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Ultralong-range Casimir-Lifshitz forces mediated by nanowire materials
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Here, we show that the Casimir-Lifshitz force (either attractive or repulsive) between two planar material slabs
embedded in a dense array of silver nanowires is an ultralong-range force that decays with the separation of the
bodies, a, as 1/a2, whereas in an isotropic background it decays as 1/a4. It is demonstrated that the nanowires
effectively channel the quantum fluctuations of the electromagnetic field through the region between the bodies,
boosting in this manner the intensity of the Casimir force at long distances. Moreover, in a configuration involving
a stationary planar slab and a spherical object able to slide within the nanowire background (e.g., an air bubble)
the dependence of the force on the separation is shown to be 1/a as compared to 1/a3 in an isotropic background.
Our theoretical calculations suggest that a significant repulsive Casimir force can be measured for distances up
to 10 µm in such a scenario.

DOI: 10.1103/PhysRevA.82.022511 PACS number(s): 31.30.jh, 42.50.Ct, 12.20.−m, 42.50.Lc

I. INTRODUCTION

The Casimir-Lifshitz [1–3] forces have a quantum origin
and can be observed as attraction [4] or repulsion [5] between
uncharged slabs of different materials. In a seminal work [1],
Casimir studied the force acting on a pair of two perfectly
conducting plates in a vacuum, and found that the force
is attractive and decays as 1/a4 as the separation between
the plates a is increased. Later, Lifshitz [2,3] generalized
Casimir’s results to slabs of arbitrary dielectrics, and it was
soon realized that the force may be repulsive when the two
slabs [with dielectric functions ε1(iξ ) and ε3(iξ )] are immersed
in a fluid with dielectric function ε2(iξ ), such that ε1(iξ ) <

ε2(iξ ) < ε3(iξ ). This theoretical finding has been supported
by a recent experiment [5]. Recently, it was suggested that
the Casimir interaction between structured materials may be
repulsive [6–8]. However, in all these works Casimir’s forces
appear as extremely weak and relatively short-range forces,
which are very hard to observe and to measure.

From Lifshitz’s formula, the Casimir force can be calculated
from the plane wave response of the material slabs to complex
frequencies ω/c = iξ , being c the speed of light in vacuum
[9,10]. The intensity of the force is mainly determined
by the response of the slabs to plane waves associated
with relatively small transverse wave vectors k‖ = (kx,ky,0)
because the attenuation constant in a vacuum is of the
form γ0 =

√
ξ 2 + k2

x + k2
y , and thus increases quickly with

k‖. Curiously, such behavior (for ω/c = iξ ) is completely
analogous to that characteristic of evanescent plane waves
associated with ω real valued. Even though for any isotropic
dielectric material the propagation characteristics (particularly
the attenuation constant) of modes with large transverse wave
vector are strongly dependent on k‖ (for both real valued
and imaginary frequencies), recently it was shown that the
existence of evanescent waves is not an inevitability, and that it
is possible to engineer the microstructure of a material in such
a way that all the plane wave modes are propagating waves (for
ω real valued). Specifically, several recent works demonstrated
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that an array of nanowires enables the transport of complex
electromagnetic images at long distances with subwavelength
resolution [11,12]. The key property of such nanowire mate-
rials (uniaxial wire medium) is that the propagation constant
of the fundamental electromagnetic mode is independent of the
transverse wave vector k‖, and in particular, for ω real valued,
the fundamental mode is always a propagating wave. It is
thus natural to ask what will happen if the Casimir interaction
between two material slabs is mediated by such wire medium.
Indeed, since in wire media the propagation constant is nearly
insensitive to k‖, can the contribution of the modes with large
k‖ to the Casimir force be greatly enhanced? In this work, we
prove that the answer is affirmative, and that the intensity of the
Casimir force may be dramatically increased at long distances,
being the traditional 1/a4 behavior replaced by 1/a2, similar to
structures that are inherently one-dimensional (1D) [9,13,14].

II. CASIMIR FORCE IN PARALLEL PLATE
CONFIGURATIONS

Let us first consider the case of two conducting plates
separated by a slab of uniaxial wire medium with thickness
a (see the inset of Fig. 1). The wire medium is formed
by parallel conducting rods (nanowires) oriented along the
direction orthogonal to the plates (z axis), and arranged in a
square lattice with period b [15]. We assume that r0 � b < a,
being r0 the wire radius. To begin with, we will treat the wire
medium as a continuous medium, using the homogenization
model described in Refs. [15,16]. The homogenization model
is applicable when kb � 1, being k = ω/c. Ahead, in Sec. III,
we will show that the continuous medium approach yields
a value for the force that is very close to the exact value
obtained by a full wave calculation that takes into account the
granularity of the structure.

