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Abstract

Here, we develop a nonlocal homogenization model to characterize the electrodynamics of an array of cubic particles made of
resonant rings. The effective parameters are calculated from the microscopic fields produced by a periodic external excitation. It is
confirmed that the spatial dispersion effects cannot be neglected in the regime where μ ≈ 0. We demonstrate that when the array of
resonant rings is combined with a triple wire medium formed by connected wires, the structure may behave approximately as an
isotropic left-handed material.
© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Structured materials with a strong magnetic response
have been under intense research in recent years [1–10],
mainly due to their potential applications in the design
of imaging systems with improved resolution [2–5]. In
particular, it was recently demonstrated that a metama-
terial lens formed by split-ring resonators (SRRs) boosts
the sensitivity of the coil used in magnetic resonance
imaging when operated in the regime μ = −1 [6].
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In most of the studies published in the literature, it
is typically assumed from the outset that the response
of the metamaterial is local, and, based on that assump-
tion the effective parameters are usually calculated using
the retrieval procedure reported in Ref. [11] (inversion
of the scattering parameter data). Recently, in Ref. [12]
the Lorentz local field theory was used to homogenize
a metamaterial formed by an array of cubic particles
with tetrahedral symmetry formed by split-ring res-
onators (a topology similar to that considered here), and
the nonlocal magnetic permeability was calculated. It
was demonstrated that the spatially dispersive model
provides a unified description of the transverse electro-
magnetic waves and of the so-called magnetoinductive
waves [13], demonstrating in this manner that the lat-
ter are a short-wavelength continuation of the former. In
this work, we investigate a problem closely related to
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Fig. 1. Geometry of the unit cell of a structured material formed by res-
onant rings. The figure depicts the particular case in which the resonant
particles are SRRs.

that considered in Ref. [12] but from a different perspec-
tive. Instead of applying the Lorentz’s local field theory,
we compute the nonlocal parameters using the homoge-
nization method proposed in the works [14,15], which is
based on the idea of exciting the metamaterial with a peri-
odic source with suitable phase-shift. We obtain the exact
solution (taking into account the interaction between all
the particles in lattice) of the homogenization problem
under the approximation that the response of the inclu-
sions can be described using the dipole approximation,
and an explicit formula for the nonlocal magnetic per-
meability is derived. The results of the analytical model
are compared with the effective parameters obtained with
full wave simulations that take into account all the details
of the microstructure of the material. Finally, we study
the electrodynamics of a system formed by the array of
SRRs and a connected array of wires. It should be men-
tioned that other previous works (e.g. Ref. [16]) have
studied the homogenization of arrays of SRRs taking
into account rigorously the mutual effects and lattice
ordering. The main contribution of our analysis, which
extends our previous work [12], is the characterization
of the spatial dispersion effects.

2. Homogenization

A representative geometry of the unit cell of the mate-
rial under analysis is shown in Fig. 1. The unit cell
contains three different resonant metallic rings, being
each ring normal to one of the Cartesian axes. The lattice
is simple cubic with lattice constant a. Clearly, each basic
inclusion has an anisotropic response, but in the long
wavelength limit the response of the composite material
is approximately isotropic due to the spatial arrangement
and orientation of the particles. The ith resonant ring in

the unit cell is by definition normal to the unit vector ûi

(i = x, y, z), and is centered at the point r0,i = − (a/2) ûi.
The resonant rings are generic planar (or quasi-

planar) inclusions, which may be produced by some
lumped or distributed capacitance. We suppose that
the rings can be characterized by an impedance
Z0 = jωL + 1/(jωC) obtained from a circuit model (for
simplicity the effect of metallic loss is neglected; see
Refs. [17,18] for the particular case of SRRs). The res-
onant rings will be modeled as dipole-type magnetic
particles characterized by a uniaxial magnetic polar-
izability dyadic (tensor). The magnetic polarizability
dyadic of the ith ring is

¯̄αi = αmûiûi, (1)

where ûiûi ≡ ûi ⊗ ûi represents the dyadic (tensor)
product of two vectors. The parameter αm (with unities
[m3]) is related to the impedance Z0 as follows (including
the effect of the radiation loss)

α−1
m = Z0

−jωA2μ0
+ j

1

6π

(ω

c

)3

= α−1
0

[(ωr

ω

)2 − 1

]
+ j

1

6π

(ω

c

)3
, (2)

where α−1
0 = L/μ0A

2, A is the area of the ring and ωr =
1/

√
LC.

For simplicity, it will be assumed that the rings do
not have an electric response (i.e. that the electric polar-
izability vanishes; in Section 3, we will discuss how to
incorporate the electric response in the model). Thus, at
a microscopic level, the magnetic dipole moment of the
ith particle in the unit cell, pi, must verify:

pi

μ0
= ¯̄αi · Hloc

(
r0,i

)
, i = x, y, z, (3)

where Hloc is the local magnetic field that polarizes the
pertinent ring. The magnetic dipole pi as defined above
is related to the more traditional definition given in text-
books (e.g. Ref. [19]) as m = pi/μ0.

2.1. Two models for the response of the rings

It is possible to model the response of the resonant
rings using two alternative approaches. The first model
takes into account that the rings are metallic particles,
and thus that an external field induces a microscopic
electric current density in each ring. Since it is assumed
that the rings only have a magnetic response, which is
necessarily caused by the vortex part of the induced elec-
tric current (artificial magnetism), the induced current is
related to the magnetic dipole moments as follows (see
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Ref. [15] for a related result)

Je,dip = ∇ ×
⎧⎨
⎩
∑

i=1,2,3

∑
I

δ(r − rI − r0,i)
pi

μ0
e−jk·rI

⎫⎬
⎭ ,

(4)

where rI = a(i1, i2, i3) represents a generic lattice point,
I = (i1, i2, i3) is a triple index of integers, and pi is the
magnetic dipole moment of the ith particle in the unit
cell. Following the works [14,15], the unbounded meta-
material can be characterized by a dielectric function of
the type ¯̄ε = ¯̄ε(ω, k), where ω is the angular frequency
and k = (kx, ky, kz) is the wave vector. The procedure to
compute the dielectric function for a given ω and k
is to excite the metamaterial with an external Floquet-
type electric current density Je,ext = Je,av e−jk·r, where
Je,av is a constant vector [14]. Then, one needs to
solve the corresponding source-driven electromagnetic
problem and calculate the microscopic fields. The aver-
aged macroscopic fields and the generalized electric
polarization vector are computed using the microscopic
fields. Finally, the unknown dielectric function ¯̄ε(ω, k) is
obtained from the macroscopic fields and from the gener-
alized polarization vector [14]. This approach is further
developed in Appendix A.

