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Abstract—In this paper, a nonlocal homogenization model is
proposed for the analysis of the spectrum of natural modes on
sub-wavelength mushroom-type high-impedance surfaces com-
posed of a capacitive grid connected to a grounded wire-medium
(WM) slab. Modal characteristics of mushroom structures are
studied in conjunction with the surface-wave and leaky-wave
propagation on WM slabs based on local and nonlocal homog-
enization models, showing the importance of spatial dispersion
(SD) in WM. It is shown that mushroom structures support
proper real (bound) forward and backward modes, whose dis-
persion determines the stopband properties of the mushroom
structure, and proper (exponentially decaying from the surface)
and improper (exponentially growing from the surface) complex
leaky-wave modes related to the backward and forward radiation,
respectively. Results obtained by different homogenization models
are compared leading to important conclusions. Specifically, an
interesting observation concerns the mushroom structures with
short vias, wherein the SD of the WM slab is significantly reduced,
and the results of local and nonlocal homogenization models are
in excellent agreement.

Index Terms—Analytical modeling, electromagnetic-bandgap
(EBG) structures, high-impedance surfaces (HIS), homogeniza-
tion, leaky waves, mushroom structures, spatial dispersion (SD),
surface waves, wire medium (WM).

I. INTRODUCTION

P ERIODIC surfaces acting as frequency selective surfaces
(FSSs) have been of interest for a long time due to their

broad applications in microwave and millimeter-wave technolo-
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gies [1]. In recent years, there has been a growing demand in
the development of artificial periodic impedance surfaces for
the realization of high-impedance surface (HIS) structures com-
posed of FSS elements printed on a grounded dielectric slab.
This includes patch arrays with grounding vias (mushroom-type
structures) [2]–[4], patch arrays without vias [5]–[7], printed
dipole/slot arrays [8], [9], dipole/slot arrays of different reso-
nant length in order to achieve a multiband response [10], [11],
and more complicated configurations of unit cells [12], among
others. HIS structures have been used as substrates in low-pro-
file antennas in order to improve matching and radiation antenna
characteristics and minimize mutual coupling between antennas
[13], [14], hard walls in the waveguides [9], [15]–[17],
absorbers [18], [19], and in planar tunable reflect-arrays [20],
[21].

It is well known that HIS structures possess the electromag-
netic-bandgap (EBG) properties (associated with a stopband for
surface-wave propagation) and the artificial magnetic conductor
(AMC) properties (related to the reflection phase characteris-
tics of the surface, typically when the reflection phase varies in
between 90 and 90 ). However, in general, the EBG and
AMC frequency bands of printed HIS structures do not coin-
cide [6] (in particular, for HIS structures without vias). This is
related to the fact that the stopband for surface waves occurs
at the guided wavelengths of proper complex modes equal to a
double period of the FSS grid [22], which is associated with the
Bragg diffraction in the first Brillouin zone, but the AMC prop-
erties are due to the resonant response of the entire HIS structure
(and not due to the resonance of the FSS grid by itself).

Recent trends in the miniaturization of FSS elements used in
HIS structures revealed some concerns regarding the AMC and
EBG properties and at the same time created possibilities for al-
ternative modeling using the ideas from the emerging research
area of metamaterials. It has been recently shown in [23]–[25]
that in dense HIS structures without vias with the sub-wave-
length dimensions and period of FSS elements (square patch
or the Jerusalem cross), no stopband between and sur-
face-wave modes occurs at low frequencies, wherein the HIS
structure exhibits AMC properties (it should be noted that the
terminology of modes for sub-wavelength periodic structures
used here and throughout this paper is based on the modal clas-
sification of dielectric slab waveguides, and the modes of peri-
odic structures are understood as perturbed modes of the back-
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ground structure within the limits of homogenization models).
In this case, the AMC resonance is understood in the sense of
a parallel resonance of the grid impedance of the FSS structure
and the surface impedance of a grounded dielectric slab [26],
which appears at low frequencies (in contrast to EBG proper-
ties at higher frequencies due to the Bragg diffraction). Unlike
printed HIS structures without vias, mushroom-type HIS struc-
tures [2], [3] may have simultaneously the AMC and EBG char-
acteristics. In fact, it has been shown in [27] and [28] that at low
frequencies, wherein the mushroom structures experience the
AMC properties, there is also a stopband for and sur-
face-wave modes. It should be noted that the nature of the AMC
resonance in mushroom-type structures is very much similar to
that in printed HIS structures without vias (in the sense of a par-
allel resonance of a capacitive grid and inductive grounded di-
electric slab with embedded vias). However, in contrast to the
EBG properties in traditional FSS and HIS structures without
vias, the stopband properties for proper surface-wave modes in
mushroom-like structures are due to occurrence of back-
ward leaky waves associated with the wire-medium (WM) slab
and the capacitive grid.

This paper proposes a new methodology for rapid and accurate
analysis of natural modes of electrically dense mushroom-type
HIS structures. In this approach, mushroom structures are
considered as a WM slab in conjunction with a planar printed
grid of dense FSS elements (patch array or Jerusalem cross
array, among others). The analysis is based on local and nonlocal
homogenization models of a WM slab [21], [29] and a dynamic
model of the grid (patch array [7] or Jerusalem cross array
[23], [30], although the analysis of this study is limited to the
case of patch array) resulting in a dispersion equation for the
natural modes of mushroom-type HIS structures. Dispersion
behavior of proper and improper, real and complex solutions
is studied revealing interesting wave phenomena related to
backward propagation, stopband characteristics for proper real
modes, and backward and forward radiation associated with
proper complex and improper complex leaky-wave modes.
The results obtained by different homogenization models are
compared, and conclusions are made regarding the physics of
surface-wave and leaky-wave propagation and the importance
of spatial dispersion (SD) properties of WM slabs.

