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In this work, we investigate the influence of the plasmonic properties of metal and the effect of metal loss
in the effective-medium properties of wire media formed by an array of connected rods at infrared frequencies.
Using homogenization techniques, it is demonstrated that the plasmonic properties of metals may enable the
design of artificial plasmas that mimic more closely the behavior of a continuous isotropic medium with
negative permittivity. It is shown that when the plasmonic properties of the metal are dominant, the electrical
length of the unit cell may be a very small fraction of the operating wavelength near the plasma frequency of
the wire medium and that the spatial dispersion effects may be relatively weak. In addition, we investigate the
possibility operating the artificial plasma in the regime Re���=−1 to obtain a superlensing effect at infrared
frequencies analogous to that characteristic of the silver lens.
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I. INTRODUCTION

Materials with the real part of the permittivity negative or
near zero have raised significant interest in recent works.
These materials may play an important role in applications
such as near-field imaging,1–3 realization of double negative
media,4 tunneling through narrow channels,5 and novel
nanocircuits.6 Even though at some very specific infrared and
optical frequencies materials with the desired properties may
be readily available in nature �e.g., noble metals at optical or
UV frequencies�, in general these materials need to be as-
sembled in the form of “metamaterials:” composite struc-
tures formed by dielectric or metallic inclusions whose ge-
ometry and material parameters determine the macroscopic
electromagnetic response. A typical configuration for artifi-
cial media with negative permittivity consists of a periodic
lattice formed by thin metallic wires. This structure has been
known at least since the 1950s �Refs. 7 and 8� and has been
rediscovered and brought into a new light in Ref. 9. It was
revisited in several more recent works,10–15 which have em-
phasized the role of spatial dispersion in wire metamaterials
and how it may affect and modify the material response in
comparison to a local material. Even though such wire
metamaterials have been successfully used in several prob-
lems, to our knowledge up to now there is no conclusive
evidence that such artificial plasmas may support localized
modes that truly mimic the properties of “surface plasmons”
in metals. These localized modes are arguably the most in-
teresting feature of materials with negative permittivity since
they may enable the realization of extremely compact
waveguides and resonators and phenomena such as
superlensing1,2 and artificial magnetism.16 Indeed, it was
shown in Ref. 13 that for a medium formed by perfectly
electric conducting �PEC� wires the guided mode at an inter-
face between the artificial plasma and air is very weakly
bounded to the interface in the regime Re���=−1, very dif-
ferent from what happens in a bulk metal. The two main
reasons for this property are �i� the granularity of the struc-
tured material and �ii� spatial dispersion effects.

The granularity effect stems from the relatively large elec-
trical length of the lattice constant of the wire medium at the

plasma frequency, usually something like a�0.2�0. Typi-
cally, homogenization is valid only if �a /c�� and ka��,
where � is the radian frequency, c is the speed of light, and
k is the wave number in the material. The surface plasmons
at an interface between a metal and a dielectric may be as-
sociated with large values of k : kc /��1. It is clear that the
conditions kc /��1 and ka�� cannot be simultaneously
verified if the lattice constant is large as a�0.2�0 at the
frequency of interest, which justifies the results in Ref. 13.
Moreover, as long as the metal conductivity is very large
�e.g., at microwaves�, the relatively large values of a /�0 at
the plasma frequency seem to be the characteristic of wire
media and set a fundamental limitation in the properties of
the structured material.

The second reason for the very different behavior of sur-
face modes in artificial plasmas as compared to bulk metals
is spatial dispersion. As proven in Ref. 12, the main effect of
spatial dispersion in systems formed by connected metallic
wires is that they support a dispersive longitudinal mode.
Indeed, very differently from a local continuous material for
which a longitudinal mode is forbidden with the exception of
the plasma frequency, in a wire metamaterial the longitudinal
mode may be supported in a relatively wide range of fre-
quencies above the plasma frequency.12,13 As a consequence,
the longitudinal mode may be excited and significantly affect
the propagation characteristics of surface modes and the
electromagnetic response of the structured material. For ex-
ample, it is known that spatial dispersion effects may influ-
ence the quality of near-field imaging.17 In a recent work,15 it
was shown that spatial dispersion effects in wire media may
be tamed either by increasing the capacitance of the wires or
by coating the wires with a magnetic material.

In this work, we show a completely different possibility to
drastically reduce both the effect of spatial dispersion and the
size of the lattice constant a at the plasma frequency. Using
homogenization techniques, we demonstrate that in the infra-
red domain the constraints on the wire medium properties are
much less strict than in the microwave domain and that it
may be possible to take advantage of the plasmonic proper-
ties of noble metals to obtain a structured material that mim-
ics more closely the properties of a local isotropic plasma.
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The geometry of the wire medium considered here is analo-
gous to that of our previous work12 and is reported in Fig. 1.
However, unlike previous works related to this inclusion
topology,12–15 here we fully take into account the plasmonic
properties and the metallic loss in the wires. These effects
were also considered in Refs. 18 and 19, however such stud-
ies dealt exclusively with arrays of parallel rods. It is impor-
tant to note that it is impossible to predict the propagation
properties of the longitudinal mode supported by the struc-
ture of Fig. 1 from the results of these previous studies. Here,
we derive the dielectric function of the artificial plasma de-
picted in Fig. 1, fully taking into account the plasmonic and
loss effects in the metallic rods, and discuss the possibility of
using such material to obtain near-field imaging.

This paper is organized as follows. In Sec. II, we briefly
review the homogenization approach introduced in Ref. 20.
In Sec. III, before considering the more demanding geometry
of Fig. 1, we use the homogenization technique to character-
ize the dielectric function of an array of parallel wires. The
advantage of making this small detour is that it permits to
illustrate the application of the homogenization method to a
very simple system. In Sec. IV, we tackle the more difficult
homogenization problem of connected wires �Fig. 1� and cal-
culate its dielectric function using analytical techniques. In
Sec. V, the plane-wave solutions supported by the bulk arti-
ficial plasma are characterized. It is shown that the waves
can be classified into transverse and longitudinal modes. The
influence of plasmonic properties and loss in the metallic
wires are thoroughly discussed. In Sec. VI, the homogeniza-
tion model is applied to calculate the transfer function of a
thin material slab in the regime Re��t�=−1, and the results
are validated with full wave simulations. The possibility of
near-field imaging is discussed. In Sec. VII, we study the
frequency response of the artificial material slab and in par-
ticular investigate the existence of oscillations in the trans-
mission characteristic above the plasma frequency. Finally,
in Sec. VIII the conclusion is drawn. In this work, it is as-
sumed that the electromagnetic fields have a time variation in
the form ej�t, where j=�−1.

II. HOMOGENIZATION METHOD

To calculate the dielectric function of the wire medium we
will use the homogenization technique introduced in our pre-
vious works.20–22 The method in Ref. 20 is completely gen-

eral and allows us to homogenize a structured material
formed by arbitrarily shaped dielectric or metallic inclusions
using a nonlocal dielectric function of the form �� =�� �� ,k�.
Notice that the effective dielectric function may depend on
the wave vector k= �kx ,ky ,kz�, as a consequence of possible
spatial dispersion effects.23,24 Simply put, the idea to extract
the effective parameters is to excite the metamaterial with a
suitable periodic source distribution and then to calculate
�� �� ,k� from the average �macroscopic� electromagnetic
fields and the generalized polarization vector. For further de-
tails the reader is referred to Ref. 20.

Here, we will consider the particular case in which the
structured material is formed by inclusions that can be de-
scribed to some approximation by an impedance boundary
condition such that

Etan = ZsJs at � D , �1�

where �D is the boundary surface of the inclusion, Etan is the
tangential electric field, Js= �̂�H is the surface density of
current, �̂ is the unit normal vector oriented to the exterior of
the inclusion, and Zs is the surface impedance. For example,
a perfectly conducting inclusion can be described by the sur-
face impedance Zs=0. As will be discussed below, thin me-
tallic wires may be accurately characterized using a surface
impedance model.

Following the same steps as in Ref. 20 and solving the
homogenization problem using the method of moments
�MoM�, it may be proven that the effective dielectric func-
tion of a periodic material formed by arbitrarily shaped in-
clusions standing in air and characterized by the surface im-
pedance Zs is given by

��

�0
��,k� = I� +

1

Vcell
�
m,n

�m,n�	
�D

wm,k�r�e+jk·rds

� �	

�D

wn,−k�r�e−jk·rds
 , �2a�

�m,n = 	
�D
	

�D

��s · wm,−k�r��s� · wn,k�r��

− ��/c�2wm,−k�r� · wn,k�r���	p0�rr�;�,k�dsds�

+ j��0Zs	
�D

wm,−k�r� · wn,k�r�ds , �2b�

where I� is the identity dyadic, Vcell is the volume of the unit
cell, w1,w2 , . . . form a complete set of tangential vector fields
over �D, and 	p0 is Green’s function introduced in Ref. 20.
In the above, �s · stands for the surface divergence of a tan-
gential vector field and the matrix ��m,n� is the inverse of
��m,n�. As explained in Ref. 20, the expansion functions must
have the Floquet-Bloch property when the inclusions inter-
sect the boundaries of the unit cell. Due to this reason, in
general the expansion functions depend explicitly on the
wave vector k, i.e., wn=wn,k�r�.