The second model is based on the observation that
since the resonant rings only have a magnetic response,
they may be as well regarded as pure magnetic parti-
cles which, when excited by an external field, originate
a magnetic current density given by:

Jm,dip =
∑

i=1,2,3

(∑
I

δ
(
r − rI − r0,i

)
jωpi e

−jk·rI

)
,

(5)

i.e. the second model for the response of the rings regards
the inclusions as magnetic particles characterized by a
magnetic current density (instead of an electric current
density as in Eq. (4)). Such model may seem less rig-
orous than the model associated with Eq. (4), but as
discussed below, they actually lead to equivalent results
after proper homogenization.

It is important to note that the homogenization method
introduced in Ref. [14] assumes that the inclusions
are either dielectric or metallic materials with constant
permeability (μ = μ0), i.e. the particles must have exclu-
sively an electric response (even though, as mentioned
before, magnetic effects may occur due to the eddy part
of the electric current). Thus, the method of Ref. [14] can-
not be directly applied to characterize a material formed
by pure magnetic particles, for which the response is

characterized by a magnetic current density as in Eq.
(5). However, evidently a structured material formed by
magnetic-type inclusions is the electromagnetic dual of
a material formed by electric-type inclusions, and thus
it is trivial to modify and generalize the method of Ref.
[14] to such configurations. It should be clear that such
modified homogenization approach is based on the intro-
duction of a magnetic function of the type ¯̄μ = ¯̄μ(ω, k),
which, as detailed below, can be calculated by excit-
ing the metamaterial with an external magnetic current
density Jm,ext = Jm,av e−jk·r.

One important point is the relation between the dielec-
tric function ¯̄ε (ω, k) calculated within the framework
of the first model (developed in Appendix A), and the
magnetic function ¯̄μ = ¯̄μ (ω, k) calculated within the
framework of the second model (developed in Section
2.2). From the results of Appendix A, it turns out that:

¯̄ε (ω, k)

ε0
= ¯̄I + c2 k

ω
×
(
μ0 ¯̄μ−1 − ¯̄I

)
× k

ω
, (6)

where ¯̄I is the identity dyadic and c is the speed of light in
the host medium (assumed vacuum for simplicity). Inter-
estingly, in Refs. [14,15,20,21] it is demonstrated that an
unbounded material characterized by a given magnetic
permeability ¯̄μ and an electric permittivity ε = ε0, can be
as well characterized by a nonlocal dielectric function
defined as in Eq. (6) (in the sense that the plane wave
dispersion characteristic and the associated electric field
polarizations are the same independent of the adopted
constitutive relations). Thus, Eq. (6) demonstrates that
the two models described in this section yield equiv-
alent results. We will adopt the second model in the
following sections to calculate an explicit expression for
¯̄μ = ¯̄μ (ω, k).

2.2. The homogenization problem

Following the discussion of Section 2.1, here we
assume that the rings can be modeled as pure magnetic
particles, whose response to an external field originates
a magnetic current density given by Eq. (5). In order
to determine the unknown ¯̄μ = ¯̄μ (ω, k), we excite the
electromagnetic crystal with an external (magnetic-type)
source such that

Jm,ext = jω
pext

Vcell
e−jk·r, (7)

where Vcell = a3 is the volume of the unit cell, and pext is
a constant vector that determines the applied current.
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The microscopic fields (E, H) are the solution of the
electromagnetic problem

∇ × E = −jωμ0H − Jm,ext − Jm,dip (8a)

∇ × H = jωε0E, (8b)

where Jm,dip is given by Eq. (5), and is written in terms of
the unknown magnetic dipole moments of the particles in
the unit cell pi (which obviously depend on the external
field). Notice that since the current source Jm,ext has the
Floquet property and the material is periodic, it is clear
that both (E, H) and Jm,dip have the Floquet property as
well (this actually justifies formula (5)). It is important
to emphasize that system (8) is a source driven prob-
lem and not an eigenvalue problem. Notice also that in
this formulation all the microscopic currents are purely
magnetic, because the rings are modeled as true magnetic
particles.

The solution of (8) can be written in a straight-
forward manner in terms of the Green dyadic
¯̄Gp

(
r| r′; ω, k

) =
(

¯̄I + c2/ω2∇∇
)

Φp

(
r| r′; ω, k

)
introduced in Refs. [14,15], being Φp the lattice
Green function [22]. The Green dyadic veri-
fies ∇ × ∇ × ¯̄Gp

(
r| r′)− (ω/c)2 ¯̄Gp

(
r| r′) =

¯̄I

(∑
I

δ
(
r − r′ − rI

)
e−jk·r

)
. Thus, it is simple

to verify that the solution of system (8) is such that:

H (r) = (−jωε0)
∑

i=1,2,3

¯̄Gp

(
r| r0,i

) · jωpi

+ (−jωε0) ¯̄Gav · jωpext e
−jk·r, (9)

where ¯̄Gav is the dyadic

¯̄Gav = 1

Vcell

¯̄I − c2/ω2kk

k2 − (ω/c)2 , (10)

with k2 = k·k and kk = k ⊗ k. The first term in the right-
hand side of Eq. (9) corresponds to the field created by the
induced magnetic dipoles, whereas the second terms cor-
responds to the field created by the external source Jm,ext.
It is interesting to note that ¯̄Gav is the spatial average of
the Green dyadic:

¯̄Gav = 1

Vcell

∫
cell

¯̄Gp

(
r| r′) e+jk·(r−r′)d3r′. (11)

To obtain the complete solution of (8) we still have to
determine the magnetic dipole moments, pi (i = 1, 2, 3),
of the rings in the unit cell. This can be done using the
microscopic relations (3). It is clear from Eq. (9) that the

local field on the ith ring is

Hloc,i =
(ω

c

)2
G′

p (0| 0) · pi

μ0

+
∑
j /= i

(ω

c

)2 ¯̄Gp(r0,i|r0,j) · pj

μ0

+
(ω

c

)2 ¯̄Gav · pext

μ0
e−jk·r0,i , (12)

where by definition

G′
p

(
r| r′) = ¯̄Gp

(
r| r′)− G0

(
r| r′) (13)

and G0
(

r| r′) is the free-space Green dyadic. Using now
the microscopic relations (3) and the fact that pi = piûi,
it is readily found that for i = 1, 2, 3

α−1
m

pi

μ0
=
(ω

c

)2
(

ûi · G′
p (0| 0) · ûi

pi

μ0

+
∑
j /= i

ûi · ¯̄Gp

(
r0,i

∣∣ r0,j

) · ûj

pj

μ0

+ûi · ¯̄Gav · pext

μ0
e−jk·r0,i

)
.