Regarding the SD in wire media [31], [32], it has been
shown that even for electrically thin grounded WM slabs,
nonlocal methods become essential in order to accurately
predict the electromagnetic response of the wire media [29],
[33]–[35]. SD has also been taken into account in the analysis
of eigenmodes in bounded WM structures [36]–[38] and in
the study of WM slabs excited by a dipole source [39], [40].
In particular, it has been demonstrated in a recent study [29]
that the WM response may be distinctively different from that
of a uniaxial local material due to the effects of SD. Some
ideas to reduce the effects of SD in wire media have been
proposed in [41], and include coating the wires with a magnetic
material or attaching large conducting structures to the wires
(e.g., conducting plates). In fact, the latter strategy proposed
in [41] is intrinsic to mushroom-type HIS structures composed
of a WM slab connected to a grid of printed FSS elements,
which was used by the authors of this paper independently

Fig. 1. Geometry of the WM slab for the analysis of �� surface-wave and
leaky-wave propagation. (a) Side view. (b) Top view.

of [41] for the explanation of the results obtained by local
and nonlocal homogenization models [42], [43].

This paper is organized as follows. In Section II, local and
nonlocal homogenization models are summarized for WM
slabs, and Section III focuses on the development of nonlocal
homogenization model for the analysis of the natural modes
of mushroom-type HIS structures. Dispersion behavior of
surface-wave and leaky-wave modes is presented in Section IV
for WM slabs and mushroom HIS structures. Conclusions re-
garding the applicability of local and nonlocal homogenizations
are drawn in Section V.

II. HOMOGENIZATION OF WM SLABS

In this section, we summarize the formalism of nonlocal [29]
and local [21] homogenization models for the analysis of nat-
ural modes of WM slabs. The WM slab is composed of a 2-D
square lattice of vertical (along the -direction) metallic vias of
radius embedded in a grounded dielectric slab of thickness

and permittivity (with the geometry shown in Fig. 1). The
period of vias in the lattice is , and it is assumed that the vias
are connected to the ground plane. The WM slab may support

and surface-wave modes with respect to the direc-
tion of propagation ( -direction). However, modes (with
the electric field parallel to the ground) do not interact with the
metallic vias and propagate as in the grounded dielectric slab.
In the following analysis, we concentrate on the surface
waves only. The time dependence of the form is assumed
and suppressed.

A. Nonlocal Homogenization for WM Slabs

Following [29] and [32], the WM for long wavelengths (with
respect to the array period) can be characterized by a spatially
dispersive model of a uniaxial anisotropic material with the ef-
fective permittivity

(1)

where is the plasma wavenumber defined in [32, eq. (10)],
is the wavenumber in the host material,

is the wavenumber in free space, and is the -component of
the wave vector associated with the plane-wave modes of the
unbounded medium. The dispersion equation for the - and
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-polarized waves in the unbounded WM can be obtained by
substituting the effective permittivity (1) into Maxwell’s equa-
tions, resulting in the following:

(2)

where is the -component of the wave vector .
The solution of (2) gives two independent eigenwaves, where
the first factor determines the dispersion properties of the
wave and the second factor corresponds to the wave. For
the wave, for any .

The dispersion equation for surface-wave modes of the
WM slab (Fig. 1) has been derived in [29] by considering a scat-
tering problem for an obliquely incident -polarized plane
wave, where the poles of the reflection coefficient [29, eq. (9)]
correspond to the propagation constants of surface-wave modes
[29, eq. (14)]. The same dispersion equation can be derived by
considering a source-free spectral problem for the natural modes
of the WM slab. The magnetic field in the air region and the WM
slab of the modes can be obtained as follows:

for

for (3)

where the boundary condition on the perfect electric
conductor (PEC) ground plane at has been sat-
isfied. In (3), and are the amplitude
coefficients of natural modes with the propaga-
tion constant , ;

, , and .
The total field of surface waves in the WM slab region is
obtained as a combined contribution of and fields
having different wave vectors such that for proper (bound)
surface waves the wave vector of the field is real-valued
and the wave vector of the field is complex-valued (the

part of the surface-wave modes in the WM slab is typically
strongly confined to the air–slab interface, especially for long
wires). Enforcing the continuity of tangential electric and
magnetic fields at the air–dielectric interface and an additional
boundary condition (ABC) at the air–slab (WM) interface at

(given in terms of the -component of the magnetic
field in (6), [29]), the dispersion equation for natural
modes is obtained as follows:

(4)

which is the same as [29, eq. (14)], except for the propaga-
tion constant in the radial direction that was defined in [29] as

. The factor induces branch points in the
complex -plane at . Proper modes (above cutoff)
reside on the proper Riemann sheet with the field decaying in
the -direction as , where , and improper
modes (below cutoff) reside on the improper Riemann sheet
where (with the field growing in the -direction).

Branch cuts that separate proper and improper Riemann sheets
are defined by , leading to the hyperbolic branch
cuts

(5)

It should be noted that the nonlocal homogenization model of
the WM slab takes into account SD by considering a combined
contribution of and fields and requires an ABC at the
air–WM slab interface, and it is referred here to as the SD ABC
model. The ABC enables the accurate modeling of the physical
behavior of the current along the vias at the air–WM slab in-
terface and at the connection of vias to the PEC ground plane,
which is equivalent to the following conditions for the micro-
scopic current : (which corresponds to
the maximum charge accumulated on the tips of the vias) and

(associated with zero charge density at the
connection of vias to the ground plane).

B. Local Homogenization of WM Slabs

A local model of the WM slab (Fig. 1) has been introduced
in [21] and [26] as a quasi-static approximation of a uniaxial
anisotropic material composed of infinitely long wires and char-
acterized by the effective permittivity (1) with the normal com-
ponent defined by the Drude model without considering SD ef-
fects

(6)

Thus, the proposed local model treats the WM as an epsilon-
negative (ENG) material below the plasma frequency. It should
be noted that the local model of a WM slab, referred here to as
the ENG approximation, has been used in [21] in conjunction
with a patch array grid in order to develop a local model for
mushroom HIS structures.

The surface impedance of a WM slab with vias connected to
the PEC ground plane (Fig. 1) “seen” by natural modes
can be written as follows [21]:

(7)

where is the propagation constant in the WM slab in the
normal direction ( -direction)

(8)

and is the quasi-static approximation of the plasma
wavenumber given in [21, eq. (6)] and [26]. It should be
noted that at the plasma frequency, the normal component of
the effective permittivity , defined by the ENG approxima-
tion (6), crosses zero, resulting in a singularity in (8). In this
regime, the local model predicts that the WM slab supports
multiple spurious higher order surface-wave and leaky-wave
modes in a very narrow frequency range close to the plasma
frequency, which, as will be discussed further in Section IV,
are not observed in the real structured substrate. These spurious
solutions may possibly be eliminated from the modal spectrum,
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Fig. 2. Geometry of the mushroom-type HIS structure for the analysis of��
surface-wave and leaky-wave propagation. (a) Side view. (b) Top view.

or at least may be significantly damped, by introducing small
losses in the dielectric permittivity of the host material .