In general, there are three classes of eigenwaves in the
uniaxial wire medium: waves with Ez = 0, Hz �= 0 which
are ordinary waves, or the transverse electric (TE) waves,
waves with Ez �= 0, Hz = 0 which are the usual extraordinary
waves or the transverse magnetic (TM) waves, and waves
with Ez = 0, Hz = 0 which are transverse electromagnetic
(TEM) waves. Strictly speaking, the latter are quasi-TEM

1050-2947/2010/82(2)/022511(7) 022511-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.022511
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FIG. 1. (Color online) Normalized Casimir forces due to the TE
(red solid line, left scale) and TM (blue dashed line, right scale)
waves acting on a pair of conducting plates embedded in uniaxial wire
medium as functions of the relative thickness of the slab (logarithmic
scale). The radius of the wires is r0 = b/20. The discrete symbols
were calculated with full wave simulations (Appendix A).

waves, because in the presence of loss the longitudinal
component of the electric field does not vanish completely.
For simplicity, first we will assume that the wires are perfect
electric conductors (PEC) (the effect of loss and dispersion
in realistic metals will be considered in Sec. IV). Within the
continuous medium approximation, the previously mentioned
waves obey the following dispersion relations [15],

k2
x + k2

y + k2
z = k2, (TE modes), (1)

k2
p + k2

x + k2
y + k2

z = k2, (TM modes), (2)

k2
z = k2, (TEM modes), (3)

where kp is the plasma wave number, which may be estimated
as kp =

√
2π/ log[b2/4r0(b − r0)]/b [16]. Notice that the

dispersion of the TEM mode is independent of kx and ky .
This suggests that TEM eigenmodes associated with different
kx and ky will contribute equally to the Casimir force,
boosting its intensity. In the exact full wave model (not
limited by the bounds imposed by homogenization theory),
the metamaterial is modeled as a photonic crystal, and there is
an infinite number of TE and TM modes, whose dispersion is
of the form k2

z = k2 − β2
i (kx,ky), where βi(kx,ky) is the cutoff

wave number of the mode characterized by the index i and by
the transverse wave numbers kx and ky .

In order to find the force acting on the plates, we consider
a cavity that encloses the space between the plates with
reflecting walls at x = ±L/2 and y = ±L/2. Therefore, the
allowed wave numbers of the standing waves in the cavity are
kx = πnx/L, ky = πny/L, kz = πnz/a, where nx,y,z are non-
negative integers. As is enforced by the boundary conditions,
nz starts at zero for the TM modes, and at unity for the TE and
TEM modes. It is assumed that the wires are in electric contact
with the plates (this is discussed later in more detail), and thus
the different modes are reflected by the plates without mixing
one with another.

Under the standard approach, the total zero-point energy in
the cavity is calculated as a sum over the ground energies of
all the quantum oscillators in the system:

E = (h̄/2)
∑ [

ω
nx,ny ,nz

TM + ω
nx,ny ,nz

TE + ω
nx,ny ,nz

TEM

]
. (4)

Besides the fact that this sum is terribly divergent, we realize
that the contributions from the TE, TM, and TEM modes
are all independent. These contributions may have, therefore,
different behavior with respect to the length of the cavity a.

We start with the most interesting part: the contribution
of the TEM modes. From Eq. (3), one can see that the
zero-point energies of the quantum oscillators associated with
these modes are independent of kx and ky . The number of
oscillators associated with TEM modes is exactly N , where N

is the number of wires in the cavity. This can be understood by
noting that the wire medium may be regarded as a multiwire
transmission line, and since each wire can be set to a unique
electrostatic potential, there exist exactly N independent TEM
modes in the cavity. Having this in mind, we may write the
contribution of the TEM modes to the zero-point energy as fol-
lows: ETEM = (h̄c/2)(L2/Acell)

∑∞
nz=1(πnz/a), where Acell =

b2 is the area of the transverse unit cell, and the coefficient
L2/Acell ≡ N gives the total number of independent TEM
modes in the cavity. Performing a ζ regularization of the above
sum, we find the interaction part of the zero-point energy:
δETEM = N (πh̄c/2a)ζ (−1) = −N (πh̄c/24a), where we used
the fact that the Riemann ζ function verifies ζ (−1) = −1/12.
Thus, the force per unit area acting on the plates is

FTEM

L2
= π

24

h̄c

a2b2
. (5)

Here, we follow the same convention as in [1]: a positive force
corresponds to attraction and a negative force corresponds to
repulsion.