(14)

The above equation can be written in matrix notation
as follows:

[
aij

] ·

⎛
⎜⎝

p1e
+jk·r0,1

p2e
+jk·r0,2

p3e
+jk·r0,3

⎞
⎟⎠ =

(ω

c

)2
Gav · pext, (15)

where the matrix entries are defined as
aii = α−1

m − ûi · (ω/c)2G′
p (0| 0) · ûi, and aij =

−ûi · (ω/c)2 ¯̄Gp

(
r0,i

∣∣ r0,j

)
ejk·(r0,i−r0,j) · ûj for i /= j.

Eq. (15) formally relates the amplitudes of the induced
magnetic dipole moments pi (i = 1, 2, 3) with the
external source (pext). Thus, the microscopic fields are
completely determined by the solution of Eq. (15).

We are now in a position to determine the magnetic
function ¯̄μ = ¯̄μ (ω, k) of the metamaterial. To begin
with, we introduce the macroscopic averaged electric
and magnetic fields, which for the present homogeniza-
tion problem where all the particles are purely magnetic,
should be defined as

Eav = 1

Vcell

∫
cell

E (r) e+jk·rd3r,

Hav = 1

Vcell

∫
cell

H (r) e+jk·rd3r. (16)
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It is simple to verify that the Maxwell equations (8)
imply that

ωμ0Hav − k × Eav = −ω
pext

Vcell
− ωμ0M (17a)

k × Hav + ωε0Eav = 0, (17b)

where the magnetization vector M was defined as

M ≡
(
Jm,dip

)
av

jωμ0
= 1

Vcell

∑
i=1,2,3

pi

μ0
ejk·r0,i (18)

and we used the fact that (Jm,ext)av = jωpext/Vcell, being
(Jm,dip)av and (Jm,ext)av defined consistently with Eq.
(16).

The magnetic function ¯̄μ must ideally be such that,
independent of the external excitation, one has Bav =
¯̄μ · Hav where by definition the macroscopic induc-
tion field is given by Bav ≡ μ0(Hav + M), consistently
with the classical formula. Thus, ¯̄μ must be such that(

¯̄μ/μ0 − ¯̄I
)

· Hav = M, for arbitrary pext.

One interesting aspect implicit in the previous dis-
cussion is that when the metamaterial is formed by
purely magnetic particles, as considered in this section,
the fundamental field entity (obtained from averaging
the microscopic field) is the magnetic field intensity
(H), whereas the derived field is the induction field (B).
Indeed, this a trivial consequence of the formulation of
Ref. [14], noting that H is the electromagnetic dual of E,
and B is the electromagnetic dual of D. Quite differently,
when all the particles only have an electric response
(e.g. standard dielectrics or metals) the fundamental field
quantity is the induction field, whereas in those condi-
tions the magnetic field should be regarded as the derived
quantity [14] (see also Appendix A).

In order to calculate ¯̄μ we substitute (17b) into (17a)
and solve the resulting equation with respect to pext. It
may be easily verified that:

pext

μ0
= −MVcell + c2

ω2
¯̄G

−1
av · Hav, (19)

where ¯̄G
−1
av is the inverse of the dyadic defined

by Eq. (10). Now, substituting the above equa-
tion into Eq. (15), and noting that since pi = piûi

the magnetization vector is such that μ0VcellM =

(p1e
+jk·r0,1 , p2e

+jk·r0,2 , p3e
+jk·r0,3 ), it is found that:

[
aij

] · M = −
(ω

c

)2 ¯̄Gav · M + 1

Vcell
Hav. (20)

Therefore, it is clear that in order that
(

¯̄μ/μ0 − ¯̄I
)

·
Hav = M, ¯̄μ should verify

¯̄μ

μ0
= ¯̄I + 1

Vcell
¯̄χ−1

, (21)

where the dyadic ¯̄χ is such that (with χij = ûi · ¯̄χ · ûj),

χii = α−1
m − ûi · ¯̄Cint · ûi (22a)

χij = −ûi · ¯̄Dint
(

r0,i

∣∣ r0,j

) · ûj, for i /= j (22b)

and ¯̄Cint and ¯̄Dint are defined by

¯̄Cint (ω, k) =
(ω

c

)2 (
G′

p (0| 0) − ¯̄Gav

)
(23a)

¯̄Dint
(

r| r′; ω, k
) =

(ω

c

)2 (
Gp(r|r′)ejk·(r−r′) − ¯̄Gav

)
.

(23b)

Eq. (21) establishes that the magnetic function (i.e.
the spatially dispersive permeability) of the material can
be written exclusively in terms of magnetic polarizabil-
ity of the basic particles and of the interaction dyadics
¯̄Cint and ¯̄Dint. The dyadic ¯̄Cint describes the interaction
between rings with the same orientation, whereas ¯̄Dint
describes the interaction between rings with different
orientations. In general, these dyadics need to be numer-
ically evaluated (using for example the mixed-domain
Green function representation of Ref. [22]). It is interest-
ing to mention that ¯̄Cint is precisely the same dyadic that
was obtained in Ref. [15]. Specifically, ¯̄Cint relates the
local fields and the macroscopic fields for point dipole
particles (Lorentz–Lorenz formulas). In particular, it was
demonstrated in Ref. [15] that for a simple cubic lattice
(as the one considered in this work), we have that to a
first approximation:

C11 (ω, k) ≡ û1 · Re
{

Cint

}
· û1 ≈ 1

a3

[
1

3
− 0.15

(ω

c
a
)2 + 0.052 (cos (kxa) − 1)

−0.026
(
cos

(
kya
)− 1

)− 0.026 (cos (kza) − 1)
] (24)

The interaction constants C22 and C33 are defined
similarly, by permutating the wave vector components
kx, ky and kz. The imaginary part of the interaction dyadic

verifies Im
{

¯̄Cint

}
= 1

6π
(ω/c)3¯̄I [15]. The first term in
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Eq. (24) is the familiar static interaction constant, 1/3a3,
for a simple cubic lattice. The second term in Eq. (24)
is a frequency correction of the static term. The remain-
ing terms, whose amplitude is evidently quite small, are
related to structural spatial dispersion effects [15]. In
general these small corrections are negligible, except
near to a resonance of the electric/magnetic response
of the particles where they may play an important role
[15,23].

On the other hand, it can be shown that because
of symmetry reasons Im

{
¯̄Dint

(
r0,i

∣∣ r0,j

)} = 0, i /= j.