The spectral problem is equivalent to the analysis of the nat-
ural modes supported by the impedance surface (7) (with the as-
sumption that there is no field beyond the impedance surface),
resulting in the dispersion equation for surface-wave and
leaky-wave modes [26]

(9)

where is the characteristic impedance of free
space. It should be noted that , and (9) is the
implicit form of the dispersion equation for the natural modes,
which can be solved numerically for the propagation constant

.

III. HOMOGENIZATION OF MUSHROOM-TYPE HIS STRUCTURES

In this section, we present the analysis of the natural modes
of mushroom-type HIS structures based on nonlocal and local
homogenization models. Mushroom structures are formed by a
grid of FSS elements (patches, Jerusalem crosses, etc.) printed
on a grounded dielectric slab with metallic pins connected to
the grid and to the ground (with the geometry shown in Fig. 2
for the specific case of a patch array). In Fig. 2, is the period
in the 2-D square lattice (which is the same for the grid and
the WM) and is the gap between the adjacent grid elements.
As in the case of a WM slab, mushroom-type HIS structures
support and surface-wave modes as natural modes
of these periodic structures. The analysis is limited here to
modes because surface waves do not interact with the vias
and propagate as in the HIS structure formed by a metallic grid
printed on a grounded dielectric slab [23]–[25]. The proposed
methodology considers mushroom structures as sub-wavelength
FSS grids printed on a WM slab, and the material presented in
Section II is essential for the characterization of the spectrum of
natural modes of mushroom structures based on nonlocal and
local homogenizations.

A. Nonlocal Homogenization for Mushroom Structures

Considering a source-free spectral problem for the nat-
ural modes of the mushroom structure (Fig. 2) and following the

formalism presented in Section II for the WM slab (Fig. 1), the
magnetic field in the air region and WM slab can be represented
in form (3), subject to the two-sided impedance boundary con-
dition at the grid interface ( )

(10)

with the -component of the electric field being continuous
across the grid such that is con-
tinuous, resulting in

(11)

which is equivalent to the following condition for the magnetic
field:

(12)

Here,

In (10), is the effective surface impedance of the grid
“seen” by the natural modes. Analytical dynamic models
for the grid impedance have been obtained in terms of effective
circuit parameters for sub-wavelength printed arrays realized by
various FSS elements (with the period much smaller than the ef-
fective wavelength), including strips and patches [7], Jerusalem
crosses [23], [30], and cross dipoles [44], among others. For the
sake of brevity, we present here only the expression for the sur-
face impedance of the grid comprising square patches (the case
of the polarization), which is obtained by first considering a
strip mesh with square holes and then applying the approximate
Babinet principle, resulting in the capacitive grid impedance of
the complementary structure (i.e., array of patches) [7]

(13)

where , and is the grid
parameter

(14)

To complete the formulation, an ABC is required at the con-
nection of vias to the grid , as well as at the connection
of vias to the ground plane . Assuming that the patches
are wide enough, we use the same condition as in [35] at the
connection of the vias to both the infinite ground plane and the
patches

(15)

This leads to the following condition in terms of field compo-
nents:

(16)
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For the unbounded WM from Ampere’s circuital law, we ob-
tain

(17)

where the normal component of the effective permittivity
is defined by (1) such that for the fields [29]

(18)

with . Then, using (3) together with (17) and (18), the
-component of the electric field in the region below the grid

( ) can be obtained as follows:

(19)

The dispersion equation for surface-wave and leaky-
wave modes is obtained by enforcing the boundary conditions
(10) and (12) for the tangential magnetic fields (3) at the grid
interface and the ABC condition (16) together with (19)
at the connection of vias to the grid and to the ground
at , leading to

(20)

Here, the wavenumber induces branch points in the complex
-plane at , separating proper (above cutoff) and

improper (below cutoff) modes defined on the corresponding
Riemann sheets.

As in the case of the WM slab, the nonlocal homogenization
model of the mushroom structures takes into account SD effects
of WM and requires the use of ABCs at the interfaces, and it is
referred here to as the SD ABC model. The physical behavior
of the current at the connection points is accurately enforced by
the ABC, which can be written for the microscopic current
as follows: and . It
can be shown that the microscopic current along the vias can be
expressed in terms of the averaged (macroscopic) fields of 2-D
square lattice of mushrooms [35]

(21)

B. Local Homogenization for Mushroom Structures

A local homogenization of mushroom-type HIS structures
with electrically short vias is based on the ENG approxima-
tion of the WM slab (the local model described in Section II)
and a dynamic model of the grid characterized by the surface
impedance in terms of effective circuit parameters [21]. It does
not take into account SD effects in the WM and does not require
an ABC at the interfaces. The dispersion equation for the
natural waves is obtained by considering the equivalent surface
impedance of the mushroom HIS structure (Fig. 2), which is

given by the parallel connection of the surface impedance of the
grid and the surface impedance of the WM slab [26]

(22)

In (22), is given by (7), which is obtained using the
ENG approximation (local model), and represents the sur-
face impedance of the homogenized grid “seen” by the
natural modes; in particular, for the patch array, is given by
(13) and (14), [7].

The spectral problem for the natural modes of mushroom
structure is then equivalent to the analysis of the natural modes
of the impedance surface described by [defined by (22)]
(with no field beyond the impedance surface), resulting in the
dispersion equation for the surface-wave and leaky-wave
modes (similar to (9) for the WM slab with replaced by

)

(23)

where . The dispersion (23) can be solved nu-
merically for the propagation constant .

It should be noted that the local model does not require any
boundary conditions at the connection of the vias to the metallic
interfaces (grid elements and ground plane); however, it is es-
sential that in the physical configuration (realistic structures),
the vias are connected to the grid and the ground plane and
the current is continuous at the interfaces. In general, the local
model will fail (the reason will be clear in Section IV) if the vias
are not connected to the grid, e.g., in the case of a grid comple-
mentary to the patch array, i.e., a strip mesh with square holes.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, based on the proposed nonlocal and local
homogenization models, the dispersion behavior of sur-
face-wave and leaky-wave modes is studied in the WM slabs
and mushroom-type HIS structures.