The obtained result reminds one of the Casimir force in
inherently one-dimensional structures [9,13,14]. Specifically,
in Ref. [13] the contribution of the TEM mode in a coaxial
cylindrical cavity with a nonsimply connected cross section
was calculated and the characteristic 1/a2 behavior was
demonstrated, but the role of the TEM mode was found to
be negligible when compared to the role of the other modes of
the cavity. However, in the wire media that we consider in this
paper the situation is completely different. In (5) there is an
additional parameter which is not present in one-dimensional
cases: it is the wire separation b. When this separation
decreases the force increases, even if the metal volume fraction
in the wire medium is kept invariant. Effectively, the TEM
modes of a uniaxial wire medium act as many independent
unidimensional “channels” that contribute equally to the total
force (since the associated quantum harmonic oscillators have
the same zero-point energy) boosting its intensity. The larger
is the number of channels per unit of area; the stronger is the
attraction between the plates. Thus, when a dense wire medium
is placed in between two conducting plates it may effectively
act as a “quantum super glue.” Interestingly, for PEC nanowires
the FTEM component of the force depends neither on the
specific arrangement of the wires (which could be random) nor
on the wire radius. A detailed analysis described in Sec. IV
shows that for nanowires made of a realistic metal there is some
dependence of the force on the radius, but this dependence is
very weak provided the radius is larger than the metal skin
depth in the infrared domain (a few tens of nanometers).

The TEM component of the Casimir force (5) was derived
assuming that the nanowires are in electrical contact with
the plates and considering the electromagnetic modes of the
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resonator formed by the nanowires and the plates. While in
most situations an electrical contact implies a mechanical con-
tact, this does not necessarily imply that such a contact should
prevent the relative movement of the plates and, therefore,
the measurement of the Casimir force in the configuration of
Fig. 1. One can imagine a configuration in which the nanowires
penetrate one of the plates through holes while touching the
walls of the holes and maintaining an electrical contact. In
fact, a similar requirement is also present in the Casimir piston
problem where the sliding plate must be in electrical contact
with the lateral walls of a metallic waveguide [17,18]. In our
geometry the situation is formally identical except that our
sliding plate is perforated by the nanowires. Even touching
the wires may not be necessary, because on a nanoscale the
electrons can tunnel through narrow gaps providing in this way
an electrical connection. Yet another possibility is that one of
the metallic plates is a conducting liquid (e.g., liquid metal)
where the wires attached to the other (solid) conducting plate
are immersed. Moreover, from the physical point of view, even
if the relative movement of the plates is limited, the Casimir
energy is still there and can in principle be measured. For
instance, the considered Casimir force between two metallic
plates may manifest itself via a dramatic increase of the binding
energy of the plates when the nanowires are present.

It is instructive to give here also an alternative derivation of
the same force using the generalized Lifshitz formula [9,10].
With this approach it is possible to generalize (5) to the case
where the conducting plates are replaced by homogeneous
dielectrics or magnetics and the nanowires are prolonged into
the materials. For this case, the contribution to the Casimir
force by the mth dispersion branch of wire medium (seen as a
photonic crystal) can be written as

Fm

L2
= 2h̄c

π

∫ ∫
d2k‖
(2π )2

d

da

∫ ∞

0
log(1 − r1r2e

−2γ a) dξ, (6)

where r1 and r2 are the reflection coefficients at the boundaries
and γ = −ik(m)

z (ξ,kx,ky) and the double integration is done
over the first quadrant of the Brillouin zone, [0,π/b] ×
[0,π/b]. Within the framework of the continuous material
model, γ =

√
ξ 2 + k2

p + k2
x + k2

y for the first TM branch, and
γ =

√
ξ 2 + k2

x + k2
y for the first TE branch [Eqs. (1) and (2)].