Moreover, Dint,ij = ûi · ¯̄Dint
(

r0,i

∣∣ r0,j

) · ûj , can be very
accurately represented by the following Taylor series in
powers of ki, kj and (ω/c) (i /= j)

Dint,ij (ω, k) ≈ kikj

a

[
−0.1936 − 0.01188

(ω

c
a
)2

+ 0.005902 a2
(
ki

2 + kj
2
)]

, (25)

even when the wave vector is close to the boundary of
the Brillouin zone or when the frequency is moderately
large. It is interesting to note that Dint,ij = 0 (for arbitrary
i, j, with i /= j) when the wave vector k is directed along
one of the coordinate axes, i.e. in these conditions the
coupling between the resonant rings in the unit cell is
mutually cancelled.

It is clear that Eqs. (24) and (25) imply that in the very
long wavelength limit, when |ka| 	 1 and |ωa/c| 	 1,
the dyadic ¯̄χ is approximately diagonal and verifies ¯̄χ =(
Re
{
α−1

m

}− 1/3a3
) ¯̄I. Thus, within such approxima-

tions the nonlocal permeability reduces to the classical
Clausius–Mossotti formula

¯̄μ

μ0
≈
(

1 + 1

Vcell

1

Re
{
α−1

m

}− 1/3a3

)
¯̄I. (26)

This result confirms that in the very long wave-
length limit the material response is isotropic, as
could be expected from the symmetry of the lattice.
Other materials formed by uniaxial resonators, suitably

oriented along different directions in order to yield an
isotropic response, have been as well considered in Refs.
[24–26]. It will be shown below that such simple result

(which neglects the nonlocal effects) is in general invalid,
particularly when the effective permeability is near
zero.

2.3. Comparison with the model of Ref. [12]

In our previous paper (Ref. [12]) an array of cubic
particles made of SRRs was homogenized using a local
field approach, and the nonlocal permeability was writ-
ten in terms of an impedance matrix that incorporates
all the magnetoinductive effects between the rings. The
case of wave propagation along one of the Cartesian axes
was analyzed in particular detail and it was shown that
for propagation along the x-direction (ky = kz = 0), the
yy-component of the permeability dyadic is [12]

μyy

μ0

∣∣∣∣
ky=kz=0

≈ 1 + 1

a3

1

Re
{
α−1

m

}−
(
α−1

0 2Mc/L (cos (kxa) − 1) + α−1
0 (2Ma/L + 4Mc/L)

)
− 1/3a3

, (27)

where Ma and Mc are the mutual inductances between
closest rings of the same orientation, placed in the
axial and the coplanar directions, respectively, and
α0 is defined as in Eq. (2). For the particular case
of magnetic dipole-type inclusions, straightforward
calculations (using the fact that the magnetic field
created by a magnetic dipole is B = (μ0/4π)(3r̂r̂ ·
m − m/r3) [19]) show that in the quasi-static
limit Ma + 2Mc = 0 and α−1

0 (2Mc/L) = 2Mc/μ0A
2 =

(−1/2π)(1/a3) = −0.16/a3. Therefore, Eq. (27) sim-
plifies to:

μyy

μ0

∣∣∣∣
ky=kz=0

≈ 1 + 1

a3

1

Re
{
α−1

m

}+ 0.16/a3(cos(kxa) − 1) − 1/3a3

(28)

It is interesting to compare the above formula with the
magnetic permeability derived in Section 2.2. Since for
ky = kz = 0 we have Dint,ij = 0 and it is clear that Eq. (21)
implies that the magnetic permeability function is diag-
onal and such that μyy

∣∣
ky=kz=0 = μ0

(
1 + 1/

(
a3χ22

))
,

or equivalently:

μyy

μ0

∣∣∣∣
ky=kz=0

= 1 + 1

a3

1

Re
{
α−1

m

}+ 0.026/a3 (cos (kxa) − 1) − 1/a3
(
1/3 − 0.15(ωa/c)2

) (29)

Comparing Eqs. (28) and (29) two differences are
detected. The first difference is the frequency correction
of the static interaction constant (the term 0.15(ωa/c)2),
which was not considered in Ref. [12]. The second
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difference is the coefficient that multiplies the term
(cos(kxa) − 1), which is responsible for the spatial dis-
persion effects. Apparently, the theory of our previous
paper [12] (when applied to the particular case of mag-
netic dipoles) overestimates this coefficient by nearly
one order of magnitude. A possible reason for this dis-
agreement is that formula (28) is based on the nearest
neighbor approximation, while the formula derived in
this work takes into account the coupling between all
the particles in the lattice. Indeed, the nearest neighbor
approximation may be more useful when the mutual cou-
pling between adjacent rings is large (which was the case
studied in our previous work [12], where the resonant
rings have larger diameters), whereas it may not be so
accurate for dipole-type particles with a comparatively
weaker mutual coupling.

3. Plane wave dispersion characteristic

Next, we apply the developed homogenization model
to characterize the dispersion characteristic of plane

waves. To begin with, we remind that the model intro-
duced in Section 2 supposes that the rings only have a
magnetic response. Actually, this is a very rough approx-
imation, since it is well known that in general resonant
rings have as well an electric response (see for exam-
ple Ref. [17]). As in Ref. [12], we will assume that the
electric response of the rings can be taken into account
by considering that the effective permittivity is equal
to εSRR. Within this approximation the metamaterial is
characterized by a local effective permittivity (εSRR) and
by the nonlocal magnetic function (21) ( ¯̄μ (ω, k)).1 It is
interesting to note that this hypothesis is nothing more
than assuming that the electric and magnetic responses
are decoupled. Indeed, εSRR may be easily related to the
electric polarizability of the particles using a homoge-
nization approach similar to that of Section 2 (in general
εSRR may also depend on the wave vector, however since
the electric resonance occurs at a frequency significantly
higher than the magnetic resonance, that dependence
is expected to be small for frequencies comparable or
smaller than the frequency associated with the magnetic
resonance, which is the case of interest in this work).

1 Alternatively, the metamaterial could as well be characterized by
the nonlocal dielectric function (6) with the first term in the right-hand
side ( ¯̄I) replaced by (εSRR/ε0) ¯̄I, and by μ = μ0.