A. Surface Waves and Leaky Waves on WM Slabs

1) WM Slabs With Long Vias: We begin with the analysis of
the modal properties of the WM slab with electrically long vias
(Fig. 1). In the first example, the WM slab with long vias has the
following parameters: mm, mm, mm,
and . The dispersion behavior of the proper real (bound)
and improper real surface-wave modes based on the SD ABC
model [as the numerical solution of the dispersion equation (4)]
is shown in Fig. 3 as the normalized propagation constant
versus the normalized frequency (for the case of

). Two proper surface-wave modes are shown, and
the dispersion behavior agrees very well with the HFSS results
[45]. At low frequencies, is close to 1, indicating that the
surface wave weakly interacts with the WM and propagates pri-
marily in the air region with the field exponentially decaying in
the vertical direction (with the factor ) as
the proper real (bound) mode. With the increase of frequency,
the surface wave interacts more strongly with the WM resulting
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Fig. 3. Dispersion behavior of�� surface-wave modes in the WM slab with
long vias based on the SD�ABC homogenization model and the��� approx-
imation.

in an increase of the propagation constant, where the disper-
sion properties of the surface wave are determined by the
combined contributions of the and fields in the WM
slab. At the frequency around 15 GHz corresponding to

, a stopband occurs for the first surface-wave
mode, and at the frequency for which (cor-
responding to 45 GHz) there is a stopband for the second
mode [29].

The stopbands for the proper modes shown in Fig. 3 are at low
frequencies within the limits of the homogenization model for
the WM slab (with the plasma frequency at 92.13 GHz).
The nature of stopbands in the WM slab at low frequencies is
similar to that found in traditional FSS structures at high fre-
quencies (referred to as closed stopbands) [22]. The homoge-
nization for surface waves requires that , which de-
fines a low-frequency range close to the left hyperbola in the
first Brillouin zone. The first and second stopbands in Fig. 3
occur exactly at associated with the Bragg diffraction
limit in the first Brillouin zone. Even though the homogenization
model cannot accurately predict the wave behavior at the stop-
band frequency (since the concept of Bragg diffraction is not
applicable for a continuous material, and consequently homog-
enization does not impose any bound on when approaching
the stopband frequency), the general agreement between analyt-
ical and the numerical solutions in the vicinity of the stopband is
good, especially for the SD ABC homogenization model. This
somewhat surprising result is partially explained by the fact that
the dispersion characteristic of the mode, , is
exact, i.e., it is valid for arbitrarily large frequencies and phase
shifts between currents in vias. Quite differently, the dispersion
characteristic of the mode is only valid in the long-wave-
length limit. However, as discussed below, the contribution of
the mode to the fields in the WM slab may be residual,
and due to this reason, the homogenization model may still be
pretty accurate even beyond the usual homogenization bounds
( and ). In order to demonstrate this
property, we show in Fig. 3 the results obtained in the
approximation when the field in the WM slab region is defined

Fig. 4. Dispersion behavior of �� surface-wave and leaky-wave modes in
the WM slab with long vias based on the ENG model. The ENG results are qual-
itatively different from those obtained by the SD�ABC model and the ���
approximation shown in Fig. 3.

by the mode only (see (3) with the field set to zero,
[29]). This means that only the mode contributes to the
field of the surface-wave modes of the WM slab. It can
be seen that the overall behavior of proper and improper real
solutions is captured by the approximation (even for the
second mode), and, therefore, the mode has the dominant
contribution to the field of surface waves (in comparison
with the part in (3), which attenuates rapidly away from the
air–WM slab interface).

The results of the ENG approximation [obtained using (9)]
are shown in Fig. 4 for the same example of the WM slab with
long vias. It can be seen that the ENG model results agree with
the SD ABC and the approximation results only at low
frequencies, and with the increase of frequency, the dispersion
behavior of surface waves becomes very different from that
shown in Fig. 3. The ENG model predicts proper real and proper
complex backward waves (with the group velocity in the -di-
rection as the negative slope of dispersion curves of the corre-
sponding modes). In this example of a WM slab with long vias,
the ENG model fails even at low frequencies far away from the
plasma frequency of 92.13 GHz.

For densely packed vias with the period of the lattice re-
duced, the dispersion behavior of surface-wave proper real
(bound) modes based on the SD ABC model is almost unaf-
fected, as it is shown in Fig. 5. In fact, for a small ( ),
the SD ABC results approach the approximation results,
when the surface waves “see” the WM slab as a material with
extreme anisotropy [29].

The SD ABC model also predicts proper complex and im-
proper complex leaky-wave modes in the WM slab with long
vias, as is shown in Fig. 6. Starting with the small period (

mm), a proper complex backward mode with a large attenua-
tion constant [see Fig. 6(b)] is found. This mode is significantly
affected by the increase of the lattice period. For the cases re-
ported in Fig. 6 (with mm and mm), the pole
of proper complex mode migrates from the first quadrant of the
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Fig. 5. Dispersion behavior of surface waves on WM slab with highly-dense
long vias based on the SD�ABC model. The modal behavior is almost unaf-
fected by altering the period of vias in the lattice.

complex propagation constant plane into the second quadrant by
crossing the Sommerfeld branch cut and becomes the improper
complex forward mode propagating in the negative -direction.
It can be seen in Fig. 6 that the improper complex leaky wave
remains physical ( ) in the shown fre-
quency range with a very small attenuation constant.