For the TEM mode, γ = ξ and the reflection coefficients
are independent of kx and ky and determined by the ef-
fective impedances of the adjacent materials: r1,2 = (η1,2 −
η0)/(η1,2 + η0). Hence, if the material dispersion is negligible
in the region ξ <∼ 1/a that contributes the most to the integral
(6), the force due to the TEM waves is

FTEM

L2
= h̄c

4πa2b2

∫ ∞

0

t dt

et/(r1r2) − 1
= h̄c Li2(r1r2)

4πa2b2
, (7)

where Li2(z) = ∑∞
n=1 zn/n2 and the reflection coefficients are

assumed constant. Equation (7) reduces to (5) when r1r2 = 1
(e.g., a pair of highly conducting or highly permeable plates).
Since the polylogarithm function is such that Li2(x) < 0 for
x < 0, it follows that when r1r2 < 0 the Casimir force is
repulsive. In particular, a long-range repulsive force may
be obtained when a conducting plate is combined with a
permeable plate, or alternatively, as discussed ahead, when
the nanowires are embedded in three nonmagnetic materials

with ε1(iξ ) < ε2(iξ ) < ε3(iξ ), which corresponds to a gener-
alization of Dzyaloshinskii’s configuration [3].

The contribution of the TE and TM modes can also be
obtained with the help of Eq. (6). The only difference as
compared to the TEM case is the expression of γ in the
exponential term. Given that Eq. (6) is often derived with
a scattering formalism and that in our system the wires are
in contact with the plates, this may be somehow surprising
for someone accustomed to the fact that scattering theories
apply only to spatially separated bodies. However, it can
be shown that the integral (6) is completely equivalent to
a regularized summation of the zero-point energies of the
respective electromagnetic modes in a cavity (this can be easily
done with the help of the argument principle [19,20]). The
same can be also seen from the fact that we have done such
a direct summation for the TEM case and obtained a result
that is in perfect agreement with (7). Clearly, the summation
of the zero-point energies in a cavity [and therefore Eq. (6)
that can be derived from such a summation with the argument
principle] does not suffer from the limitations of the scattering
theories, because it is based on a completely independent
approach.

In order to obtain the TM component of the force, we note
that since exp(−2γ a) is quickly decaying for TM waves, the
double integration over kx and ky in Eq. (6) can be extended
to the first quadrant of the (kx,ky) plane. Introducing polar
coordinates, it is easily found that (for r1r2 = 1)

FTM

L2
= π2

480

h̄c

a4

[
1 − 60

π4

∫ (kpa)2

0

∫ ∞

0

q dν dw

eq − 1

]
, (8)

where q = 2
√

ν2 + w. When kpa → 0 (i.e., when r0/b → 0
so that the nanowires are very diluted), Eq. (8) reduces to
one-half of the Casimir force between two conducting plates in
vacuum. The expression in square brackets is positive and less
than unity, and monotonically decreases when kpa increases.
Therefore, the TM contribution is a short-range force that
decays with distance faster than 1/a4. This is illustrated in
Fig. 1, where the ratio FTM/FTEM is plotted as a function of
the relative separation a/b.

The final contribution to the Casimir force is due to the
TE modes. Within the framework of the continuous material
model [Eq. (1)], the dispersion of these ordinary waves is the
same as in vacuum. Indeed, the TE polarized waves do not
interact with the thin wires, because the wires are orthogonal
to the electric field. Thus, the contribution of the TE modes,
FTE, is exactly one-half of the Casimir force between a pair of
plates in vacuum. This force is also short range, as is seen from
Fig. 1. In particular, remembering that FTE is approximately
one-half of the force in the absence of the nanowires, Fig. 1
demonstrates that the intensity of the Casimir force (mainly
determined by FTEM) is indeed boosted at long distances
when the nanowires are present. The enhancement of the
force caused by the presence of the nanowires may seem
surprising if one remembers that in the configuration studied
by Lifshitz the addition of an isotropic material in between
the plates depresses the force. However, a wire medium is
a strongly anisotropic material which explains the different
behaviors.
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STANISLAV I. MASLOVSKI AND MÁRIO G. SILVEIRINHA PHYSICAL REVIEW A 82, 022511 (2010)

III. COMPARISON WITH FULL-WAVE SIMULATIONS

It is interesting to compare the Casimir force calculated
using the effective medium model with a full-wave simulation
that takes into account all the details of the microstructure
of the system. In this section, we make such a comparison
assuming as in Sec. II that the metals are perfect conductors
and that the wires are in electrical contact with the plates.