From Eq. (17), setting pext = 0, i.e. removing the exter-

nal source, using M =
(

¯̄μ/μ0 − ¯̄I
)

· Hav, and replacing

ε0 by εSRR, it is readily found after some manipulations
that(
ω2εSRR

¯̄μ − k2¯̄I + kk
)

· Hav = 0. (30)

3.1. Propagation along the coordinate axes

First we will analyze the case of propagation along
the one of the coordinate axes, let us say the x-axis
(ky = kz = 0). For this case the modes can be classified
as longitudinal modes and transverse modes. The longi-
tudinal modes are such that the magnetic field is parallel
to the wavevector (Hav ∼ k), which from Eq. (30) implies
that

¯̄μ (ω, k) · k = 0. (31)

As discussed in Section 2, for propagation along the
coordinate axes the magnetic function is diagonal, and
thus the above relation is equivalent to μxx = 0. Using
Eq. (21) and the fact that Dint,ij = 0, we find that

μxx

μ0

∣∣∣∣
ky=kz=0

= 1 + 1

a3

1

Re
{
α−1

m

}− 1/a3
(
1/3 − 0.15(ωa/c)2 + 0.052 (cos (kxa) − 1)

) (32)

Thus, the dispersion relation of the longitudinal mode
is:

a3Re
{

α−1
m

}
+ 2

3
+ 0.15

(ω

c
a
)2

− 0.052 (cos (kxa) − 1) = 0. (33)

On the other hand, the metamaterial also supports
transverse modes for which Hav·k = 0. It is simple to
verify that for propagation along the x-direction the dis-
persion relation of the transverse modes is

ω2εSRRμyy (ω, kx) = k2
x, (34)

being μyy given by Eq. (29).

3.2. Propagation along the main diagonal

It is also interesting to analyze the propagation
properties along the “main diagonal” of the unit
cell, namely along the Γ R direction, being Γ the
origin of the Brillouin zone and R = (π/a, π/a, π/a).
It is thus clear that kx = ky = kz, and therefore from
Eqs. (22a) and (24) it follows that χii = Re

{
α−1

m

}−
1/a3

(
1/3 − 0.15(ωa/c)2

)
, for i = 1, 2, 3. On the other

hand, from Eqs. (22b) and (25) it is obvious that χij is
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independent of the values of i and j for i /= j. Based
on these properties it can be verified that the magnetic
function is such that:

¯̄μ|kx=ky=kz =
(

¯̄I − kk
k2

)
μt + kk

k2 μl (35a)

μt = μ0

(
1 + 1

Vcell

1

χ11 − χ12

)
;

μl = μ0

(
1 + 1

Vcell

1

χ11 + 2χ12

)
, (35b)

with χ12 = −k2/3a
[−0.1936 − 0.01188(ωa/c)2 +

0.005902 a22k2/3
]
, and k2 = k · k = k2

x + k2
y + k2

z .
It is clear that the above expression implies that the
electromagnetic modes can also be classified as longi-
tudinal and transverse modes. Using Eq. (31), it follows
that the dispersion characteristic of the longitudinal
mode (for propagation in the Γ R direction) is μl = 0, or
equivalently

a3Re
{

α−1
m

}
+ 2

3
+ 0.15

(ω

c
a
)2 + 2a3χ12 = 0. (36)

On the other hand, the dispersion characteristic of the
transverse modes is obviously

ω2εSRRμt (ω, k) = k2. (37)

4. Numerical example and discussion

In order to describe the implications of the theory
developed in Section 3, we will analyze the case where
the resonant rings are the edge-side coupled (EC) SRRs
originally proposed by Pendry [1]. To ease the numerical
and analytical modeling it is assumed that the SRRs are
formed by thin wires with radius r = 0.01a (see Fig. 1),
instead of planar particles. The mean radius of the outer
(inner) ring is R + d/2 (R − d/2), where d = 0.1607R is the
mean distance between rings, and R = 0.4a is the average
radius. Each ring has a split that covers an angular sector
of ϕgap = 10◦. It can be shown that the self-inductance
and capacitance of the EC-SRRs may be estimated using
the following formulas (see Refs. [12,17,23] for closely
related results)

C = ε0πR
(
π − ϕgap

)
cosh−1 (d2/2r2 − 1

) ,
L = μ0R

[
ln

(
8R

r

)
− 2

]
. (38)

The SRRs are oriented as shown in Fig. 1, con-
sistent with the proposal of Ref. [27]. Such structure,

Fig. 2. Band structure of a material formed EC-SRRs with unit
cell as in Fig. 1. The inset shows the first Brillouin zone
and the high-symmetry points X = (π/a, 0, 0), M = (π/a, π/a, 0) and
R = (π/a, π/a, π/a).

unlike an ideal lattice of point magnetic dipoles, can-
not be truly regarded as an isotropic magnetic material.
Indeed, as discussed in Ref. [27], to ensure that a reg-
ular arrangement of particles is isotropic, the unit cell
should be invariant under the application of proper rota-
tions of the regular tetrahedron (cubic point group T),
and the structure of Fig. 1 does not have such symmetry.2

Moreover, the material also does not have inversion sym-
metry since SRRs in opposite faces of the cube have the
same orientation due to the translational symmetry, and
thus bianisotropic effects may occur [17]. Despite these
problems, it will be shown below that the metamate-
rial (formed by very thin and closely spaced rings) has
approximately an isotropic response.

The band structure of the array of SRR resonators was
calculated using the hybrid integral equation-plane wave
method described in Ref. [28], and is reported in Fig. 2.
It can be seen that the structured material has a complete
band gap that occurs due to the strong magnetic response
of the rings. Below the magnetic resonance (normalized
frequency ωa/c ≈ 0.77), the material supports only two
electromagnetic modes (TEM waves), whose dispersion
characteristic is nearly degenerated.

On the other hand, above the magnetic plasma
frequency (ωa/c ≈ 0.91, i.e. the frequency where the
propagation is resumed), the material supports three dif-
ferent modes. One of the modes is expected to be a
longitudinal wave (the so-called longitudinal magne-

2 The unit cell of Fig. 1 is invariant under the rotation 4x·4z, where
4i (i = x, y, z) represents a 4-fold (90-degree) rotation with respect to
the ith axis. Thus, the metamaterial is invariant under ±120◦ rotations
with respect to the diagonal of the cube along (1, −1, 1). However, it
has not the same property along the other three diagonals, as would
be required so that it would be invariant under the application of the T
cubic point group.
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Fig. 3. Dispersion characteristic along the directions Γ R and Γ X.
Black solid line: dipole based model proposed in this work. Black
dashed line: model proposed in Ref. [12] (Γ X propagation), adapted
for the case of point dipoles. Green (thick) lines: full wave electromag-
netic simulations. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of the article.)

toinductive wave [13]) and has a nearly flat dispersion
characteristic. The other two modes are approximately
TEM waves and are nearly degenerated. The dispersion
curves confirm that the response of the material below the
magnetic resonance is to a good approximation isotropic.
However, it can be seen that near the magnetic plasma
frequency the dispersion characteristic of the longitudi-
nal magnetoinductive wave depends significantly on the
direction of the wave vector, having a much larger slope
along the direction Γ R than along the direction �X. Simi-
lar results have been reported in our previous work (Ref.
[12]) for the case where the inclusions are SRRs with
two splits (unit cell with tetrahedral symmetry). Thus,
the direction dependent properties of the longitudinal
magnetoinductive wave can only be explained in terms
of the emergence of nonlocal effects [21], induced by the
granularity of the material.