The interaction of electromagnetic waves with a thin me-
tallic wire characterized by the relative complex permittivity
�m with Re��m��0 may be described to a good approxima-
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FIG. 1. Geometry of a triple array of connected metallic wires:
�a� Sample of the periodic material. �b� Unit cell. The radius of the
rods is R and the lattice constant is a.
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tion using a surface impedance model. The equivalent sur-
face impedance is given by

Zs =
2

j��0��m − 1�R
, �3�

where R is the radius of the wire. The above formula is
obtained as follows. The volumetric density of current in-
duced in a metallic wire is given by Jd= j��0��m−1�E. As-
suming that Jd is approximately constant in the wire cross
section, the total current that flows along the wire is I
= j��0��m−1�Ez�R2, where Ez is the electric field compo-
nent along the wire axis �let us say the z axis�. In case the
same metallic wire can be described to some approximation
by surface impedance model �1�, the current is given by I
=2�REz /Zs. By comparing the two formulas for the current,
it is readily found that the surface impedance must verify Eq.
�3�. The surface impedance model is expected to be accurate
as long as the wires are very thin �R��0� and Re��m��0 so
that it makes no significant difference to assume that the
current is uniformly distributed along the cross section or
that it flows exclusively on the surface of the wire. The con-
dition Re��m��0 is verified by noble metals at infrared fre-
quencies and below. Substituting Eq. �3� into Eq. �2b�, it is
found that �m,n can be written as

�m,n = 	
�D
	

�D

��s · wm,−k�r��s� · wn,k�r��

− ��/c�2wm,−k�r� · wn,k�r���	p0�rr�;�,k�dsds�

+
2

��m − 1�R	�D

wm,−k�r� · wn,k�r�ds . �4�

III. DIELECTRIC FUNCTION OF AN ARRAY OF
PARALLEL WIRES

Before considering the homogenization of the structure
formed by connected wires �Fig. 1�, it is useful to consider
the simpler case in which all the wires are parallel and ori-
ented along the z axis. This will enable us to illustrate the
homogenization methods that will be used to characterize the
connected wire medium, without having to lose too much
time with lengthy mathematical details. It is assumed that the
array of parallel wires is arranged in a square lattice with
lattice constant a, and that the electromagnetic response of a
metallic wire can be modeled by surface impedance model
�3�.

The effective dielectric function �� of the wire medium can
be rigorously calculated by considering a complete set of
expansion functions wn,k. However, our objective here is to
derive an approximate formula for the dielectric function
valid in the long-wavelength limit. To begin with, it is con-
venient to remember that wn,k are the expansion functions
for the density of current induced on the wires when the
electromagnetic crystal is excited by an external source with
the Floquet-Bloch property.20 Thus, the induced current, and
consequently the expansion functions, are also Floquet-k pe-
riodic. Since the wires are very thin, R�a, it can be assumed

that the equivalent surface current is uniform in the cross
section of the wires and flows exclusively along the axes of
the rods. Thus, since the structure is invariant to translations
along the z direction, it follows that one single expansion
function is sufficient to describe the behavior of the induced
density of current,

w1,k�r� =
e−jk·r

2�R
ûz, �5�

where ûz represents a unit vector directed along the z direc-
tion. Substituting this formula in Eq. �2a�, it is readily found
that

��

�0
��,k� = I� +

1

a

1

�11��,k�
ûzûz, �6�

where ûzûz� ûz � ûz represents the dyadic �tensor� product
of the two vectors, �11�� ,k� is calculated using Eq. �4�, and
is given by

�11 = �kz
2 −

�2

c2 
 1

�2�R�2	
�D
	

�D

ejk·�r−r��	p0�rr�;�,k�dsds�

+
1

��m − 1�
a

�R2 , �7�

and �D= ��x ,y ,z� :x2+y2
R2 and z
a /2� represents the
surface of the plasmonic wire in the unit cell. Hence, the
dielectric function can be written as

��

�0
��,k� = I� +

1

1

��m − 1�
1

fV
+

1

�p
2�kz

2 −
�2

c2 
 ûzûz, �8�

where fV=�R2 /a2 is the volume fraction of the wires, and �p
is defined by

1

�p
2 =

a

�2�R�2	
�D
	

�D

ejk.�r−r��	p0�rr�;�,k�dsds�. �9�

Green’s function 	p0 has the following plane-wave expan-
sion:20

	p0 =
1

Vcell
�
J�0

e−jkJ·�r−r��

kJ · kJ − ��/c�2 �
e−jk·�r−r��

Vcell
�
J�0

e−jkJ
0·�r−r��

kJ
0 · kJ

0 ,

�10�

where J= �j1 , j2 , j3� is a generic triple index of integers, kJ
=k+kJ

0, and kJ
0= �j1 , j2 , j3�2� /a is a reciprocal-lattice vector.

The second identity is valid in the long-wavelength limit,
� /c�� /a and k�� /a, and is assumed in the following.
Substituting Eq. �10� into Eq. �9�, and performing the inte-
grations analytically it may be shown that

1

�p
2 = � a

2�

2

�
�m,n���0,0�

�J0�2�R

a
�m2 + n2
�2

m2 + n2 , �11�

where m and n are generic integers, and J0 is the Bessel
function of first kind and order zero. Following the results in
Ref. 12, �p can be identified with the plasma wave number
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for an array of parallel PEC wires. It may be verified that the
above formula is in very good agreement with the result
obtained in Ref. 11

��pa�2 =
2�

ln� a

2�R

 + 0.5275

. �12�

Formula �8� gives the dielectric function of the array of
parallel plasmonic wires, and is completely consistent with
the formula derived in our earlier work18 using a more com-
plicated local-field approach �see also Ref. 19�. In fact, it is
remarkable how using the general homogenization theory
proposed in Ref. 20, it was possible to characterize the ef-
fective properties of the wire medium in a very straightfor-
ward manner. Moreover, the fact that we obtained the exact
same result as in Ref. 18 supports that surface impedance
model �3� can be used to accurately characterize the plas-
monic properties of the metallic wires.

As described in Ref. 18, the dielectric function of the
composite material depends strongly on the wave vector
component kz, and consequently it is characterized by strong
spatial dispersion. For a detailed discussion of the electrody-
namics of such wire medium the reader is referred to Ref. 18.

IV. DIELECTRIC FUNCTION OF THE CONNECTED
WIRE MEDIUM

The dielectric function of the connected medium can be
calculated following a strategy similar to that used in Sec.
III, adapting also some ideas of our previous work.12 It is
clear that the homogenization of the connected wire medium
requires additional expansion functions for the electric cur-
rent because in the geometry of Fig. 1, the wires are directed
along the x, y, and z directions. It is convenient to decom-
pose the surface of the wires contained in the unit cell as
follows:

�D = �
i

� Di, �13�

where �Di represents the surface of the wire directed along
the i direction, being i=1,2 ,3=x ,y ,z. Using the same argu-
ments as in Sec. III, the expansion functions are now taken
equal to wn,k=wn,k

I , with n=1,2 ,3, where wn,k
I are such that

wn,k
I �Di

=
e−jk·r

2�R
ûn�n,i, �14�

where �n,i represents the Kronecker’s symbol: �n,i=1 if n= i,
and �n,i=0 otherwise. Hence, the expansion function wn,k

I

models a current that flows exclusively along the metallic
wire directed along the n direction �n=1,2 ,3=x ,y ,z�. As
discussed in Ref. 12, the set of expansion functions wn,k

I is
insufficient to characterize the current that flows along the
wires. Indeed, since the wires are connected, the electric cur-
rent along a given wire may be discontinuous at the junction
because part of the current may be redirected through an-
other orthogonal wire. In order to take into account the mu-
tual coupling between orthogonal wires it is necessary to

consider two additional expansion functions:12 wn�,k
II with

n�=1,2. The expansion functions wn�,k
II are such that

wn�,k
II �Di

=
e−jk·r

2�R
s�xi��n� · ûiûi �i = 1,2,3� , �15�

where �n� �n�=1,2� is a constant vector defined below, xi

=r · ûi is the space coordinate along the i direction, and s�x�
is the “saw” function introduced in Ref. 12. It is defined by

s�x� =
1

2
−

x

a
, 0 
 x 
 a , �16�

and it is periodically extended to the real line with period a.
In particular, the “saw” function is discontinuous at points of
the form x=ma with m=0, 1, . . ., with a step discontinuity
equal to �s�=s�0+�−s�0−�=1. Hence, it is clear that the ex-
pansion functions wn�,k

II are also discontinuous at the junction
point in the unit cell �r=0�. As discussed in Ref. 12, since
there is no charge stored at the wire junction, the expansion
functions need to ensure that the total current that arrives at
the junction is equal to the total current that emerges from
the junction �i.e., Kirchoff’s current law�. It is simple to
verify that this condition is obeyed provided �n� is such that

�n� · �3 = 0, n� = 1,2, where �3 =
1
�3

�1,1,1� .