A crucial point is that under this assumption the formula
derived for the TEM component of the force [Eq. (5)] is
actually exact. This should be evident from the fact that it
was calculated based on the regularized summation of the
zero-point energies of the respective electromagnetic modes
in a cavity, and that Eq. (3) is the exact dispersion of the TEM
modes in a wire crystal with perfectly conducting wires. Thus,
within the framework of the full wave calculation, we only
need to worry with the TE and TM components of the force.

As detailed in Appendix A, the contributions of the TE and
TM modes can be calculated using the generalized Lifshitz
formula (6), with the exact dispersion γ =

√
ξ 2 + β2

i (kx,ky)
of the TE and TM modes.

Specifically, in order to calculate the full wave TE and TM
components of the force the first Brillouin zone was sampled
with 39 × 39 pairs of (kx,ky) values, and for each such pair
the corresponding βi(kx,ky) was found for the 20 lowest TE
and TM wire medium bands using the method reported in
[21]. For each branch, the integral over (kx,ky) in (6) was
approximated by a summation [see Eq. (A3) of the Appendix].
The remaining integration over the imaginary frequency was
done numerically. Then, the total force was found as the sum
of the modal forces. The obtained results are represented in
Fig. 1 with discrete symbols, confirming that the continuous
medium approximation works extremely well, especially for
the TM modes. The small disagreement in the contribution of
the TE modes is related to the fact that we have neglected the
transverse polarizability of the wires.

IV. EFFECT OF FINITE CONDUCTIVITY OF NANOWIRES
AND PLATES

Equation (7) shows that the perfect electrical conductor
approximation for the plates is not critical for the long-
range Casimir force. Indeed, it follows from Eq. (7) that if
the metal plates are replaced by dielectrics (with the wires
penetrating into them), the ultralong-range behavior of the
force remains the same, even though the magnitude of the
force may be weaker. For instance, from Eq. (7) the TEM
component of the force between two silica plates embedded
in PEC nanowires is 2% of the TEM component of the
force between two PEC plates [note that (6/π2)Li2(r1r2) =
(6/π2)Li2((

√
εr − 1)2/(

√
εr + 1)2) ≈ 0.02; following [5] the

permittivity of silica is εr(iξ ) ≈ 2.08 and varies insignificantly
with iξ ]. Although the force is significantly weaker than in the
PEC case, it still has the characteristic 1/a2 behavior.

A similar estimation can be done for the plates made of a
realistic metal. As the Casimir force grows with the reflectivity
of the plates [i.e., with the value of εr(iξ )], we can obtain a
lower-bound estimate for the force if we consider the minimal
value of εr(iξ ) in the frequency range of interest: ξ <∼ 1/a. The
minimal value of the permittivity in this range is achieved at

ξ = 1/a [it is a consequence of the Kramers-Kronig relations
that εr(iξ ) is a monotonically decreasing function of ξ ]. Thus,
for a = 10 µm we have ξmax = 105 m−1 which corresponds
to |ωmax| ≈ 3 × 1013 rad/s. The permittivity of silver at this
(imaginary) frequency can be calculated from a Drude model
with the parameters taken from the experimental data of
Ref. [22] and is about εr(iξmax) ≈ 105, that is, the reflection co-
efficient of the TEM modes at this frequency is r1,2 = −(

√
εr −

1)/(
√

εr + 1) ≈ −0.9937 and the respective reduction in the
Casimir force due to the finite conductivity of the plates is
1 − (6/π2)Li2(r1r2) ≈ 0.04 (i.e., the reduction is only about
4%). It is interesting to note, however, that at shorter distances
the reduction is higher. For instance, at a = 1 µm one should
consider |ωmax| ≈ 3 × 1014 rad/s, and the same very conser-
vative calculations predict a 20% reduction of the force when
compared to PEC plates. The explanation of this phenomenon
is that at shorter distances the modes with higher frequencies
contribute more to the force, and these modes are more affected
by the nonideality of the plates. Thus, at large separations it
is the finite conductivity of the nanowires (and not that of the
plates) that may limit the intensity of the Casimir force. Next,
we study the effect of loss and dispersion in the nanowires,
supposing that the plates are either dielectrics or PEC.