We have calculated the theoretical dispersion char-
acteristic using the analytical formulas reported in
Sections 3.1 and 3.2, with the static effective permittivity
εSRR = 2.1ε0. This value was numerically computed using
the homogenization approach of Ref. [14] for ω = 0.
The calculated dispersion curves are plotted in Fig. 3
(solid black lines) superposed on the numerical results
(green thick lines). Despite the simplicity of the ana-
lytical model (which treats the SRRs as magnetic point
dipoles), a fairly good agreement is revealed. In particu-
lar, below the magnetic resonance the analytical model
concurs very well with the full wave simulations. Near
the magnetic plasma frequency, the quantitative agree-
ment is coarser, but the qualitative agreement remains
good. Consistent with the full wave simulations, the ana-
lytical model predicts that for propagation along Γ X
the dispersion characteristic of the longitudinal magne-

toinductive wave is flat, whereas for propagation along
Γ R the dispersion curve has a significant dispersion.
This supports that indeed the lack of isotropy of the
longitudinal mode is due to the emergence of nonlocal
effects, more specifically due to the relatively large val-
ues of Dint,ij = −χij (see Eq. (36)), which characterizes
the interaction between magnetic particles with different
orientations.

Fig. 3 also reports (black dashed line) the results
yielded by the model proposed in our previous work, Ref.
[12], (adapted for the case of point dipoles: see Section
2.3) for propagation along the Γ X-direction. Consistent
with the discussion of Section 2.3, it is seen that the
model of Ref. [12] tends to overestimate the slope of
the longitudinal model along the Γ X-direction. Apart
from that discrepancy, the general agreement between
the model proposed here and the results of Ref. [12] is
good.

It is important to underline that in a local material
(i.e. in the absence of spatial dispersion) the longitudinal
wave should have a completely flat dispersion character-
istic, independent of the direction of the wave vector. It
seems that one of the most common manifestations of
nonlocal effects in structured media is that the longitudi-
nal wave is highly dispersive. This implies that unlike in a
local material the longitudinal mode can be excited by an
external source and represent an additional propagation
channel. In an array of cubic particles made of EC-SRRs
the nonlocal effects are dominant for propagation along
the Γ R direction. Similar nonlocal effects have also been
reported for arrays of uniaxial SRRs [23,29], for con-
nected wire media [30–33], and for plasmonic nanorods
[34].

The effects of spatial dispersion in the longitudinal
mode can be tamed by decreasing the electrical size of the
particles at the resonance, for example by increasing the
capacitance of the rings. Indeed, from Eqs. (2) and (36)
it is found that to a first order approximation (neglecting
powers of both (ωa/c)2 and (ka)4) the dispersion of the
longitudinal mode along Γ R is(

ω

ωmp

)2

≈ 1

1 +
(

1 − ω2
mp/ω2

r

)
0.1936(ka)2

, (39)

where the magnetic plasma frequency (which defines
the onset of propagation of the longitudinal mode)

is approximately ωmp ≈ ωr/

√
1 − 2/

(
3a3α−1

0

)
. Let

us estimate the range of wave vectors for which∣∣(ω − ωmp

)
/ωmp

∣∣ < δ, where δ is some small number.
Using Eq. (39) it can be easily seen that the solution is
of the form k < C/a, where C is some constant that only
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Fig. 4. Effective permeability of the array of cubic particles made
of EC-SRRs as a function of frequency. Dashed blue line: full wave
result extracted using the method reported in Ref. [14]. Solid black
line: analytical result, μ(ω, k = 0), calculated using formula (29). (For
interpretation of the references to colour in this figure legend, the reader
is referred to the web version of the article.)

depends on δ and on ωmp/ωr. But, for a fixed fill fraction
(i.e. for R/a and r/a fixed) the ratio ωmp/ωr is independent
of a. Moreover, the electrical size of the unit cell at the
plasma frequency ωmpa/c may be decreased by increas-
ing the capacitance of the rings (e.g. by decreasing the
inter-ring distance d). Thus, the range of wave vectors for
which the condition

∣∣(ω − ωmp

)
/ωmp

∣∣ < δ is observed
verifies kc/ωmp < C/(ωmp a/c), where C only depends on
the fill fraction and δ, and ωmpa/c is determined by the
electrical size of the unit cell. Therefore, the values of k
(normalized to the frequency of operation) for which the
dispersion of the longitudinal mode is below some given
threshold is broader when the electrical cell size of the
unit cell is smaller, showing that in these conditions the
nonlocal effects are less important.

Fig. 5. Band structure of an array of cubic particles made of SRRs
and connected wires (solid black lines; see geometry of the unit cell
in the small right-hand side inset), superposed on the band structure of
the array of SRRs (green lighter lines). The left-hand side inset shows
the dispersion characteristic of the connected wire medium (without
SRRs). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of the article.)

In order to further reveal other possible nonlocal
effects, we have numerically calculated (with a full wave
simulation) the effective permeability of the array of EC-
SRRs using the approach described in Ref. [14]. The
effective permeability is written in terms of the second
order derivatives of the nonlocal dielectric function with
respect to the wave vector [14]. The extraction procedure
is only meaningful if the material’s response is approxi-
mately local. The computed results are represented in
Fig. 4 (dashed blue line), superposed on the results
obtained with the analytical model (29), μ(ω, k = 0)
(solid black line). It is seen that the curves are nearly
coincident, except for a small shift in frequency above
the resonance. Given that the dashed line was extracted
under the hypothesis that the material’s response is local,
these results suggest that, except for the dispersive longi-
tudinal mode, the spatial dispersion effects are relatively
weak, especially for k near the origin of the Brillouin
zone.

5. Array of SRRs combined with a triple wire
medium

Given the contemporary interest in materials with
simultaneously negative permittivity and permeability
[2,26,35], it is pertinent to study the electromagnetic
response of a metamaterial formed by an array of
SRRs combined with an array of connected wires
[30–33,36,37] (see the geometry of the unit cell in the
right-hand side inset of Fig. 5). Based on the results of the
seminal work [35], it seems plausible that such structure
may behave to some approximation as a nearly isotropic
left-handed material. It is expected that the magnetic
response of the composite material will be determined
by the SRRs, whereas the electric response is mainly
determined by the array of connected wires.