�17�

For convenience, it is supposed that �1 and �2 are orthogo-
nal and have unity norm. Thus, they verify

�n · �m = �n,m, n,m = 1,2,3, �18�

where �3 is defined as in Eq. �17�. We will not assume any
explicit form for �1 and �2 since the dielectric function of
the wire medium will be independent of the specific choice
of �1 and �2.

We will calculate the dielectric function of the connected
wire medium, assuming that the five expansion functions
wn,k

I �n=1,2 ,3� and wn�,k
II �n�=1,2� are sufficient to model

the density of current induced in the metallic wires. Using
Eq. �2� it is simple to verify that within this hypothesis the
dielectric function is given by

��

�0
��,k� = I� +

1

a
�

m,n=1

3

��I,I�m,nûmûn, �19�

where ��I,I�m,n represents the �m ,n� element of the 3�3 ma-
trix �I,I defined next. Let � be the 5�5 matrix such that

� = ��I,I �I,II

�II,I �II,II
� , �20�

where the submatrices �I,I, �I,II, �II,I, and �II,II have dimen-
sions 3�3, 3�2, 2�3, and 2�2, respectively, and are de-
fined consistently with Eq. �4�. For example, a generic ele-
ment of the matrix �I,II is given by
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��I,II�m,n� = 	
�D
	

�D

��s · wm,−k
I �r��s� · wn�,k

II �r��

− ��/c�2wm,−k
I �r� · wn�,k

II �r���	p0�rr�;�,k�dsds�

+
2

��m − 1�R	�D

wm,−k
I �r� · wn�,k

II �r�ds . �21�

The inverse of � is decomposed as follows:

�−1 = ��I,I �I,II

�II,I �II,II� , �22�

where the submatrices �I,I, �I,II, �II,I, and �II,II have dimen-
sions 3�3, 3�2, 2�3, and 2�2, respectively. Thus, the
submatrix �I,I which determines the dielectric function of the
connected wire medium in Eq. �19� is such that

�I,I = ��I,I − �I,II · �II,II
−1 · �II,I�−1. �23�

Hence, it is clear that Eq. �19� implies that

��

�0
��,k� = I� +

1

a
��I,I − �I,II · �II,II

−1 · �II,I�−1. �24�

Therefore, the dielectric function of the material can be com-
pletely characterized by the submatrices �I,I, �I,II, �II,I, and
�II,II. The evaluation of these matrices is rather tedious, but
the calculations are rather similar to the ones of our previous
paper,12 and thus we will only present the final result. De-
tailed calculations show that

��I,I�m,n =
1

a

1

�1
2�kmkn −

�2

c2 �m,n
 +
1

a
� 1

�m − 1

1

fV

+ � 1

�p
2 −

1

�1
2
�km

2 −
�2

c2 
��m,n, �25a�

��II,II�m�,n� = �1

a

1

�m − 1

1

fV

1

12
+

1

a3� 1

�p
2 −

1

�1
2
��m�,n�

+
1

a�2
2�m� · �

l=1

3 �kl
2 −

�2

c2 
ûlûl · �n�, �25b�

��I,II�m,n� =
− jkm

a2 � 1

�p
2 −

1

�1
2
ûm · �n�, �25c�

and �II,I=−�I,II
T , where “T” denotes the transpose matrix.

The formulas are exact within the approximation
	p0�r r� ;� ,k��	p0�r r� ;�=0,k=0�e−jk·�r−r�� �see form-
ula �10��, which was used to evaluate the pertinent integrals.
In the above, fV=�R2 /a2 is the volume fraction of the set of
rods oriented along a fixed direction of space �e.g., the z
direction�, km=k · ûm is the component of the wave vector
along the ûm direction, and �1 and �2 are constants �with
unities of wave number� that only depend on the geometry of
the structured material. The constant �1 is such that12

1

�1
2 = 2� a

2�

2

�
l=1

� �J0�2�R

a
l
�2

l2 , �26�

and the constant �2 is

1

�2
2 =

1

�
� a

2�

2

�
m,n=−�

�

Q��m2 + n2��J0�2�R

a
�m2 + n2
�2

,

�27a�

where the auxiliary function Q�x� is defined by

Q�x� = �
l=1

�
1

l2 + x2

1

l2 =
3 + x2�2 − 3�x coth��x�

6x4 .

�27b�

The dielectric function of the wire medium can now be
obtained by substituting Eq. �25� into Eq. �24�. In order to be
consistent with the approximation used in the evaluation of
the submatrices �Eq. �10��, the matrix �I,I−�I,II ·�II,II

−1 ·�II,I
should be calculated by retaining only the powers of � or km
�m=1,2 ,3� of order up to two. Since �I,II is o�k�, this im-
plies that we can consider the following approximation in
Eq. �25b�:

��II,II�m�,n� � �1

a

1

�m − 1

1

fV

1

12
+

1

a3� 1

�p
2 −

1

�1
2
��m�,n�,

�28�

so that the submatrix �II,II becomes diagonal. It is now
straightforward to find that the dielectric function verifies

ûm · � ��

�0
− I�
−1

· ûn =
1

�1
2�kmkn −

�2

c2 �m,n
 + � 1

�m − 1

1

fV

+ � 1

�p
2 −

1

�1
2
�km

2 −
�2

c2 
��m,n

−
1

A

1

a3� 1

�p
2 −

1

�1
2
2�km

2 �m,n −
1

3
kmkn
 ,

�29a�

A =
1

a

1

�m − 1

1

fV

1

12
+

1

a3� 1

�p
2 −

1

�1
2
 , �29b�

where m ,n=1,2 ,3, and �m,n is the Kronecker’s � symbol.
The permittivity dyadic �� can now be obtained by calculating

the inverse of the dyadic ��� /�0−I��−1, but the resulting ex-
pression is too cumbersome to show here. It is, however,
possible to obtain an elegant solution for �� when the term
1 / �12a��m−1�fV� in Eq. �29b� is negligible as compared to
the second term. It is shown in Appendix A that this simpli-
fication is very accurate at least for frequencies below the
effective plasma frequency �p,eff �to be defined rigorously
later� of the structured material. Under this approximation it
is possible to rewrite Eq. �29a� as follows:
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� ��

�0
− I�
−1

= I�� 1

�m − 1

1

fV
−

�2

�p
2c2
 +

kk

3
� 1

�p
2 +

2

�1
2


�30�

or equivalently, calculating the inverse of the dyadic, it is
found that

��

�0
= I� +

1

1

�m − 1

1

fV
−

�2

�p
2c2 �I� −

kk

k2 + l0� �p
2

�m − 1

1

fV
−

�2

c2 
� ,

�31a�

l0 =
3

1 + 2�p
2/�1

2 , �31b�

where k2=k ·k and kk�k � k represents the dyadic �tensor�
product of the two vectors. The above result is the generali-
zation to plasmonic rods of the dielectric function obtained
in Ref. 12 for PEC rods using a less systematic approach. It
may be readily verified that in case of PEC rods, i.e., when
�m=−�, the dielectric function reduces to the one derived in
our earlier paper.12 In Sec. V, we will discuss in detail the
physics predicted by the homogenization model. In Secs. VI
and VII, the theoretical model will be validated with full
wave numerical simulations.

V. PLANE-WAVE SOLUTIONS

In order to characterize the plane-wave solutions in the
homogenized wire medium, it is convenient to rewrite Eq.
�31� in terms of transverse and longitudinal components,

��

�0
= �t����I� −

kk

k2 
 + �l��,k�
kk

k2 , �32a�

where

�t��� = 1 +
1

1

�m − 1

1

fV
−

�2

�p
2c2

, �32b�

�l��,k� = 1 +
1

k2

l0�p
2 + � 1

�m − 1

1

fV
−

�2

�p
2c2
 . �32c�

Decomposition �32a� is characteristic of isotropic spatially
dispersive materials with a center of symmetry.24 The prop-
erty �t��l confirms the nonlocal response of the artificial
plasma. It is straightforward to verify that Eq. �32a� implies
that the plane-wave solutions supported by the material can
be classified into transverse modes �with polarization perpen-
dicular to the wave vector k� and a longitudinal mode �with
polarization parallel to the wave vector k�. The effective per-
mittivity seen by the transverse modes is �t���, whereas the
permittivity seen by the longitudinal mode is �l�� ,k�. Notice
that unlike �t, the longitudinal component �l depends on the
wave vector. The dispersion characteristic of the transverse
modes is given by

k2 = �t���
�2

c2 �transverse modes� , �33�

whereas the dispersion characteristic of the longitudinal
mode is

�l��,k� = 0 �longitudinal mode� . �34�

Solving the dispersion characteristic of the longitudinal
mode with respect to k, it may also be written as

k2 = l0��2

c2 − �p
2 −

�p
2

�m − 1

1

fV

 �longitudinal mode� .