The dispersion behavior based on the ENG model is signifi-
cantly affected by altering the period of vias. In Fig. 7 for the pe-
riod of vias 0.2 mm, the behavior of the first surface wave
is very similar to that predicted by the SD ABC model, and the
leaky-wave cutoff of the first proper complex mode is pushed
toward higher values of the propagation constant. The second
mode (real and complex regimes) is also significantly deformed.
It can be seen (Fig. 7) that the dispersion behavior of proper real
(bound) modes based on the ENG model for highly packed vias
is close to the modal behavior obtained by the SD ABC model
and the approximation. Thus, we conclude that the ENG
model describes adequately the physics of surface-wave propa-
gation only in highly dense WM slabs, when the normal permit-
tivity defined by (6) is very large and negative (or equiva-
lently when the frequency of operation is much smaller than the
plasma frequency; notice that the plasma frequency for highly
packed vias is pushed to hundreds of gigahertz). In this sense,
the ENG and approximation results agree—both models
have the same physical interpretation of surface-wave propaga-
tion in a medium with extreme anisotropy, with the component
of the permittivity along the direction of the wires, such that

. It should be noted that the leaky waves shown in Fig. 4
based on the ENG approximation do not accurately describe the
dynamics of the leaky modes of the WM slab. However, for a
WM slab with highly dense vias, the leaky-wave behavior at
low frequencies presented in Fig. 7 based on the ENG model is
close to that obtained with the SD ABC model (even though
this mode is not physical due to a large attenuation constant).
The physical leaky waves with small attenuation constant ob-
tained with the SD ABC model become significant only when
the period is relatively large (comparable to the length of vias),
as is shown in Fig. 6.

Fig. 6. Dispersion behavior of proper complex (solid line) and improper com-
plex (dashed line) leaky-wave modes in the WM slab with long vias based on
the SD�ABC model. (a) Real part of the normalized propagation constant.
(b) Imaginary part of the normalized propagation constant. The modal behavior
is significantly affected by increasing the period of vias in the lattice.

2) WM Slabs With Short Vias: In the second example, a WM
slab with short vias (with the geometry shown in Fig. 1) is con-
sidered with the following parameters: mm, mm,

mm, and . The dispersion behavior of
the first two surface-wave proper (bound) modes based on
the SD ABC model is shown in Fig. 8 as the normalized prop-
agation constant versus frequency, and compared with
the full-wave results obtained by HFSS demonstrating a good
agreement, especially for the first mode.

It should be noted that in this example of short vias with a
high permittivity host material, the stopband of the first
mode occurs at approximately 22.8 GHz (based on High Fre-
quency Structure Simulator (HFSS) results), which corresponds
to the Bragg condition in the first Brillouin zone where
(with ). It should also be noted that, in this ex-
ample, the stopband is beyond the limits of homogenization
where , [29], and the plasma frequency
is 12.14 GHz. In comparison with the previous example of long

Authorized licensed use limited to: Instituto de Telecomunicacoes. Downloaded on November 15, 2009 at 11:40 from IEEE Xplore.  Restrictions apply. 



YAKOVLEV et al.: CHARACTERIZATION OF SURFACE-WAVE AND LEAKY-WAVE PROPAGATION ON WM SLABS AND MUSHROOM STRUCTURES 2707

Fig. 7. Dispersion behavior of surface and leaky waves on WM slab with highly
dense long vias based on the ENG model with the lattice period of � � ���mm.
The modal behavior depends significantly on the period of the vias. The surface
waves propagate as in a medium with extreme anisotropy.

Fig. 8. Dispersion behavior of�� surface-wave modes in the WM slab with
short vias based on the SD�ABC homogenization model and the��� approx-
imation.

vias, wherein the stopband of the first mode occurs at
the Bragg condition, but at low frequencies with

, in the case of short vias, the stopband of the first mode is
at high frequencies. Surprisingly, the homogenization model
(SD ABC) captures very accurately the physics in the vicinity
of the stopband even beyond the homogenization limit. As dis-
cussed before, this unusual property may be partially justified by
the fact that the dispersion characteristic of the mode is
not constrained by the usual homogenization bounds. In Fig. 8,
the approximation results are also shown, indicating a
good agreement with the SD ABC results at low frequencies
and even above the plasma frequency; however, with the in-
crease of frequency, the results obtained by the two models
start to differ, especially for the second mode (where the

approximation at high frequencies above the first stop-
band fails).

Fig. 9. Dispersion behavior of �� surface-wave and leaky-wave modes in
the WM slab with short vias based on the ENG model. The ENG model pre-
dicts the backward and complex solutions (with dispersion significantly dif-
ferent from that of the modes of the actual WM slab), and spurious higher order
modes in the vicinity of the plasma frequency.

The results of the surface and leaky waves on the WM
slab with short vias based on the ENG model are shown in
Fig. 9. It can be seen that the dispersion behavior is very dif-
ferent from that obtained by the SD ABC model, except for
frequencies well below the plasma frequency of 12.14 GHz. In
the vicinity of the plasma frequency and above, the ENG ap-
proximation fails. Near the plasma frequency, the ENG model
predicts backward and complex modes, which do not capture ac-
curately the physics of the actual WM slab. In addition, because
of the singularity in (8) where the normal permittivity
at the plasma frequency, higher order spurious real and complex
modes occur (as shown in Fig. 9), which have to be discarded
from the modal spectrum. Also, for comparison, the dispersion
curve of the surface wave of the grounded dielectric slab
is shown, which is close to the dispersion behavior based on the
ENG model, except for the narrow frequency range close to the
plasma frequency.

As in the case of long vias, the dispersion behavior of surface
waves in the case of short vias is almost unaffected by reducing
the period of the lattice . This is demonstrated in Fig. 10 ob-
tained with the SD ABC homogenization model.

However, the modal behavior of proper complex and im-
proper complex leaky-wave modes found in the WM slab is
significantly affected by varying the lattice period, as is shown
in Fig. 11. As in the case of a WM slab with long vias, within
the frequency range shown in Fig. 11 there is a proper complex
backward leaky wave above 23.48 GHz with a large attenuation
constant [see Fig. 11(b)]. With the increase of period, this mode
is significantly deformed such that at some frequency the pole
of the proper complex backward mode in the first quadrant
of the complex propagation constant plane migrates into the
second quadrant by crossing the Sommerfeld branch cut and
becomes an improper complex leaky-wave mode propagating
in the negative -direction. Specifically, this transition occurs
at a frequency of approximately 26.42 GHz for the case of
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Fig. 10. Dispersion behavior of surface waves on WM slab with highly dense
short vias based on the SD�ABC model. The modal behavior is almost unaf-
fected by altering the period of vias in the lattice.

mm and at a frequency of approximately 24.63 GHz for
the case of mm. At low frequencies below 23.45 GHz,
there is also an improper complex leaky-wave mode with a
large attenuation constant (this mode attenuates very rapidly
before radiating).