It was shown in Refs. [30,31] that the triple wire
medium (with no SRRs) can be accurately characterized
by the following nonlocal dielectric function (assuming
perfectly conducting wires and that the host material is
air):

¯̄ε (ω, k) = εt,WM (ω)

(
¯̄I − kk

k2

)
+ εl,WM (ω, k)

kk
k2 ,

(40a)

where the transverse and longitudinal components of the
dielectric function are

εt,WM

ε0
(ω) = 1 − β2

pc2

ω2 (40b)



Author's personal copy

M.G. Silveirinha et al. / Metamaterials 3 (2009) 115–128 125

εl,WM

ε0
(ω, k) = 1 − β2

p

ω2/c2 − k2/l0
. (40c)

Above, βp = [
2π/ (ln (a/2πrw) + 0.5275)

]1/2
/a is

the plasma wavenumber, rw is the radius of the wires, and
l0 is a constant defined in Refs. [30,31] that depends on
the radius of the wires. The connected wire medium imi-
tates to some extent a plasma characterized by a Drude
type dispersion model, except for the longitudinal mode,
which similar to the results of Section 4, may be highly
dispersive [30,31].

If one assumes that the array of wires interacts
weakly with the SRRs, as suggested by the symmetry
of the material, by the results of Ref. [35] and also dis-
cussed in our previous work [12], it is straightforward
to obtain a homogenization model for the composite
material formed by SRRs and metallic wires. In fact,
since the connected wire medium does not have a mag-
netic response, it follows that the magnetic function of
the composite medium is the same as that of the array
of cubic particles formed by EC-SRRs [Eq. (21)]. On
the other hand, the effective permittivity of the compos-
ite medium should verify ¯̄εWM+SRR = ε0

¯̄I + (εSRR − ε0) ¯̄I +(
¯̄εWM − ε0

¯̄I
)

, where εSRR, already defined in section III, is

the effective permittivity of the array of EC-SRRs. Thus,
within the considered hypothesis it is found that

¯̄ε (ω, k) = εt,WM+SRR (ω)

(
¯̄I − kk

k2

)

+ εl,WM+SRR (ω, k)
kk
k2 (41a)

εt,WM+SRR

ε0
(ω) = εSRR,r − β2

pc2

ω2 (41b)

εl,WM+SRR

ε0
(ω, k) = εSRR,r − β2

p

ω2/c2 − k2/l0
. (41c)

where εSRR,r = εSRR/ε0. It is important to emphasize that
the magnetic effects of the composite medium are not
included in the nonlocal dielectric function, and are
described separately by ¯̄μ (ω, k), given by Eq. (21) [the
magnetic effects could be easily incorporated into the
dielectric function using a formula similar to (6); how-
ever, here it is preferable to separate the electric and
magnetic responses since such framework is necessary to
study the longitudinal magnetoinductive wave for which
μl = 0 [21].

Using the hybrid integral equation-plane wave
method of Ref. [28], we have computed the band struc-
ture of the composite material formed by connected
wires and EC-SRRs. The geometry of the EC-SRRs is the

same as that considered in section IV, and the triple wire
medium is formed by wires with radius rw = 0.05a. The
calculated band structure is represented in Fig. 5 (solid
black lines) for the directions Γ R and Γ X of the Bril-
louin zone. It is seen that the material supports backward
waves for 0.77 < ωa/c < 0.89, i.e. roughly in the same
frequency band where the array of EC-SRRs is charac-
terized by a complete band gap (the band structure of
the array of EC-SRRs is represented with green lines
in Fig. 5). This supports the hypothesis that the com-
posite material formed by wires and SRRs behaves as
a left-handed medium. Quite interesting, the upper fre-
quency of the backward wave regime is slightly below
the magnetic plasma frequency of the array of EC-
SRRs. Most likely this is a consequence of some residual
bianisotropic effects, consistent with the theory of Ref.
[17].

Besides the two backward wave (TEM) modes, the
composite material also supports a longitudinal mode
at the magnetic plasma frequency. Remarkably, except
very near to the Γ point, the dispersion of the longitu-
dinal mode cannot be distinguished from the dispersion
of the longitudinal magnetoinductive wave identified in
Section 4 (nearly flat green line in Fig. 5). This behavior
completely supports the hypothesis that the triple wire
medium interacts weakly with the array of SRRs. Indeed,
the dispersion of the longitudinal mode is determined by
condition (31), [ ¯̄μ (ω, k) · k = 0], which is completely
independent of the dielectric function ¯̄ε (ω, k) of the
composite material (because the magnetoinductive lon-
gitudinal mode is associated with a trivial macroscopic
electric field: Eav = 0). This explains why the dispersion
characteristic of this mode remains nearly invariant when
the triple wire medium is added to the array of EC-SRRs.

The composite material formed by SRRs and wires
has a band gap above the magnetic plasma frequency.
The propagation is resumed at ωa/c ≈ 1.08, which sup-
posedly corresponds to the electric plasma frequency for
which εWM+SRR ≈ 0. The theoretical value of the electric
plasma frequency may be estimated using Eq. (41b) and
is ωep/c = βp/

√
εSRR,r. Since, for wires with rw = 0.05a

we have that βp = 1.93/a, using εSRR,r = 2.1 (see Section 4)
we obtain the theoretical value, ωepa/c = 1.33, which is
slightly larger than the more precise value obtained from
the band structure of the material. Most likely the reason
for the discrepancy is that εSRR,r = 2.1 is the static per-
mittivity of the array of SRRs, and thus our model may
underestimate εSRR,r at the electric plasma frequency.

Above the electric plasma frequency the metamaterial
supports three electromagnetic modes. Two of the modes
are expected to be associated with TEM waves, whereas
the other mode is expected to be associated with an
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electric-type longitudinal mode. Curiously, it can be seen
in Fig. 5 that the dispersion characteristic of these three
modes is nearly coincident. This contrasts markedly with
the case where the metallic wires stand alone in the lat-
tice (see the left-hand side inset of Fig. 5), for which
the dispersion of the longitudinal mode is much smaller
than that of the transverse modes. To explain this curious
phenomenon, we note that near the plasma frequency the
magnetic response of the SRRs is expected to be rela-
tively weak (see Fig. 4) [i.e. ¯̄μ (ω, k) ≈ μ0

¯̄I], and thus
to a first a approximation the composite metamaterial
may be described using only the nonlocal dielectric func-
tion ¯̄ε (ω, k). It should be clear that Eq. (41) implies that
the metamaterial supports two transverse modes with
dispersion characteristic k2 = εt,WM+SRR μ0 ω2, i.e.

ω2

c2 = β2
p

εSRR,r

+ k2

εSRR,r

(42a)

and a longitudinal mode with dispersion characteristic
εl,WM+SRR = 0, i.e.