�35�

One should keep in mind that the parameters l0 and �p de-
pend exclusively on the geometrical parameters of the lattice,
whereas the permittivity of the plasmonic rods depends on
frequency: �m=�m���. It is particularly interesting to analyze
the case where the metal follows a Drude dispersion model
with

�m = 1 −
�m

2

��� − j��
, �36�

where �m is the plasma frequency and � is the damping
frequency. This dispersion model will be assumed in the rest
of this work, and may describe accurately the properties of
noble metals in the infrared domain.25 Substituting Eq. �36�
into Eq. �32b�, it is readily found that the effective permit-
tivity seen by the transverse modes also follows a Drude
dispersion model,

�t��� = 1 −
�p,eff

2

��� − j�eff�
, �37a�

where the effective plasma frequency, �p,eff, and the effective
damping frequency, �eff, are given by

1

�p,eff
2 =

1

�m
2 fV

+
1

�p
2c2 , �37b�

�eff

�p,eff
=

�

�m

1
�fV

1

�1 +
�m

2 fV

�p
2c2

. �37c�

The effective plasma frequency �p,eff depends both on the
plasma frequency of the bulk metal as well as on the geo-
metrical parameters of the lattice. Typically, �p,eff is much
lower than the plasma frequency of the bulk metal �m, which
reflects the fact that nanostructuring may yield a more trans-
parent material.26 There are two interesting limit cases. The
first case corresponds to 1

�m�fV
�

1
�pc , or equivalently to c

�mR

�
��
�pa . Since at terahertz and infrared frequencies the skin

depth of noble metals is such that �s�c /�m, the first case is
equivalent to

�s

R �
��
�pa , which implies that �s /R�1, i.e., the

skin depth of the metal is much less than the radius of the
rods, because typical values of the parameter �p are such that

MÁRIO G. SILVEIRINHA PHYSICAL REVIEW B 79, 035118 �2009�

035118-6



1.0 
 �pa 
 2.0 �for 5 � 10−4 
 R/a 
 0.06� . �38�

In these circumstances the effective plasma frequency of the
material is given by �p,eff��pc, where �p is given by Eq.
�9�. In this regime, �p,eff is roughly proportional to 1 /a and
is completely determined by the geometrical parameters of
the structured material, R and a. From Eq. �38�, it is clear
that the electrical length of the unit cell at �=�p,eff is rela-
tively large. In fact, even though �pa decreases monotoni-
cally to zero with R /a, in practice, even for extremely thin
wires, �pa remains fairly large because of the logarithmic
dependence of Eq. �9� on R /a. This is a very important prop-
erty since in order that the structured material can mimic the
properties of a continuous material the electrical size of the
unit cell should be a very small fraction of the operating
wavelength. In Sec. VI, we will discuss with more detail how
the failure to have �p,effa /c�1 may dramatically affect the
electromagnetic response of the structured material. In the
particular situation in which losses are small, �eff /�p,eff�1,
the metamaterial behaves basically in the same manner as the
wire medium made of PEC rods studied in previous
works.12,13,15

The second case of interest occurs when 1
�m�fV

�
1

�pc , or
equivalently when the skin depth of the metal is much larger
than the radius of the rods �s /R�1. In such scenario �p,eff
��m

�fV, i.e., the effective plasma frequency is completely
determined by the plasma frequency of the metal and by the
volume fraction of the rods. Thus, in this regime it may
possible to control the plasma frequency of the artificial ma-
terial solely by adjusting the volume fraction of the metal.
This property suggests very interesting possibilities: in fact,
since fV only depends on the ratio R /a, the electrical length
of the unit cell �p,effa /c may be made arbitrarily small by
making the lattice constant smaller and smaller, keeping the
metal fill fraction invariant.

In order to illustrate these properties and the continuous
transition between the two considered limit cases, in Fig. 2
we plot the plasma frequency as a function of the lattice
constant a �solid lines�, assuming that the ratio R /a is kept

constant �the metal volume fraction is invariant�. It is as-
sumed that the metallic wires are made of silver, which fol-
lowing the experimental data tabulated in Ref. 25, may be
characterized at terahertz and infrared frequencies by a
Drude dispersion model with �m /2�=2175 THz and
�m /2�=4.35 THz. It is seen in Fig. 2 that the effective
plasma frequency increases monotonically as a is reduced
from 10 �m down to 100 nm. However, consistent with the
previous discussion, for some value of a the plasma fre-
quency tends to saturate and does not vary appreciably as the
lattice constant is further reduced. This corresponds to the
regime where �p,eff��m

�fV. For convenience of the reader,
we also plotted in Fig. 2 the electrical length of the unit cell,
�p,effa /c, as a function of the lattice constant �dashed lines
associated with right-hand side vertical scale�. It may be no-
ticed that as soon as the effective plasma frequency starts to
saturate, the electrical length of the unit cell may be dramati-
cally reduced, and the lattice constant may become a very
small fraction of the wavelength at �=�p,eff. Hence, the
plasmonic properties of the metal may radically change the
electromagnetic response of the material and may enable the
realization of artificial plasmas at terahertz and infrared fre-
quencies that imitate more closely the properties of metals
near their plasma frequencies.

It is also important to discuss the effect of metallic loss in
the structured material. Using the approximate identity for
the skin depth, �s�c /�m, Eq. �37c� may be rewritten as

�eff

�p,eff
�

�

�m

1
�fV

1

�1 +
�

��pa�2� R

�s

2

. �39�

Since the typical range of �pa is as in Eq. �38�, the above
formula shows that when R /�s�10 the ratio between the
damping and plasma frequencies of the effective medium
may be much smaller than the same ratio in the bulk metal
even if fV is very small. In such circumstances the loss in the
effective medium may be negligible and the metallic rods
may operate nearly as perfectly conducting wires, in the
same manner as conventional wire media at micro-
waves.12,13,15

As mentioned before, the case R /�s�1 is especially in-
teresting since it may enable the design of artificial plasmas
with a lattice constant much smaller than the operating wave-
length. In this regime it is clear that

�eff

�p,eff
� �

�m

1
�fV

, i.e., the
ratio between the damping and plasma frequencies is en-
hanced in the artificial plasma by a factor of 1 /�fV as com-
pared to the bulk metal. Since, in the regime R /�s�1 the
effective plasma frequency is such that �p,eff��m

�fV, it fol-
lows that �eff��, i.e., the absolute value of the damping
frequency is nearly the same in the bulk metal and in the
structured material. It is thus clear that the effect of loss will
be increasingly important when the effective plasma fre-
quency is made smaller. Nevertheless, since noble metals are
characterized by � /�m�1 �e.g., for silver � /�m=0.002
�Ref. 25��, the value of loss in the structured material may be
fairly low even if fV�1. In Fig. 3 �eff /�p,eff is plotted as a
function of the lattice constant for the same parameters as in
Fig. 2. It is seen that �eff /�p,eff may increase significantly as

1�104100 200 500 1000 2000 5000
0

50

100

150

0

0.5

1.

1.5

2.

