system is invariant under
translations along the primitive vectors a1 and a2, which are
assumed to lie in the x0y plane. Thus, the slabs are described
by a continuous material bianisotropic model, such that the

effective parameters ε, µ, ϑ , and ζ may depend on r in an
arbitrary way, apart from being periodic in the transverse
(x and y) coordinates. The metamaterial slabs are formed by
the repetition of the unit cell 	 = 	T × [−∞,+∞] where
	T = {(x,y) = α1a1 + α2a2 : |αi | � 1/2} is the transverse
unit cell. The region of space 0 < z < d is a vacuum. The
intersection of 	 with the semispace z < 0 (z > d) is denoted
by A (B).

Next, we derive a T GT G formulation [11] of the Casimir
interaction of the bianisotropic bodies. As in Ref. [10], first
we obtain the dispersion equation D(ω,k||) = 0 of the Bloch-
Floquet electromagnetic modes associated with the transverse
wave vector k|| = (kx,ky,0). The zero-temperature Casimir
interaction energy per unit of area, δE/As, can be written in
terms of D as follows [10]:

δE
As

= h̄

(2π )3

∫
BZ

d2k||
∫ +∞

0
dξ ln D(iξ,k||), (7)

where BZ stands for Brillouin zone. Formula (7) is derived
exactly in the same way as in our previous work [10] by
regularizing the calculation of the zero-point energy of the
system using the argument principle [20,21].

It is well known that the Bloch modes (associated with
the frequency ω and with the real valued wave vector k||)
of a transverse periodic structure satisfy the generalized
Lippmann-Schwinger integral equation,(

E

−η0H

)
=

(ω

c

)2
(

Ĝp
ic
ω
∇ × Ĝp

ic
ω
∇ × Ĝp −Ĝp

)
.

(
P/ε0

η0M

)
,

(8)

FIG. 1. (Color online) Two planar (transverse periodic) bian-
isotropic slabs (formed by metal-dielectric inclusions at the
“microscopic” level) stand in a vacuum and are separated by a distance
d . The framed region represents the basic cell 	.
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where E, H, P, and M, represent the electric field, the magnetic
field, the polarization vector, and the magnetization vector,
respectively, and η0 is the intrinsic impedance in free space.
The operator Ĝp(ω,k||) is defined as in Ref. [10], and satisfies

Ĝp = (∇ × ∇ × −ω2

c2 )−1 subject to Bloch-periodic boundary
conditions in the transverse directions. Noting that ∇ × ∇ ×
Ĝp = ω2

c2 Ĝp + Î , and taking into account that the curl operator,
∇×, commutes with Ĝp because it evidently commutes with
Ĝ−1

p , we can rewrite Eq. (8) as follows:(
E

−η0B/µ0

)
− ω2

c2
ĜEB

(
P/ε0

η0M

)
= 0, (9)

where B = µ0(H + M) is the induction field. The operator
ĜEB is given by ĜEB = ÛĜpV̂ with Û and V̂ defined as

Û =
(

Î

ic
ω
∇×

)
, V̂ = (

Î ic
ω
∇× )

. (10)

Using the bianisotropic constitutive relations it is possi-
ble to relate polarization and magnetization vectors to the
macroscopic electric and induction fields as follows:

(P/ε0

η0M

) =
χ̂EB

( E
−η0B/µ0

)
, where the (multiplication) operator χ̂EB =

χ̂EB(ω) is represented by a 6 × 6 matrix defined as in Eq. (5).
Thus, it follows that the Bloch eigenmodes of the structure
satisfy the homogeneous system(

Î − ω2

c2
ĜEBχ̂EB

)
F = 0, F =

(
E

−η0B/µ0

)
. (11)

All the operators are defined on H	,k|| × H	,k|| → H	,k|| ×
H	,k|| , and the six-vector field F is defined over the unit cell
	.2 Proceeding as in Ref. [10], it is possible to obtain
an integral equation whose unknown is FA, defined as the
restriction of F to the region A. In this manner, it is found that
the dispersion characteristic of the eigenmodes can be written
as D(ω,k||) = 0, with

D(ω,k||) = det(ÎA − T̂AĜABT̂BĜBA), (12)

where the operator inside brackets is defined on HA,k|| ×
HA,k|| → HA,k|| × HA,k|| , and T̂α = −ω2

c2 χ̂EB,α(Îα −ω2

c2

Ĝααχ̂EB,α)−1 with α = A,B. By definition Ĝαβ ≡ ĜEB,αβ is
the restriction of ĜEB on Hβ,k|| × Hβ,k|| → Hα,k|| × Hα,k|| .