ω2

c2 = β2
p

εSRR,r

+ k2

l0
. (42b)

Comparing Eqs. (42a) and (42b), it is seen that the dis-
persion of the transverse and longitudinal modes is the
same when εSRR,r ≈ l0. But for a triple wire medium with
rw = 0.05a we have that l0 ≈ 2.03 (see Refs. [30,31]),
and thus the condition εSRR,r ≈ l0 seems to be veri-
fied in our problem. This coincidence explains the
similarity of the dispersion characteristics of the trans-
verse and longitudinal modes above the electric plasma
frequency.

6. Conclusion

Using nonlocal homogenization methods we have
calculated theoretically the magnetic function of an
array of cubic magnetic resonators, under the approx-
imation that the inclusions can be modeled using the
magnetic dipole approximation. The proposed model
complements the analysis of our previous work [12],
and takes into account all interactions between the par-
ticles (i.e. magnetic dipoles), and both frequency and
spatial dispersion. It was shown that the properties of the
longitudinal magnetoinductive wave are determined by
nonlocal effects, which are caused by the interaction of
the magnetic resonators with different orientations. Our
results suggest that except in the regime where μ ≈ 0,
the effects of spatial dispersion may be relatively weak,
especially if k is near the origin of the Brillouin zone.
In addition, we studied the propagation properties in

a composite material formed by EC-SRRs and a triple
wire medium. It was shown that such material supports a
backward wave regime, where it may behave as a nearly
isotropic left-handed material. In addition, it also sup-
ports both magnetic-type and electric-type longitudinal
modes, and two TEM modes above the electric plasma
frequency. It is hoped that the present study contributes
for the understanding of nonlocal homogenization tech-
niques, and stimulates the study of truly isotropic local
left-handed metamaterials.
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Appendix A.

In this appendix we briefly describe the solution of
the homogenization problem when the resonant rings
are modeled as particles with an electric response. As
discussed in Section 2.1, in these circumstances the mag-
netic effects are related to the vortex part of the induced
electric current density.

Following Ref. [14], the nonlocal dielectric func-
tion is calculated by exciting the metamaterial
with an external electric current density, Je,ext =
jω
(

p(e)
ext/Vcell

)
e−jk·r, where p(e)

ext is a constant vector.

Thus, the microscopic electromagnetic fields, (E, B),
verify:

∇ × E = −jωB (A1a)

∇ × B
μ0

= jωε0E + Je,ext + Je,dip, (A1b)

where the microscopic electric current density, Je,dip, is
given by Eq. (4), and is written in terms of the unknown
magnetic dipole moments of the particles in the unit cell
pi. It is important to emphasize that when the response of
the particles is characterized by an electric current den-
sity, as considered here, the microscopic fields are the
electric field intensity (E) and the magnetic induction
(B). Quite differently, from duality, when the response
of the particles is characterized by a magnetic current
density the microscopic fields are the electric field inten-
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sity (E) and the magnetic field intensity (H) (see Section
2.2).

It may be easily shown that the solution of Eq. (A1)
is:

E (r) = (−jωμ0)
∑

i=1,2,3

∇ × ¯̄Gp

(
r| r0,i

) · pi

μ0

+ (−jωμ0) ¯̄Gav · jωp(e)
ext e

−jk·r. (A2)

Thus, the local electric field in the immediate vicinity
of the ith ring is

Eloc,i (r) = −jω∇ × G′
p

(
r| r0,i

) · pi

− jω
∑
j /= i

∇ × ¯̄Gp

(
r| r0,j

) · pj

+ ω2μ0
¯̄Gav · p(e)

exte
−jk·r,

(A3)

whereas the local induction field, Bloc,i =
∇ × Eloc,i/ (−jω), is

Bloc,i (r) =
(ω

c

)2
G′

p

(
r| r0,i

) · pi

+
∑
j /= i

(ω

c

)2 ¯̄Gp

(
r| r0,j

) · pj

+ ωμ0k × ¯̄Gav · p(e)
ext e

−jk·r, (A4)

being G′
p defined as in Eq. (13). It should be clear that

in the present context Hloc in Eq. (3) should be iden-
tified with Bloc/μ0. Thus, using the auxiliary relation
k × ¯̄Gav = ¯̄Gav × k = ¯̄Gav · (k × ¯̄I), [see Eq. (10)], and
the property pi = piûi, it is found that for i = 1, 2, 3

α−1
m

pi

μ0
=
(ω

c

)2
(

ûi · G′
p (0| 0) · ûi

pi

μ0

+
∑
j /= i

ûi · Gp

(
r0,i

∣∣ r0,j

) · ûj

pj

μ0

+ ûi · ¯̄Gav ·
(

c2k
ω

× p(e)
ext

)
e−jk·r0,i

)
.

(A5)

Interestingly, the above result is equivalent to Eq.
(14), provided we make the identification pext = k ×
p(e)

ext/ωε0. Therefore, making manipulations similar to

those of Section 2.2, we conclude that

¯̄χ · M =
(ω

c

)2 ¯̄Gav ·
(

M + 1

Vcell

c2k
ω

× p(e)
ext

)
, (A6)

where the magnetization vector M is defined as in Eq.
(18), and the dyadic ¯̄χ is defined as in Eq. (22).

The dielectric function must verify
(

¯̄ε (ω, k) − ε0
¯̄I
)

·
Eav = Pg, independent of the applied current density,
where Pg is the generalized electric polarization vector
given by [14]:

Pg = 1

Vcelljω

∫
cell

Je,dip (r) e+jk·rd3r = − k
ω

× M.

(A7)

By averaging the microscopic Maxwell’s equations
(A1) [see Eqs. (9) and (14) of Ref. [14]], it can be easily
shown that the macroscopic electric field must be such
that:

Eav = ω2μ0Vcell
¯̄Gav ·

(
Pg + p(e)

ext

Vcell

)
. (A8)

Thus, using again the result k × ¯̄Gav = ¯̄Gav × k and Eq.
(A7), it is found after some algebra that:

k
μ0ω

× Eav

= M + ω2

c2 Vcell
¯̄Gav ·

(
M + 1

Vcell

c2k
ω

× p(e)
ext

)
.

(A9)

Substituting now the above formula into Eq. (A6), it
follows the magnetization vector is related to the macro-
scopic electric field as

M = −
(
μ0 ¯̄μ−1 − ¯̄I

)
·
(

k
μ0ω

× Eav

)
, (A10)

where ¯̄μ is defined as in Eq. (21), and we have used the

property ¯̄μ−1 = ¯̄I −
(

¯̄I + Vcell ¯̄χ
)−1

. Finally, using the

property
(

¯̄ε (ω, k) − ε0
¯̄I
)

· Eav = Pg and Eqs. (A7) and

(A10), it is found that the nonlocal dielectric function of
the metamaterial verifies, indeed, Eq. (6), as we wanted
to prove.
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