� �a nm

,p
ef
f

f

,p
eff
a
c

R/a = 0.04

R/a = 0.015

R/a = 0.005

R/a = 0.04

R/a = 0.015

R/a = 0.005

FIG. 2. �Color online� Plasma frequency of the artificial plasma,
fp,eff=�p,eff /2�, as a function of the lattice constant a for silver
wires and different values of R /a. The solid lines are associated
with the left-hand side vertical scale, whereas the dashed lines are
associated with the right-hand side scale. Notice that the horizontal
scale has logarithmic unities.
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the lattice constant is reduced, or equivalently �since for each
curve the metal filling ratio is kept constant�, as the radius of
the rods is made smaller. Anyway, the value of �eff /�p,eff
remains fairly low even for values of R /a as small as R /a
=0.005. Notice that at �=�p,eff the effective permittivity
seen by the transverse modes is �t�−j�eff /�p,eff. Quite in-
terestingly, even in the regime R /�s�1 for which
�eff /�p,eff�� /�m, the value of the imaginary part of the
effective permittivity of the artificial material near �p,eff may
be smaller than the value of the imaginary part of bulk silver
near its plasma frequency. In fact, one should keep in mind
that silver can be characterized using model �36� only at
infrared and longer wavelengths, while at optical frequencies
its characteristic loss may be significantly higher than that
predicted by Eq. �36� due to interband absorptions.27

It is also relevant to study how the plasmonic effects af-
fect the properties of the longitudinal mode. Assuming as
before that the complex permittivity of the metal follows
Drude characteristic �36�, and neglecting for simplicity the
effect of loss ���0� the dispersion characteristic of the lon-
gitudinal mode �Eq. �35�� can be rewritten as follows:

�2 = �p,eff
2 + ALk2c2, AL =

�p,eff
2

�p
2c2

1

l0
. �40�

Ideally, for a local isotropic plasma the coefficient AL should
be such that AL�0 so that the dispersion characteristic of the
longitudinal mode would be a flat line. As proven in Refs. 12
and 15 such an ideal situation is not verified for a wire me-
dium formed by an array of PEC wires, and the dispersion
characteristic of the longitudinal mode depends appreciably
on k. As a consequence, both the transverse and the longitu-
dinal modes may be excited at the interface of the artificial
plasma. This is undesired because the longitudinal mode may
significantly modify the response of the material. In order to
understand how the plasmonic properties of the metal affect
the response of the longitudinal mode, in Fig. 4 the coeffi-
cient AL is plotted as a function of the lattice constant. As
seen, when the lattice constant is fairly large so that R /�s
�1 the slope of the longitudinal mode is relatively large,
consistent with the results of Refs. 12 and 15. However, as

the lattice constant and the radius of the rods are made
smaller, the slope AL may also become quite small. In par-
ticular, comparing with Fig. 2, it can be seen that for the
range of parameters for which the electrical length of the unit
cell �p,effa /c verifies �p,effa /c�1, the slope AL may be neg-
ligible, and consequently it is expected that in this regime the
effects of the longitudinal model become of less importance.
This property further supports that the plasmonic properties
of the bulk metal may enable the realization of structured
materials with properties similar to those of metals near their
plasma frequencies.

It is interesting to note that this conclusion is consistent
with the results in Ref. 15, where it is suggested that the
effects of spatial dispersion can be tamed by increasing the
inductance of the metallic wires. In fact, it is known �see, for
example, Ref. 28� that when the plasmonic properties of
metal become relevant, the inductance becomes the sum of
two components: the “geometrical” inductance and the “ki-
netic” inductance. The kinetic inductance is directly related
to the plasmonic properties of the metal and contributes to
increase the inductance of the system in the infrared domain,
and in this way to reduce spatial dispersion effects.

VI. SUPERLENSING WITH AN ARTIFICIAL
PLASMA SLAB

Perhaps the most distinguished application of metamate-
rials is superlensing.1 The perfect lens requires a material
slab with both permittivity and permeability simultaneously
negative;1 however it is well known that even a thin slab of
a material with no magnetic properties and permittivity
��−1 may enable a superlensing effect due to the resonant
excitation of surface-plasmon polaritons �SPPs�.1,2,29 The ob-
jective of this section is to assess the possibility of achieving
superlensing using an artificial plasma slab operated around
the frequency for which Re��t�=−1, and at the same time to
validate the homogenization model introduced in Sec. IV. To
this end, first we need to characterize the electromagnetic
response of a planar slab with thickness L under plane-wave
excitation. The geometry of the problem is depicted in the
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FIG. 3. �Color online� Normalized damping frequency of the
artificial plasma, �eff, as a function of the lattice constant a for
silver wires and different values of R /a. Notice that the horizontal
scale has logarithmic unities.
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FIG. 4. �Color online� Slope of the longitudinal-mode disper-
sion, AL, as a function of the lattice constant a for silver wires and
different values of R /a. Notice that the horizontal scale has loga-
rithmic unities.
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inset of Fig. 5. The metamaterial slab is periodic along the
xoy plane and has a finite �integer� number of cells along the
z direction. The interfaces are formed in such manner that the
distance between the interfaces and the nearest wire plane
�parallel to the xoy plane� is a /2. The geometry depicted in
the inset of Fig. 5 corresponds to the case where the metama-
terial slab is three cell thick. The incoming wave is trans-
verse magnetic �TM� relatively to the interface, and the angle
of incidence is �i. It is assumed that the incident magnetic
field is along the x direction. The incoming wave can excite
both the transverse and the longitudinal modes in the wire
medium. Due to this reason, the solution of the scattering
problem using homogenization theory is not straightforward
and requires the use of an additional boundary condition.30,31

These ideas are developed in Appendix B, where we demon-
strate that the transmission coefficient T=T�� ,ky� is given
by

T =
1

1 + � 1

�h
−

1

�t

 ky

2

kz
�L��0

tan� kz
�L�L

2

 −

kz
�T�

�t�0
tan� kz

�T�L

2



−
1

1 − � 1

�h
−

1

�t

 ky

2

kz
�L��0

cot� kz
�L�L

2

 +

kz
�T�

�t�0
cot� kz

�T�L

2

 .

�41�

In the above, ky is the component of the incident wave vector
parallel to the interface �ky = �� /c�sin �i for a propagating

plane wave�, �0=�ky
2− �� /c�2, �h is the relative permittivity

of the host medium that supports the metallic wires, �t is the
relative effective permittivity seen by the transverse modes
in the artificial plasma, and kz

�T� and kz
�L� are the propagation

constants along z associated with the transverse and longitu-

dinal modes, respectively. If the wires are embedded in a
host material with �h=1, the permittivity �t��� is given by
Eq. �32b�. In the general case where �h�1, the transverse
permittivity should be defined as

�t��� = �h +
1

1

�m − �h

1

fV
−

�2

�p
2c2

. �42�

The propagation constants kz
�T� and kz

�L� are obtained by solv-
ing the plane-wave dispersion equation. It is found that �in
the particular case �h=1, these formulas follow immediately
from Eqs. �33� and �35��

kz
�T� =��t���

�2

c2 − ky
2, �43a�

kz
�L� =�l0��2

c2 �h − �p
2 −

�p
2

�m/�h − 1

1

fV

 − ky

2. �43b�

From formula �41�, it readily follows that the effects of the
longitudinal mode are negligible if kz

�L�→�. In such limit
case, Eq. �41� yields the transmission coefficient for a local
material characterized by permittivity �42�.

In the first example, we consider a material slab with
thickness L=a, where a=276 nm is the lattice constant
��ma /c=2.0�2�, where �m /2�=2175 THz� and R
=0.03a is the radius of the rods. It is assumed that the metal
wires are made of silver and that the host medium is air
��h=1�. The condition Re��t�=−1 occurs at f =76.1 THz
�the corresponding complex permittivity is �t�−1−0.1j; the
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FIG. 5. �Color online� Amplitude of the transmission coefficient as a function of the �normalized� transverse wave vector, ky, for a
=276 nm and R=0.03a at f =76.1 THz. The wire medium slab is formed by silver rods and has thickness L=a=0.07�0. �a� Nonlocal
homogenization theory �Eq. �41��. �b� Local model �effect of the longitudinal mode is neglected�. �c� “Star”-shaped symbols: full wave
simulations obtained with CST MICROWAVE STUDIO �Ref. 32�. The inset represents the geometry of the problem in a hypothetical case where
L=3a.
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permittivity of silver is �Ag�−810−50j�. Notice that the
imaginary part of the transverse permittivity is relatively
small at the design frequency, despite the radius being very
small. The thickness of the slab is only L=0.07�0 at the
frequency of interest. Since L=a, the lattice constant is also
a very small fraction of the operating wavelength. As dis-
cussed in Sec. V, this is only possible because the radius of
the rods is smaller than the skin depth of silver, and thus the
plasmonic properties of metal play a major role.

In Fig. 5, the amplitude of the transmission characteristic
T=T�ky� is shown. Notice that the transmission coefficient
T=T�ky� may be regarded as the �“optical”� transfer function
of the structured material slab. For kyc /�
1 the incident
wave is a propagating plane wave, whereas if kyc /��1 the
incident wave is an evanescent mode �component of the sub-
wavelength spatial spectrum�. The effect of metallic loss in
silver is fully considered in the plots of Fig. 5.25 The results
obtained using the proposed homogenization theory �Eq.
�41�� are represented in curve �a� �black solid line�. It is seen
that the transfer function has two sharp resonances around
kyc /��1.0 and kyc /��2.1, which correspond to the reso-
nant excitation of guided modes of the structured material.
These guided modes closely mimic the role of surface plas-
mons in a thin silver film at optical frequencies. In particular,
it may be seen that evanescent waves with transverse wave
number such that kyc /��2.1 are significantly enhanced by
the metamaterial slab, possibly enabling a superlensing
effect.1,2,29 Despite, the effect of losses the amplitude of the
transmission coefficient may be as large as T�8 around
kyc /��2.1.