In order to estimate the effect of loss and dispersion in
nanowires made of real metals, we calculated the Casimir force
by direct numerical integration of (6) using a suitable effective
medium model for the silver nanowires [16,23]. Interestingly,
the results of our theoretical model indicate that the effect of
loss and dispersion is quite mild and that the results obtained
using the PEC assumption describe well the physics of the
system. Indeed, in Fig. 2 we compare the results obtained based
on the PEC approximation and the results obtained for realistic
silver wires (silver is described by the Drude model [22],
as above), considering configurations similar to those of the

FIG. 2. (Color online) (Left scale) The Casimir forces due to the
quasi-TEM modes [the blue line and dots (I)] and the TM modes [the
violet line and dots (III)] as functions of the distance between the PEC
metal plates in the configuration shown in the inset of Fig. 1. Solid
lines, lossless case; dots, lossy and dispersive silver wires modeled
through the experimental data of Ref. [22]. The red line and the dots
(II) are the same as (I) but for a metal-bromobenzene-air configuration
(inset A of Fig. 4). (Right scale) Attenuation in the Casimir force
(relative to the PEC case) for silver nanowires. Brown dashed line,
parallel plate geometry with metallic reflecting walls (as in Fig. 1);
orange dot-dashed line, metal-bromobenzene-air configuration (inset
A of Fig. 4). In all these plots, r0 = 20 nm, b = 100 nm.
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FIG. 3. (Color online) The Casimir force between two conducting
plates embedded in a silver nanowire background as a function of the
radius of the nanowires (normalized to the same force with PEC
nanowires). The value of the plate separation a is indicated in the
legend and b = 100 nm.

example of Fig. 1. The wires have radius r0 = 20 nm and
are spaced by b = 100 nm. As can be seen, the difference
between the two cases is quite modest in logarithmic units. In
particular, it can be seen that the variation of the force with
distance follows practically the same trend both in the ideal
case as well as in the case that takes into account the loss and the
dispersion. The forces between conducting or dielectric plates
(the latter configuration will be further discussed in Sec. V)
were found to be roughly one-half of the forces predicted by
(5) and (7) in the range 1 � a/b � 100 with the characteristic
1/a2 behavior confirmed for distances as large as 10 µm.
This demonstrates the robustness of the mechanism proposed
in this work to enhance the intensity of the Casimir force. At
larger distances the force decays faster, but becomes practically
immeasurable due to its very low absolute value.

We have also studied the dependence of the Casimir force
on the radius of the nanowires. While for PEC nanowires
the TEM contribution to the force is completely independent
of the radius, in the case of nanowires made of a realistic
metal there is some dependence of the force on the radius.
However, this dependence is quite weak provided the radius
is larger than the metal skin depth (which is about 20 nm for
silver in the infrared domain). For the case when the wire radius
approaches the skin depth, the dependence of the force on the
radius is shown in Fig. 3. As is seen, with the parameters given
in the figure the curves do not reach unity. This is expected as
for such small lattice periods and such thin plasmonic wires,
the average z component of the phase velocity of the quasi-
TEM waves with different k‖ is less than the speed of light,
vph < c, and from (5) it can be inferred that the force is roughly
proportional to this average phase velocity.

We would like to point out that this robustness to the effect
of loss and dispersion is consistent with several recent theoret-
ical and experimental studies about the imaging properties of
nanowires, which demonstrated that even in the infrared and
optical domains the nanowire array may be able to transport an
electromagnetic signal with relatively low absorption (see, e.g.,
[11,12,24]). In this work, we take advantage of such property to

channel the quantum fluctuations of the electromagnetic field
and in this manner to boost the range of the Casimir force.

V. POSSIBLE EXPERIMENTS

We would like to speculate on a possible experimental
verification of this theory. One can imagine the setup outlined
in the inset A of Fig. 4, which represents a dielectric liquid
(e.g., bromobenzene [5] at room temperatures or liquid He [25]
at very low temperatures) embedded in the nanowires and
backed by a conducting plane (the nanowires are extended
into the air region as shown). Assuming that the permittivities
of the conducting plate, the liquid and the air region, verify
ε1(iξ ) > ε2(iξ ) > ε3(iξ ), it follows from our theory that the
force acting on the liquid is repulsive, forcing it to climb the
nanowires. Since the force is long range, this effect may be
observed even for relatively large values of a, (see curve II
of Fig. 2), even though it may be challenging to distinguish it
from the effect of the capillary forces.