The ENG model results depend significantly on the period
of vias, as shown in Fig. 12. Specifically in Fig. 12, as the pe-
riod is reduced, the leaky-wave cutoff frequencies of the proper
complex modes are pushed to larger values of the propagation
constant (as well as proper backward modes), and for a small
period, mm, the dispersion behavior looks very similar
to that based on the SD ABC model and the approxima-
tion. This indicates that the ENG model is valid only for a highly
dense WM, understood as a medium with extreme anisotropy.

These properties can be understood by noting that, in general,
the nonlocal dielectric function [see (1)] may be equivalent to
the local dielectric function [see (6)] in the following two dif-
ferent scenarios.

• The first case is when both the local and nonlocal models
predict that the WM behaves as a material with extreme
anisotropy . This situation occurs either for
very low frequencies or when the vias are densely packed,

(but not necessarily electrically short) so that the
plasma frequency is extremely large.

• The second case for which SD may be suppressed is when
the fields in the WM slab are nearly uniform along the
direction of the vias so that , or equivalently, in
the spectral domain, . Under these conditions, the
dielectric function of the nonlocal model [see (1)] reduces
to the dielectric function of the local model [see (6)]. This
situation (i.e., ) requires that the current along
the wires is approximately uniform in the WM slab.

It is clear that in a grounded WM slab (with no FSS grid)
only the first case may be observed, i.e., the effects of SD may
be suppressed only when the WM is characterized by extreme
anisotropy. Indeed, the absence of the metallic grid precludes
that the current along the vias is constant, as required by the

Fig. 11. Dispersion behavior of proper complex (solid line) and improper
complex (dashed line) leaky-wave modes in the WM slab with short vias based
on SD�ABC model. (a) Real part of the normalized propagation constant.
(b) Imaginary part of the normalized propagation constant. The modal behavior
is significantly affected by the period of the vias in the lattice.

second scenario. In fact, in the absence of the metallic grid, the
microscopic current along the metallic wires is highly nonuni-
form, even for long wavelengths. To illustrate this, we plot in
Fig. 13 the normalized current profile along a generic wire for
the first proper real surface-wave mode in a metamaterial
slab with the same parameters as in Fig. 8. The solid and dashed
curves were calculated using homogenization theory [see (21)],
whereas the discrete symbols were calculated using the com-
mercial full-wave simulator CST Microwave Studio [46]. It can
be seen that the current along the metallic vias varies signifi-
cantly along , and vanishes at the interface with air. Such be-
havior confirms that, in a grounded WM slab, the SD effects
may be suppressed only when the metamaterial is characterized
by extreme anisotropy, .

In summary, the inclusion of SD effects and ABC at the inter-
faces (air–WM slab and WM slab–ground plane) in the homog-
enization model for the WM slab with long vias and, mostly im-
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Fig. 12. Dispersion behavior of surface and leaky waves on WM slab with
highly dense short vias based on the ENG model. For a small period the ENG
model results for a proper real (bound) mode agree with those obtained by the
SD�ABC model shown in Fig. 10.

Fig. 13. Normalized magnitude of the microscopic current along the vias cal-
culated for the first proper real �� surface-wave mode with the dispersion
behavior shown in Fig. 8. The current profile is practically independent of fre-
quency. The discrete star-shaped symbols were calculated using the full-wave
simulator CST Microwave Studio [46].

portant, with short vias, is critical in order to accurately capture
the physics of surface waves and leaky waves. The ENG model
is applicable only in the case of highly dense vias structure,
where the WM slab acts as a material with extreme anisotropy.
The WM slab supports proper complex backward and improper
complex forward leaky waves (as predicted by the SD ABC
model). In general, the leaky waves predicted by the ENG model
do not describe correctly the dynamics of the leaky waves of
the actual WM slab, leading to the conclusion that the WM slab
cannot be modeled as an ENG material. Only in the case of WM
slab with highly dense vias the leaky-wave behavior predicted
by both the ENG and SD ABC models agrees (however, in this
case, the leaky mode is nonphysical due to a large attenuation
constant). It should be noted that a true ENG slab (in air) in gen-
eral can support physical backward and complex modes [47].

B. Surface Waves and Leaky Waves on Mushroom Structures

1) Mushroom Structures With Long Vias: In the first ex-
ample, the mushroom structure with long vias connected to the
patch array (with the geometry shown in Fig. 2) is studied for

Fig. 14. Dispersion behavior of �� surface-wave and leaky-wave modes on
mushroom structure with long vias based on the SD�ABC model. The modal
spectrum consists of proper real (bound), improper real, and proper complex
leaky-wave modes.

Fig. 15. Dispersion behavior of �� surface-wave and leaky-wave modes on
mushroom structure with long vias based on the ENG approximation model.

the following parameters: mm, mm, mm,
mm, and . The dispersion behavior of

surface-wave and leaky-wave modes obtained by the SD ABC
homogenization model is shown in Fig. 14, and compared with
the HFSS results (a good agreement is observed, especially for
the first surface-wave mode). The modal spectrum con-
sists of proper real (forward and backward), improper real, and
proper complex (leaky) backward modes. The imaginary part of
the complex modes is omitted here. The dispersion behavior of
the real and complex solutions will be explained in detail in the
example of a mushroom structure with short vias.

The results of surface-wave and leaky-wave behavior ob-
tained with the ENG approximation model are shown in Fig. 15.
It can be seen that, at very low frequencies, there is a good
agreement of the proper real and proper complex solutions
obtained with the two models (Figs. 14 and 15); however, with
the increase of frequency, the dispersion behavior becomes
different. It should be noted that, for this example with long
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Fig. 16. Dispersion behavior of the�� surface-wave and leaky-wave modes
on mushroom structure with short vias based on the SD�ABC model. At the
frequency corresponding to the left bound of the stopband for proper real modes,
backward radiation occurs associated with the leaky-wave cutoff of the proper
complex mode. HFSS results are also shown for comparison for the first proper
forward and proper backward real modes, indicating a good agreement with the
homogenization results.

vias, the inclusion of SD in the SD ABC homogenization
model is critical, and the ENG approximation model (which
does not consider the SD effects) fails as we approach the
plasma frequency of 92.13 GHz. In fact, for this example,
the current along the vias is nonuniform, and thus, in light of
previous considerations, the SD effects may be suppressed only
when the material is characterized by extreme anisotropy (i.e.,
for low frequencies).