These results compare well with full wave simulations
obtained with CST MICROWAVE STUDIO �Ref. 32� �discrete
star-shaped symbols�, which supports the validity of the ho-
mogenization results. CST MICROWAVE STUDIO models a
single unit cell of the structure, and enforces periodic bound-
ary conditions along the x direction and the Floquet-Bloch
condition along the y direction �with phase shift determined
by the angle of incidence�. “Waveguide ports” are placed at
z=const. planes located at a distance 1.5a from the two in-
terfaces, and are used to excite the incoming plane wave and
absorb the scattered fields. The transmission and reflection
coefficients are computed using the frequency domain solver
of CST MICROWAVE STUDIO.32 These results can be regarded
as the exact solution of the problem, apart from inevitable
“numerical noise” intrinsic to all numerical methods.

We have also calculated the transfer function of a ficti-
tious material slab described by a local permittivity model
following Eq. �42� �curve �b� plotted with a red solid line�.
As seen in Fig. 5, the local model predicts a much greater
enhancement of evanescent modes as compared to the actual
response of the structured material. This shows that despite
the radius of rods being smaller than the skin depth of the
metal, the effects of the longitudinal mode are still tangible.
Notice that ideally the transfer function should be a growing
exponential �consistent with curve �b��, T�ekyL,1,2 in order
that the attenuation in the free-space regions is compensated
by the lens.

In order to investigate the possibility of reducing more
significantly the nonlocal effects, we have studied an hypo-
thetical geometry in which the lattice constant and the radius

of the rods are reduced by a factor of ten so that a
=27.6 nm ��ma /c=0.2�2�� and R=0.03a. The metal fill
fraction is kept invariant as compared to the previous ex-
ample. The actual fabrication of this structure would be quite
challenging since the diameter of the wires is only 1.66 nm.
Moreover, it is assumed here that such thin rods can be de-
scribed by the same permittivity as bulk silver and that
quantum-mechanical effects are negligible, but actually, as
discussed ahead, such hypotheses may not be realistic �the
possible effects of spatial dispersion in silver are studied in
Appendix D�. As proven in Sec. V, with very thin wires it
may be possible to enhance the plasmonic properties of the
metal and in this way minimize nonlocal effects. The fre-
quency for which Re��t�=−1 is now f =81.7 THz. The per-
mittivity of the wire medium is kept approximately the same
as in the previous example, �t�−1−0.1j, because the vol-
ume fraction of the metal is invariant, and consequently the
effective damping frequency normalized to the effective
plasma frequency remains nearly unchanged �see Fig. 3�.
The permittivity of silver at f =81.7 THz is approximately
�Ag�−710−38j. Notice that even though the lattice constant
has decreased ten times, the frequency at which Re��t�=−1
has increased very modestly. As discussed in Sec. V, this
happens because in the regime where the plasmonic proper-
ties dominate, the effective plasma frequency is nearly inde-
pendent of a and only depends on the fill fraction of the
metal: �p,eff��m

�fV. An important outcome of this property
is that the electrical size of unit cell also decreases nearly by
a factor of 10: a=0.075�0. We consider that the wire medium
slab is formed by five unit cells so that the thickness is L
=5a=0.038�0.

In Fig. 6, we represent the calculated transmission coeffi-
cient as a function of ky. Now the theoretical model �curve
�a�� predicts that the transmission characteristic has a sharp
resonance around kyc /��7.5 �besides the very narrow reso-
nance close to kyc /��1.0�. The results obtained using CST

MICROWAVE STUDIO �discrete star-shaped symbols� are rela-
tively similar to those obtained with the theoretical model,
apart from a slight shift of the resonance peak. It may also be
seen that for a relatively large range of values of ky �roughly
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slab with L=5a=0.038�0. The legend is as in Fig. 5.
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for kyc /�
6.0�, the response of the structured material is
very similar to that of local material with permittivity given
by Eq. �42�. This demonstrates that by using thin rods with
radius much smaller than the skin depth of the metal, it could
be possible to nearly eliminate the spatial dispersion effects,
and in this way design a structured subwavelength film that
might enable a superlensing effect at infrared frequencies.
However, it is also quite evident from our analysis that to
obtain such good performance using silver rods is most
likely impossible since the required radius of the rods is ex-
tremely small. Indeed, since the skin depth of silver is only a
few tenths of nanometers at infrared frequencies, the re-
quired rods radius is only a few nanometers. Such ultrathin
metallic objects most likely cannot be described using the
same permittivity model as bulk silver and may behave as
objects with positive permittivity. This may be an insur-
mountable fundamental obstacle to achieve superlensing
with this structured material. Using a metal or a semiconduc-
tor with a smaller plasma frequency �and thus larger skin
depth� may however allow using rods with larger radii, but a
definite conclusion about this possibility requires further
studies.

The described regime is radically different from the one in
which the plasmonic properties of the metal are negligible.
To illustrate this we consider a design example in which a
=1.38 �m ��ma /c=10.0�2�� and R=0.03a, i.e., the lattice
constant is increased five times as compared to the first ex-
ample, while the metal fill fraction is maintained. For these
parameters it may be easily verified that the skin depth of the
metal becomes smaller than the radius of the wires. The fre-
quency for which Re��t�=−1 is now f =36.9 THz ��t�−1
−0.05j ;�Ag�−3400−400j�. As expected, when the conduct-
ing properties of the metallic wires are improved the effect of
metallic loss becomes less significant. Notice that very dif-
ferently from the second example, the frequency of operation
suffers a significant variation in the present example. This
effect was discussed in Sec. V, and is consistent with the
results of Fig. 2. The electric size of the unit cell is now as
large as a=0.17�0. The wire medium slab is assumed to be
one cell thick: L=a=0.17�0.

The transmission characteristic of the considered structure
is shown in Fig. 7. It can be seen that the results are dramati-
cally different from those of the previous example �notice the
different span of the horizontal scales�. Indeed, as soon as
conductive properties of the metal improve and the skin
depth becomes smaller than the radius of the wires, both
resonance peaks occur relatively close to kyc /��1.0 and are
extremely narrow. Hence, only evanescent modes with rela-
tively small values of ky can be enhanced by the wire me-
dium slab. It is clear that this property precludes any signifi-
cant superlensing effect, and shows how different is the
performance of the metamaterial in the regime where the
metal behaves as a good conductor. To conclude this section,
we note that the results obtained at microwaves using typical
wire media designs are relatively similar to those of the last
example, being the resonant peaks even closer to the point
kyc /��1.0.

VII. RESONANCES ABOVE THE PLASMA FREQUENCY

While in Sec. VI we were mostly interested in the regime
where the wire medium may be used as a near-field lens and
is characterized by �t�−1, here we will investigate its fre-
quency response, primarily in the range where Re��t��0.
The main motivations for this study are the findings in Refs.
33 and 34, which demonstrated that thin films of alkali met-
als �e.g., sodium and potassium� may have a nonlocal elec-
tromagnetic response in many ways analogous to that of the
wire medium considered here, and behave as nonlocal plas-
mas near their UV plasma frequencies. It was shown in Refs.
33 and 34 that the resonant excitation of longitudinal plas-
mons in thin alkali-metal films may result in observable os-
cillatory variations in the absorption, transmission, and re-
flection spectrum above the plasma frequency. It is thus
natural to ask if due to spatial dispersion effects the wire
medium considered here may be characterized by similar
features.

The phenomenon identified in Ref. 33 can be easily un-
derstood by analyzing the formula of the transmission coef-
ficient, given by Eq. �41�. To begin with, let us temporarily
neglect the effect of metallic loss so that above the effective
plasma frequency, �p,eff, both kz

�T� and kz
�L� are real valued.