The capillary force due to a single wire in our system is
proportional to the perimeter of the wire 2πr0. Therefore, the
effect of the capillary forces per square meter is (Fcap/Acell) =
(2πr0) σ cos θ/b2, where σ is the surface tension of the liquid
and θ is the wetting angle for the specific combination of the
liquid and the material of the wires. The capillary force can
be reduced with surfactants or when operating close to the
critical point of a liquid. This force per unit of area in our
configuration has the same dependence on the unit cell size as
the Casimir force, but does not depend on the plate separation
a. It may be feasible that such a distance-independent force
may be compensated by gravitational or inertial forces or
perhaps by applying certain constant pressure to the liquid.
Another important point is that the capillary force decreases
with the radius of the wires, while the Casimir force practically
does not depend on the radius of the wires provided that the

FIG. 4. (Color online) Casimir force between a metal plate and
an air bubble (radius 20 µm) immersed in bromobenzene in a wire
medium background (inset B), as a function of their separation.
Blue solid line, absolute value of repulsive force in the presence
of nanowires; red dashed line, the same without the wires; orange
dot-dashed line, the attractive force between a gold sphere (radius
20 µm) and a gold plate immersed in bromobenzene as in [5]. The
shading shows the range of forces measured in [5]. The parameters
are the same as in Fig. 2.
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radius is larger than the skin depth. Thus, the postprocessing
of experimental data obtained for samples with different r0/b

ratio may also help in extraction of the distance-dependent part
of the total force.

There may be, however, a simple way to effectively
cancel out the contribution from the surface tension forces.
Specifically, one may consider an air bubble of radius R 
 b

embedded in the liquid and nanowires and measure the total
repulsive force acting on it (inset B of Fig. 4). It is obvious
that the capillary forces acting on the opposite sides of a
bubble cancel out each other. However, the stability of such a
bubble when embedded into an array of nanowires may be of
concern. In Appendix B we present theoretical and numerical
arguments that suggest that a large enough bubble is stable
when immersed in a periodic array of nanowires.

When R is much greater than the separation between the
bubble and the metal plate a, the Casimir force acting on the
bubble can be found from (7) using the proximity theorem [4]
as Fps(a) = (2πR)(h̄c/4πab2) Li2(r1r2) ∝ 1/a. Thus, in the
presence of the nanowires, this force is very long range as
seen from the plots in Fig. 4 for a bubble with radius 20 µm:
if an apparatus with the same sensitivity as in [5] was used,
it would be possible to consider distances as large as 10 µm!
In the absence of the nanowires, the force is much weaker at
long distances and is proportional to 1/a3.

VI. CONCLUSIONS

To conclude, we have considered Casimir’s attractive and
repulsive forces acting on bodies immersed in uniaxial wire
media. We have found that in these structures the Casimir’s
forces are ultralong range, and decay in parallel plate configu-
rations as 1/a2, and in sphere-parallel plate configurations as
1/a, while the same forces in an isotropic background behave
as 1/a4 and 1/a3, respectively. This dependence of the force
on distance may remind one in part of some 1D systems,
however, unlike in 1D systems the configuration proposed
here is fully three-dimensional (3D), and in particular enables
the interaction between complex 3D bodies embedded in the
nanowire background. It was shown that when compared to
vacuum or even local uniaxial dielectrics, a nanowire array
supports waves whose dispersion is independent of k‖, and thus
the corresponding quantum oscillators contribute all equally
to the Casimir force, greatly enhancing its intensity at large
separations. For one of the configurations considered in this
work, with realistic material parameters and the effect of loss
taken into account, our calculations show that the Casimir
forces mediated by wire media may be measurable up to
10-µm distances.

APPENDIX A

In this appendix we describe how the Casimir force can
be obtained using a full wave simulation for the geometry of
the inset of Fig. 1. It is assumed that all the metals are PEC
and that the nanowires are in contact with the metallic plates.
Thus, we deal with a periodic structure made of PEC objects
that are uniform along the z axis (2D photonic crystal). It is
well known that the electromagnetic modes in such a structure
can be classified into three types, as already discussed in the

main text: TEM, TM, and TE. Because of the translational
symmetry of the structure with respect to the z axis, it is well
known that the dispersion characteristic of the TE and TM
modes is exactly of the form,

ω2

c2
= β2

n,α(kx,ky) + k2
z , α = TE, TM, (A1)

where βn,α(kx,ky) are the resonant wave numbers of the
electromagnetic modes (n = 1,2,3, . . .) for the case kz = 0
(i.e., the cutoff wave numbers), and (kx,ky,kz) is the wave
vector associated with the Bloch modes. The cutoff wave
numbers βn,α(kx,ky) are not known, but can be numerically
computed.