2) Mushroom Structures With Short Vias: In the next ex-
ample, we consider a mushroom structure on a high-index
dielectric substrate with short vias (Fig. 2), characterized by
the following parameters: mm, mm, mm,

mm, and . The dispersion behavior of the
surface-wave and leaky-wave modes obtained with the

SD ABC homogenization model, including proper real and
proper complex solutions, is shown in Fig. 16. The natural
modes of the periodic mushroom HIS structure are defined
here as and to be consistent with the terminology
used in the dielectric slab waveguide (as the corresponding un-
perturbed structure). At low frequencies, the proper real
(bound) mode propagates primarily in the air region and weakly
interacts with the mushroom structure ( is close to
1). The mode propagates in the forward -direction (both
phase and group velocities are along the same -direction:

). There is also another proper real
mode, which is highly dispersive and strongly interacts with
the mushroom structure (the field is primarily concentrated
below the patches). This mode propagates in the backward

-direction (the phase velocity is positive and the group
velocity is negative: ). At the frequency of
9.11 GHz, the phase velocities of the forward and backward
modes become equal (the vertical slope of dispersion curves is
the same) and the propagation of proper real (bound) modes
stops, which corresponds to the left bound of the stopband
for the proper real modes. In Fig. 16, the proper real
forward mode is also shown, and the cutoff frequency

Fig. 17. Dispersion behavior of the�� surface-wave and leaky-wave modes
on mushroom structure with short vias based on the ENG approximation
model. A very good agreement is observed with the SD�ABC results shown
in Fig. 16, except for a narrow frequency range close to the plasma frequency
around 12 GHz, where the ENG approximation fails.

of that mode at approximately 12.78 GHz corresponds to the
right bound of the stopband for the proper real modes.
As was mentioned before, the analysis in this paper is limited
to the natural modes only since the modes do not
interact with vias and propagate as in the HIS structure without
vias (with the results presented in [23]–[25]). Of course, with
the waves considered, we can also define a stopband for
proper real and waves.

At the frequency of 9.11 GHz (where the propagation for
bound modes stops), backward radiation occurs associated with
the cutoff frequency of the proper complex leaky mode (de-
fined on the proper Riemann sheet in the complex -plane with
the field decaying in the -direction as , )
[22], [48]. It should be noted that backward radiation appears
within the stopband of proper real modes (Fig. 16); how-
ever, it can continue outside of the stopband for and
modes (not shown here). The physical radiation also occurs
when the proper complex mode enters a fast-wave regime when

and the imaginary part of the propagation
constant (as attenuation constant) is small in comparison to the
values of the real part (the results for the imaginary part will be
shown later in this section).

This example of the mushroom structure with short vias has
been also studied using the local homogenization model (ENG
approximation), and the results for surface-wave and
leaky-wave propagation are shown in Fig. 17. An important ob-
servation is that the results of the two homogenization models
(proper and improper, real and complex solutions) shown in
Figs. 16 and 17 agree very well in a wide frequency range,
except for a very narrow band in the vicinity of the plasma
frequency around 12 GHz, where the ENG approximation
fails (due to the singularity in (8) where ). This is
reflected in Fig. 17 as fictitious higher order modes (proper
real and proper complex). In practice, these spurious solutions
may be significantly damped by introducing a small loss in the
permittivity of the host material .
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Fig. 18. Normalized magnitude of the microscopic current along the vias calcu-
lated for the proper real forward (solid lines) and proper real backward (dashed
lines)�� surface-wave modes with the dispersion behavior shown in Fig. 16.
The current is practically uniform.

In order to have a better understanding of such agreement
in the results given by the nonlocal and local homogenization
models, the behavior of the current along the vias has been
studied. The microscopic current along a generic via is calcu-
lated in terms of the averaged (macroscopic) electric and mag-
netic fields of the mushroom structure based on the SD ABC
model as (21), and the results for the current normalized mag-
nitude are shown in Fig. 18. The current is calculated at several
frequencies for proper forward and proper backward sur-
face wave modes with the dispersion behavior shown in Fig. 16.
It can be seen that the current is very much uniform for both
proper real modes at different frequencies (even at the frequency
of 9.1 GHz very close to the left bound of the first stopband
of modes), showing a distinctively different behavior as
compared to the WM slab (Fig. 13). This observation in the
current behavior leads to the conclusion that, in the mushroom
HIS structures with short vias, the SD effects may be signifi-
cantly reduced by connecting the metallic patches to the vias.
The physics of reduction of SD can be explained as follows.
When the metallic patches are considerably larger than the di-
ameter of the metallic vias, the electric charges will no longer
accumulate on the tips of the vias, but spread over the metallic
patches. Therefore, in electrically thin WM substrates with vias
connected to the ground and the metallic patches, the charge
density along the vias is approximately zero, resulting in nearly
uniform currents along the vias. This is because the electromag-
netic fields are nearly uniform along the direction of the wires,
and thus the spectral amplitude of the fields (in the Fourier do-
main) has a peak at , for which the nonlocal dielectric
function is coincident with the ENG model. Of course, this ap-
plies only to short vias, and in the case of long vias, the results
by the SD ABC model and the ENG approximation shown in
Figs. 14 and 15 are different (especially at higher frequencies).
In the case of short vias with uniform current, the ENG model of
the WM slab (and consequently the mushroom-type HIS struc-
tures) is adequate to model the physics of surface-wave propa-
gation, and the WM slab can be regarded as an uniaxial ENG
material.

An important observation concerns the transition from the
backward to forward radiation associated with proper complex
and improper complex leaky-wave modes. In Fig. 16, it can be
seen that the propagation constant of the proper complex mode

Fig. 19. Dispersion behavior of �� surface-wave and leaky-wave modes in
the mushroom structure with short vias, showing a transition from the proper
complex to improper complex leaky-wave modes associated with backward and
forward radiation, respectively. (a) Real part of the normalized propagation con-
stant. (b) Imaginary part of the normalized propagation constant.

approaches zero at the plasma frequency of 12.14 GHz. In fact,
this is consistent with the modal classification in metamaterial
slabs [49] such that an ENG slab (a double-negative slab as well)
supports proper complex modes, whereas -negative and
double-positive slabs support improper complex modes.