For simplicity, we assume in this section that �h=1. It is
simple to verify that in these conditions Eq. �43� yields kz

�T�

=���2−�p,eff
2 � /c2−ky

2 and kz
�L�=���2−�p,eff

2 � /ALc2−ky
2. As

discussed in Sec. V, the parameter AL is typically much less
than unity, especially when the plasmonic effects in metal
play a dominant role. Hence, it is clear that above the plasma
frequency kz

�L��kz
�T�. But this implies that in the first parcel

in Eq. �41� the term associated with tan�kz
�L�L /2� will vary

much faster than the remaining terms in the same denomina-
tor, particularly at the frequency values such that kz

�L�L /2
= �m+1 /2��, m=0,1 ,2 , . . . for which the first parcel of Eq.
�41� must vanish. Similarly, in the second parcel of Eq. �41�
the term associated with cot�kz

�L�L /2� varies much faster than
the remaining terms when kz

�L�L /2=m�, m=1,2 , . . ., and the
second parcel of Eq. �41� vanishes at these frequencies.
Thus, Eq. �41� predicts that the transmission charac-
teristic may have significant oscillations when kz

�L�L=n�,
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FIG. 7. �Color online� Transmission characteristic for a
=1.38 �m ��ma /c=10.0�2�� and R=0.03a at f =36.9 THz for a
slab with L=a=1.17�0. The legend is as in Fig. 5.
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n=1,2 , . . ., i.e., when the longitudinal mode verifies the
Fabry-Pérot condition. Using kz

�L�=���2−�p,eff
2 � /ALc2−ky

2

and putting ky = �� /c�sin �i it is readily found that the reso-
nance frequencies are

�n =��p,eff
2 + AL��

L
n
2

c2

1 − AL sin2 �i
, n = 1,2, . . . . �44�

The above formula is only valid for small losses and when
�h=1, and assumes that the metal follows Drude model �36�.
It is clear that in case of significant losses the oscillations in
the transmission coefficient may become much weaker be-
cause the imaginary part of kz

�L� may severely damp the lon-
gitudinal mode.

In Fig. 8 we plot the calculated transmission coefficient as
a function of frequency for a metamaterial slab with a
=276 nm, R=0.03a, and L=5a. As in Sec. VI, it is assumed
that the wires are made of silver. The angle of incidence is
�i=15°. Curve �a� �black solid line� corresponds to the trans-
mission coefficient obtained using the nonlocal homogeniza-
tion model �Eq. �41��, whereas curve �b� �red solid line� was
calculated using a local homogenization model �the effect of
the longitudinal mode is neglected�. Consistent with the pre-
vious discussion, it is seen that above the effective plasma
frequency the transmission characteristic predicted by the
nonlocal model �curve �a�� has several oscillations. The first
five resonant frequencies �n=1, 2, 3, 4, and 5� are marked in
Fig. 8 with vertical gridlines. The local model �curve �b��
does not predict these multiple resonances. Using CST

MICROWAVE STUDIO,32 we have calculated the actual re-
sponse of the metamaterial slab. Very disappointingly, it can
be seen in Fig. 8 �star-shaped discrete symbols� that the full

wave results only predicts the resonance associated with n
=1, and that it does not predict any other resonances in the
range � /�p,eff
1.5.

We obtained similar results for wire media with other geo-
metrical parameters and for different angles of incidence. For
instance, in Fig. 9 we show the transmission coefficient as a
function of frequency for a wire medium slab with a
=27.6 nm, R=0.03a, and L=5a. The angle of incidence is
�i=45°. The vertical gridlines mark the resonances corre-
sponding to n=1, 3, 5, and 7. We do not show the resonances
corresponding to n even since they are not perceptible. In
fact, for n even the oscillations are associated with the sec-
ond term in Eq. �41�, which may be little sensitive to the
variations in the term cot�kz

�L�L /2� if the thickness of the slab
is a very small fraction of the wavelength of operation �0, as
in this example.

Despite the extremely small electrical length of the unit
cell in the considered frequency range, it is seen in Fig. 9
that only the n=1 resonance of the transmission characteris-
tic is confirmed by the full wave simulations. This seems to
indicate that the homogenization model may not be so accu-
rate above the effective plasma frequency. A possible justifi-
cation is that the oscillations of the transmission coefficient
correspond to values of kz

�L� relatively large. More specifi-
cally, for nth resonance we have that kz

�L�L=n� and thus
kz

�L�a=n�a /L �in the considered examples a /L=1 /5�.
Hence, for large n it is not true that kz

�L�a��, as assumed in
the derivation of Sec. IV. Another possible justification is
related to interface effects and to the granularity of the ma-
terial, even though in principle these effects are very small
for materials where the unit cell is a very small fraction of
the operating wavelength, as in the examples considered
here.

However, the lack of oscillations above the plasma fre-
quency may be due to a different reason. As mentioned in
Sec. IV, dielectric function �31� is only valid under the hy-
pothesis that the term 1 / �12a��m−1�fV� can be neglected in
Eq. �29b�. As shown in Appendix A, this is a quite accurate

��������
�����

����
���
��
��
��
����

�

�

�
�
�
�
�
��
�������

�

�
�

�
���
�

��

�
��
�

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

T

,p eff

�
�

c)
a)

b)

FIG. 8. �Color online� Transmission characteristic for a
=276 nm ��ma /c=2.0�2�� and R=0.03a for a slab with L=5a.
The angle of incidence is �i=15°. The plasma frequency is
�p,eff /2�=107.6 THz. �a� Nonlocal homogenization theory �Eq.
�41��. �b� Local model �effect of the longitudinal mode is ne-
glected�. �c� Nonlocal homogenization theory using the dielectric
function defined by Eq. �29�. The discrete star-shaped symbols cor-
respond to full wave simulations obtained with CST MICROWAVE

STUDIO �Ref. 32�. The vertical gridlines mark the resonances pre-
dicted by Eq. �41� for n=1, 2, 3, 4, and 5.
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approximation below the effective plasma frequency of the
wire medium. However, from the results of Appendix A, it is
clear that this approximation is not really justifiable above
the plasma frequency, particularly when the plasmonic prop-
erties of the metallic wires play a dominant role. Due to this
reason, we have studied if by taking into account the term
1 / �12a��m−1�fV� in Eq. �29b� the electromagnetic response
of the wire medium slab could be better predicted. The ho-
mogenization methods are quite similar to those used in the
derivation of Eq. �41�, and the main ideas are sketched in
Appendix C. We only mention here that when �� is defined
consistently with Eq. �29�, in general the electromagnetic
modes cannot be classified as transverse and longitudinal
waves, but instead are hybrid modes. The transmission char-
acteristic obtained using the described formulation is plotted
in Figs. 8 and 9 as curve �c� �solid green line�. It is seen that
curve �c� is practically coincident with curve �a� below the
effective plasma frequency. However, above the plasma fre-
quency curve �c� tends to follow more closely the full wave
simulations obtained with CST MICROWAVE STUDIO, and does
not predict significant oscillations of the transmission char-
acteristic for �
1.5�p,eff, apart from the n=1 resonance
close to the plasma frequency of the wire medium. We have
verified that this property also holds for other examples not
reported here. This suggests that above the plasma frequency
it may be more accurate to describe the metamaterial using
the dielectric function defined implicitly by Eq. �29� instead
of using the simpler model �31�.

VIII. CONCLUSION

In this paper, we derived the dielectric function of a con-
nected wire medium, taking into account both the plasmonic
properties and the loss in the metal. It was shown that the
plasmonic properties of the metal may modify in a drastic
manner the propagation properties of the structured material.
It was proven that when the radius of the wires is made
smaller than the skin depth of the metal, the electrical size of
the unit cell may be a very small fraction of the wavelength
at the effective plasma frequency, and the spatial dispersion
effects may be relatively weak. This scenario is dramatically
different from what happens in the microwave regime, where
to a good approximation the metal can be described as a
perfect conductor. It was shown that the effect of loss may be
tolerable even for thin rods. We have characterized the trans-
fer function of a wire medium slab when Re��t�=−1. It was
demonstrated that unlike in the microwave regime, at infra-
red frequencies the subwavelength spectrum �i.e., evanescent
waves� may be significantly enhanced by a thin slab. How-
ever, it looks quite difficult to obtain a significant superlens-
ing effect using silver rods since it would require rods with
very small radii �a few nanometers�. Finally, motivated by
the results reported in Refs. 33 and 34, we studied the fre-
quency response of a wire medium slab and investigated the
possible existence of oscillations in the transmission charac-
teristic. To conclude we mention that the analysis of this
work can be easily generalized to other configurations of
wire media, like arrays of nonconnected wires.35 In general,
the ohmic connection between the wires is essential to avoid

strong spatial dispersion effects characteristic of noncon-
nected wires.12,35
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APPENDIX A

In this appendix we show that for frequencies below the
effective plasma frequency of the structured material, �p,eff,
it is indeed possible to neglect the term 1 / �12a��m−1�fV� in
Eq. �29b�. In fact, using Eq. �37b� and assuming small me-
tallic losses ���0�, it can be readily shown that

1

�m − 1
��pa�2

fV

1

12
=

��pa�2

12

�2

�p,eff
2

1

1 +
�m

2 fV

�p
2c2

�
��pa�2

12
� �

�p,eff

2

. �A1�

But since the typical range of �pa is as in Eq. �38�, the above
equation shows that the leftmost expression is much smaller
than unity when � is below �p,eff �this property is even better
verified in case of metallic losses or when the radius of the
rods is much larger than the skin depth of the metal�. This
result together with the fact that �1

2��p
2 proves that in these

circumstances the term 1 / �12a��m−1�fV� may be neglected
in Eq. �29b�.