The crucial point is that the modes with different (kx,ky)
do not mix one with another upon reflection at the interfaces
(PEC walls), and thus their contribution to the Casimir force
can be calculated independently, and is additive. Moreover, the
reflection coefficient at the PEC walls is exactly −1 for every
mode (this happens due to the invariance of the structure along
z and because the wires are connected to the PEC plates).

Hence, the contribution to the Casimir energy due to the
cavity modes associated with a given branch (n) of TE or TM
modes for a fixed (kx,ky) can be individually calculated using
the Lifshitz formula through the following exact formula:

δEn,α = h̄c

2π

∫ ∞

0
log(1 − e−2γn,αa) dξ, (A2)

where γn,α = −ikz is the solution of the dispersion Eq. (A1),
for a fixed (kx,ky) and fixed ω/c = iξ . The key feature is
that for the considered structure the dependence of γn,α on ξ

can be easily determined as γn,α = −ikz =
√

β2
n,α − ω2/c2 =√

β2
n,α + ξ 2, and thus δEn,α may be easily evaluated numer-

ically. The use of the Lifshitz formula can be justified by
noting that it yields exactly the regularized summation of the
zero-point energies associated with the considered branch of
TE or TM modes and (kx,ky), as can be verified using, for
example, the argument principle [19,20].

Since the contributions of the modes are additive, we have

δE =
∑
kx ,ky

∑
n,α

δEn,α. (A3)

In the continuous case, the sum over (kx,ky) becomes an
integral, and can be written as

δE
L2

=
∑
n,α

h̄c

2π3

∫ π/b

0

∫ π/b

0
dkx dky

×
∫ ∞

0
log(1 − e−2γn,αa) dξ. (A4)

We emphasize that this expression for the Casimir energy is
an exact result that has been derived taking into account all the
details of the microstructure of the system.

APPENDIX B

The problem of stability of a bubble in a nanowire
background can be attacked as follows. Under isothermal,
isobaric conditions, the Gibbs free energy of a large (compared
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to the separation of the nanowires) air bubble immersed in the
wires can be written as

G = σSa + σ cos θSw + (pa − p0)Va, (B1)

where σ is the surface tension of the fluid, θ is the wetting
angle for the specific combination of the fluid and the material
of the wires, Sa is the surface of the air-fluid interface, Sw is the
area of the air-metal interface inside the bubble (the surface of
the wires), pa is the air pressure inside the bubble, p0 is the
fixed outside pressure, and Va is the total volume of air in the
bubble.

The last term in the expression for G can be neglected for
bubbles with diameters ranging from one up to hundreds of
microns (which is the case of interest) that are placed under
normal pressure. This is equivalent to assuming that both the
internal pressure (which is about p0) and the volume of the
bubble do not change when its shape evolves. Under these
assumptions, we can rewrite the Gibbs energy as

G = σeffSav + σ cos θN (2πr0)(Vav/Ap)

= σeffSav + (Fcap/b
2)Vav, (B2)

where Sav is the area of the average surface of the bubble and
σeff = σ (Sa/Sav) is the effective surface tension defined on
this surface, respectively, Vav is the volume enclosed by this
surface, N is the number of wires inside the bubble, and Ap is
the area of the projection of the bubble onto a plane orthogonal
to the wires, such that the quantity (Vav/Ap) gives the average
height of the wires inside the bubble. Taking into account that
N/Ap = 1/b2 and 2πr0 is the circumference of a single wire,
we arrive at the final expression in which the constant quantity
(Fcap/b

2) = σ cos θ (2πr0)/b2 is the capillary pressure per unit
cell of wire medium. Under our assumptions Vav is also a
constant, therefore, the minimum of the free energy is achieved

FIG. 5. (Color online) The simulated surface of a bubble in
a periodic wire medium background after 500 iterations of the
algorithm of Ref. [26]. The bubble is initially an ideal sphere of
radius R/b = 11/6, perforated with wires of radius r0/b = 1/4. The
wetting angle at the wire surface is θ = 30◦.

at the minimum of the average surface Sav [i.e., when the
bubble is (on average) a sphere].

To check this simple theoretical argument we simulated
a bubble immersed in an array of wires with the software
SURFACE EVOLVER [26]. The results of simulations show that
a large air bubble in an infinite periodic array of wires is stable,
while the same bubble pierced with just a few wires is not: in
the last case the bubble is pressed in the direction of wires and
tries to escape the wires. In other words, in a periodic array of
wires the bubble is stable simply because it does not have a
place to escape. Figure 5 shows an example of the simulated
shape.
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