The previously mentioned analysis shows that the Casimir
interaction energy can be formally calculated exactly in the
same manner as in Ref. [10], except that in the bianisotropic
case the operators χ̂ and Ĝp of Ref. [10] must be replaced by
χ̂EB and ĜEB. Based on this observation it is straightforward to
verify that the results of Ref. [10] also hold in the bianisotropic
case, provided the operators χ̂EB and ĜEB are nonnegative for
imaginary frequencies (ω = iξ ) (i.e., χ̂EB � 0 and ĜEB � 0).
Indeed, these are the conditions necessary to transform the
T GT G structure into the MM† structure [10].

2H	,k|| is the space of (square integrable) vector fields defined
over the unit cell that satisfy Bloch-Floquet boundary conditions
determined by k|| in the transverse (x and y) coordinates.

The condition ĜEB(iξ ) � 0 does not pose any difficulties.
Indeed, for imaginary frequencies V̂ (iξ ) = Û †(iξ ), and thus
ĜEB = ÛĜpÛ

†. Thus, it is evident that for ω = iξ we have
ĜEB � 0 because Ĝp > 0 [10]. On the other hand, since χ̂EB

is a multiplication operator, it is clear that the condition
χ̂EB � 0 is satisfied if the matrix (5) is nonnegative for
every point r fixed. Hence, it is sufficient to prove that
for a uniform (homogeneous) material χ̂EB(iξ ) � 0. But,
as demonstrated in the first part of this work, when the
metamaterials consist of dielectric or metallic inclusions
(with no intrinsic magnetism) such condition is necessarily
observed when the effective medium is either bi-isotropic or
nongyrotropic.

Therefore, using the theory of Ref. [10], we can con-
clude that in these circumstances the interaction between
two structured bianisotropic slabs is attractive at all macro-
scopic distances (i.e., for d > d0 where d0 is some distance
comparable to the transverse period of the nonuniform
slabs). Moreover, in case the effective parameters (ε, µ,

ϑ , and ζ ) of the slabs are independent of the transverse
coordinates x and y the Casimir force is attractive at all
distances!

Clearly, our findings oppose Ref. [9], which claimed that the
interaction between two isotropic chiral metamaterials may be
repulsive for a sufficiently large chirality parameter. Indeed,
as demonstrated in [22], the material parameters considered
in Ref. [9] are incompatible with the passivity and causality
of the metamaterials. Other works have also studied scenarios
where Casimir repulsion could occur [3–6], particularly when
the magnetic permeability of the metamaterials follows either
a Drude or a Lorentz characteristic. However, both the Drude
and the Lorentz dispersion models are incompatible with the
condition µ(ω = 0+) = 1, and thus cannot describe accurately
the magnetic response of metal-dielectric metamaterials near
ω = 0. A much more realistic model is the one described
in Pendry’s seminal work [23], which as shown in Ref. [3]
is consistent with our theory that the magnetic response at
imaginary frequencies is diamagnetic.

IV. CONCLUSION

We have studied the physical restrictions on the effective
parameters of metal-dielectric metamaterials at imaginary
frequencies, and demonstrated using effective-medium theory
that the causality and passivity of the materials impose rather
severe restrictions on the possibility of “quantum levitation.”
An important conclusion from our study is that the magnetic
response of a metal-dielectric metamaterial is necessarily
diamagnetic at imaginary frequencies.
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APPENDIX: THE CASE WHERE ωχ HAS A
POLE AT THE ORIGIN

In this appendix we generalize the results of Secs. II and

III to the case where χ (ω,k) = εeff(ω,k)/ε0 − I has a pole of
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order two at the origin. As discussed before, this situation
can only occur in case of natural materials with intrinsic
magnetism (and eventually also in the case of superconducting
metamaterials). It can be easily shown that Eq. (1) remains
valid provided the term χ (iξ,k) in the left-hand side of
the equation is replaced by χ (iξ,k) + 1

ξ 2 [limω→0 χ (ω,k)ω2].
Thus, it follows that

ε(iξ,k) − ε0I + 1

ξ 2

[
lim
ω→0

ε(ω,k)ω2

]
> 0. (A1)

In particular, let us consider the case where the nonlocal
dielectric function satisfies Eq. (3) (bianisotropic model). To
simplify, we also assume that there is no magnetoelectric

coupling (ζ = ϑ = 0). In this case it is clear that for arbitrary

real valued k we have

ε(iξ ) − I − 1

ξ 2
k × [µ

−1
(iξ ) − µ

−1
(0)] × k > 0. (A2)

Thus, it is evident that the local permittivity and permeability

satisfy ε(iξ ) > I and µ
−1

(iξ ) − µ
−1

(0) � 0, where µ(0) is the
static permeability tensor.

Suppose now that the material is diamagnetic in the static

limit: µ
−1

(0) > I. Then it is clear that µ
−1

(iξ ) − I � 0,
and thus it follows that χ̂EB defined as in Sec. II is
non-negative: χ̂EB � 0. Hence, as could be expected, the
restrictions on Casimir repulsion derived in Sec. III also apply
to media with an intrinsic diamagnetic response in the static
limit.
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