By increasing frequency above the plasma frequency, the
proper complex mode becomes an improper complex mode, as
is shown in Fig. 19. In general, we have poles of the complex
modes defined in four quadrants of the complex propagation
constant plane, and the results of the dispersion behavior in
Fig. 19 are related to the pole dynamics in the complex -plane
(it should be noted that only two poles, which originate in the
spectral gap region with at 9.11 GHz, are
considered here). The proper complex leaky backward mode
as a physical solution (exponentially decaying along the propa-
gation direction) is defined in the first quadrant of the complex

-plane such that [22], [48], and
it propagates in the -direction (with positive phase velocity
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due to and negative group velocity due to
the negative slope of the dispersion curve). There is also a
nonphysical proper complex mode (exponentially growing
along the propagation direction), which is defined in the fourth
quadrant of the complex -plane, as a complex conjugate of
the physical solution such that . A
more general definition of physical and nonphysical solutions
is determined by an excitation problem where the radiated field
is obtained either by spectral or nonspectral representations
[49] such that the physical leaky-wave poles contribute to
the radiated field (calculated as an integral along the steepest
descent path).

As the physical proper complex mode shown in Fig. 19
enters its fast-wave regime , it radiates
in free space in the -direction in the sense of a leaky-wave
backward radiation in the frequency range where
is relatively small in comparison with (for large
values of , the wave attenuates and does not radiate).
At the plasma frequency, both and
are equal to zero (with the vertical slope of the dispersion
curve), which corresponds to the open-stopband null point of
the proper complex solutions (physical and nonphysical). At
the open-stopband point, the attenuation constant of the leaky
mode drops to zero, as it can be also observed in 1-D printed
leaky-wave antennas [50] and 2-D printed periodic structures
[22], which results in the absense of radiation. However, an
excitation problem should be solved to understand the radiation
mechanism in this case.

As the frequency is increased above the plasma frequency, the
proper complex poles cross the Sommerfeld branch cut so that
the physical pole from the first quadrant migrates to the second
quadrant as the improper complex leaky forward physical mode
(defined on the improper Riemann sheet), and the nonphysical
pole from the fourth quadrant migrates to the first quadrant as
the nonphysical improper complex mode (also defined on the
improper Riemann sheet). As the physical improper complex
mode enters the fast wave regime ( ),
it radiates in free space in the -direction (in contrast to a
proper complex mode, which radiates in the -direction), but
is understood in the sense of a forward leaky wave because both
the phase and group velocities are negative (as can be seen in
Fig. 19). At the frequency of 16.23 GHz, the physical and non-
physical improper complex modes are below cutoff turning to
improper real solutions.

Regarding the nonphysical solutions, it should be noted
that the slope of the dispersion curves changes from back-
ward to forward in contrast to the same negative slope in the
physical proper complex and improper complex solutions [see
Fig. 19(a)]. Also, in order to understand which branch to follow
(physical or nonphysical) at leaky-wave cutoff frequencies,
small losses were introduced in the permittivity of the host
material. It is observed that starting at low frequencies, a proper
real forward mode follows a nonphysical branch and the proper
real backward mode turns to the physical proper complex mode.
However, at higher frequencies above 20 GHz (not shown here),
a nonphysical improper mode eventually will turn to a physical
proper real higher order forward mode (after passing the cutoff
frequency at by crossing the Sommerfeld

branch cut). This means that there is a very large “spectral
gap” frequency region [48] between two physical proper real
forward modes, connected by a nonphysical solution.

The current behavior has also been studied for proper com-
plex and improper complex modes (not shown here). It is ob-
served that for both complex modes, the current is nearly uni-
form over the frequency regimes of these modes (Fig. 19), and at
the plasma frequency, the normalized magnitude along the vias
is equal to 1.

V. CONCLUSIONS

A nonlocal (SD ABC) homogenization model has been
proposed for the characterization of the spectrum of natural

surface-wave and leaky-wave modes on mushroom-type
HIS structures. The mushroom structures are modeled as a WM
slab attached to a metallic grid (a patch array). In this regard, the
analysis of surface-wave and leaky-wave propagation on WM
slabs (with no metallic grid) by the local (ENG approximation)
and nonlocal (SD ABC) homogenization models is essential for
the understanding of modal properties of mushroom structures.
It is shown that the inclusion of SD effects in the homogenization
model of the WM slab is critical in order to accurately capture the
physics of surface-wave and leaky-wave propagation, whereas
the ENG approximation fails not only for the WM slab with
long vias, but also with short vias, except in the regime where
the WM behaves as a material with extreme anisotropy (i.e.,
for very low frequencies or when the wires are very densely
packed). It is shown that WM slabs may support proper complex
backward and improper complex forward leaky waves, and that
the ENG approximation does not predict correctly the behavior
of leaky waves. Only in the case of a WM slab with highly
dense vias the ENG model gives correct results for leaky waves
(which agree with the SD ABC model; however, these modes
are nonphysical due to large attenuation constant). Based on
the understanding of surface-wave and leaky-wave behavior
on WM slabs, surface-wave and leaky-wave characteristics
have been studied in mushroom-type HIS structures with long
and short vias. An interesting observation is that, in the case
of mushroom structures with short vias, the results of the
SD ABC model and the ENG approximation agree very well
for surface-wave and leaky-wave modes, except for a narrow
frequency range close to the plasma frequency, where the ENG
approximation fails. The agreement in the results of nonlocal
and local homogenization models is due to the significant
reduction of SD effects in the WM slab, justified by the
presence of metallic grid attached to the vias, resulting in
the nearly uniform current along the vias.

There are also several important observations regarding the
modal spectrum of mushroom structures. In particular, it is
shown that the modal spectrum includes proper real forward and
backward modes and proper complex and improper complex
modes. A stopband of proper real modes at low frequencies
is due to occurrence of a backward proper complex
leaky wave associated with the WM slab and capacitive grid.
The transition of proper complex modes to improper complex
modes occurs at the plasma frequency, associated with back-
ward and forward leaky-wave radiation.
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