APPENDIX B

Here, we describe the analytical model that enables the
calculation of the transmission and reflection coefficients in
the scattering problem formulated in Sec. VI. The geometry
of the problem is shown in the inset of Fig. 5. Since the
incident magnetic field is directed along the x direction, the
magnetic field in all space is also along the x direction. The
electromagnetic fields in the metamaterial slab can be written
as a superposition of transverse and longitudinal modes. It is
simple to verify that the magnetic field associated with the
longitudinal mode vanishes. Therefore, assuming that the
amplitude of the incoming magnetic field is normalized to
unity, the magnetic field in all space is of the form �the y
variation in the field is suppressed�

Hx = e−�0z + Re�0z, z 
 0, �B1a�

Hx = A1e−jkz
�T�z + A2ejkz

�T�z, 0 
 z 
 L , �B1b�

Hx = Te−�0�z−L�, z � L , �B1c�

where R and T are the reflection and transmission coeffi-
cients, �0=�ky

2− �� /c�2 �ky = �� /c�sin �i for a propagating in-
coming plane wave�, kz

�T� is the propagation constant along z
of the transverse mode in the wire medium, and A1 and A2
are unknown constants.
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The electric field associated with a plane wave with mag-
netic field along the x direction and wave vector k
= �0,ky ,kz� is such that

E =
1

��0
�� r

−1 · �ûx � k�Hx, �B2�

where �� r is the relative permittivity dyadic. Therefore, it is
clear that the electric field associated with Eq. �B1� is such
that

E =
1

��0
�ûx � k0

+e−�0z + ûx � k0
− Re�0z�, z 
 0,

�B3a�

E =
1

��0�t���
�ûx � kT

+A1e−jkz
�T�z + ûx � kT

−A2ejkz
�T�z�

+
1

��0
�B1kL

+e−jkz
�L�z + B2kL

−ejkz
�L�z�, 0 
 z 
 L ,

�B3b�

E =
1

��0
Tûx � k0

+e−�0�z−L�, z � L . �B3c�

In the above, k0
= (0,ky ,−�j�0�) is the wave vector in free-

space, and kT
= �0,ky , kz

�T�� and kL
= �0,ky , kz

�L�� are the
wave vectors associated with the transverse and longitudinal
modes in the artificial plasma, respectively. Notice that inside
the artificial plasma the electric field is the superposition of
transverse and longitudinal waves. The unknown constants
B1 and B2 are the amplitudes of the longitudinal waves. The
permittivity seen by the transverse modes, �t���, is normal-
ized to the permittivity of vacuum, and in the general case is
given by Eq. �42�. The propagation constants kz

�T� and kz
�L� are

given by Eq. �43�.
By matching the tangential components of the electro-

magnetic fields at the interfaces z=0 and z=L, the following
equations are derived:

1 + R = A1 + A2, �B4a�

T = A1e−jkz
�T�L + A2ejkz

�T�L, �B4b�

�− �0��1 − R� =
1

�t
�− jkz

�T���A1 − A2� + jky�B1 + B2� ,

�B4c�

�− �0�T =
1

�t
�− jkz

�T���A1e−jkz
�T�L − A2ejkz

�T�L�

+ jky�B1e−jkz
�L�L + B2ejkz

�L�L� . �B4d�

These four equations are clearly insufficient to determine the
six unknowns �R, T, A1, A2, B1, and B2�. It is know that this
property is a consequence of spatial dispersion effects, and
that to obtain a well-formed system we need to consider an
additional boundary condition �ABC�.30,31 Quite interest-
ingly, this property is not specific of the structured materials

under study here, and thin films of alkali metals such as
sodium and potassium may also require the use of an auxil-
iary boundary condition.33 In Ref. 33, it was shown that in
materials where a longitudinal bulk plasma wave can propa-
gate, the classical boundary conditions are insufficient to
solve a scattering problem, and the microscopic currents
should vanish at the interface. Similar ideas were recently
used in Ref. 15 to characterize a wire medium with the same
topology as the one considered here. These ideas are consis-
tent with the results of our earlier works,30,31 where we have
proven that for an array of parallel metallic wires the annul-
ment of the microscopic electric current along the wires im-
plies the continuity of �h�z�Ez, where �h is the permittivity of
the host material �which may differ at both sides of the in-
terface� and Ez is the component of the macroscopic electric
field normal to the interface. We will use the same boundary
condition to characterize the material under study. The equa-
tions corresponding to the continuity of �h�z�Ez at the inter-
faces are

ky�1 + R� =
�h

�t
ky�A1 + A2� + �hkz

�L��B1 − B2� , �B4e�

kyT =
�h

�t
ky�A1e−jkz

�T�L + A2ejkz
�T�L�

+ �hkz
�L��B1e−jkz

�L�L − B2ejkz
�L�L� . �B4f�

Solving the linear system Eq. �B4� with respect to the un-
knowns, we may easily determine the transmission and re-
flection coefficients. It can be proven that the transmission
coefficient T may be written in close analytical form as in
Eq. �41�. A similar formula may also be written for R, but it
is not shown here for conciseness. It may be verified that in
the lossless case ��� �� ,k� is real for k real� the proposed
ABC ensures the conservation of energy, more specifically
that T2=1− R2 for a propagating incident wave.

APPENDIX C

Here, we briefly explain how the reflection and transmis-
sion coefficients are calculated in the general case where the
wire medium is characterized using a dielectric function de-
fined consistently with Eq. �29�, i.e., without neglecting the
term 1 / �12a��m−1�fV� in Eq. �29b�. In this general case, the
plane-wave solutions supported by the structured material
cannot be decomposed into transverse and longitudinal
waves as in Sec. V. It may be verified that for propagation in
the yoz plane �with kx=0� the artificial plasma supports two
electromagnetic modes with propagation constants along z,
given by kz

�1�=kz
�1��� ,ky� and kz

�2�=kz
�2��� ,ky�. These two

modes may be regarded as quasitransverse and quasilongitu-
dinal modes, respectively. The propagation constants may be
calculated by solving the standard dispersion characteristic
for plane waves with �� defined as in Eq. �29�,24 but the
formulas are omitted here for brevity. The magnetic field
inside the structured material is now written as �compare
with Eq. �B1��
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Hx = A1e−jkz
�1�z + A2ejkz

�1�z + B1e−jkz
�2�z + B2ejkz

�2�z, 0 
 z 
 L

�C1�

for some constants A1, A2, B1, and B2. The magnetic field in
the air regions is defined as in Eq. �B1�. Notice that in the
scenario considered here the magnetic field has a contribu-
tion from both the quasitransverse and the quasilongitudinal
modes. The electric field associated with Eq. �C1� can be
easily obtained by applying formula �B2� to each of the
terms �i.e., plane waves� associated with the magnetic field.
The reflection and transmission coefficients are computed by
matching the fields Hx and Ey at the interfaces, and by en-
forcing the additional boundary condition, i.e., by ensuring
the continuity of �h�z�Ez.

APPENDIX D

Here, we estimate the spatial dispersion in the permittivity
of bulk silver, and discuss its possible effect on the properties
of the structured material under study. It is well known that
real metals are spatially dispersive, and thus may support a
longitudinal mode as well as transverse modes. The disper-
sion of the longitudinal mode in a metal may be estimated
using the “hydrodynamic model” �compare with Eq. �40��,

�2 = �m
2 + ÃLk2c2, �D1�

where �m is the plasma frequency of the metal, and ÃL

= 3
5 � vF

c �2, where vF is the Fermi velocity.17,33 For silver the
parameter ÃL may be estimated to be ÃL�1.5�10−5.17 Thus,
the attenuation of the longitudinal mode below the plasma

frequency �m is �L=���m
2 −�2� / �c2ÃL�. Notice that �L is

much larger than the attenuation constant of transverse

modes, �T �by a factor of 1 /�ÃL�. Thus, it is reasonable to
assume that spatial dispersion may be neglected provided
�Ld�1, where d is some characteristic dimension of the ma-
terial. This condition ensures that the longitudinal mode is
strongly attenuated and that there is no resonant coupling
between two interfaces of the material. In case of metallic
rods, one can choose d equal to the diameter of the rods, i.e.,
d=2R. But it is simple to verify that even for the most criti-
cal geometry considered in this work �silver rods with d
=1.66 nm operated at 81.7 THz�, we have �Ld=19.5, which
is large enough to conclude that as long as the permittivity of
bulk silver describes adequately the properties of the thin
rods, the effects of spatial dispersion of bulk silver are ex-
pected to be negligible. The main reason for this property is
that silver is operated well below its plasma frequency. It is
important to emphasize that such conclusion is only valid as
long as the permittivity of bulk silver can be used to charac-
terize such ultrathin metallic obstacles.
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