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Following our recent interest in metamaterial-based devices supporting resonant tunneling, energy squeez-
ing, and supercoupling through narrow waveguide channels and bends, here we analyze the fundamental
physical mechanisms behind this phenomenon using a transmission-line model. These theoretical findings
extend our theory, allowing us to take fully into account frequency dispersion and losses and revealing the
substantial differences between this unique tunneling phenomenon and higher-frequency Fabry-Perot reso-
nances. Moreover, they represent the foundations for other possibilities to realize tunneling through arbitrary
waveguide bends, both in E and H planes of polarization, waveguide connections, and sharp abruptions and to
obtain analogous effects with geometries arguably simpler to realize.
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I. INTRODUCTION

The anomalous physics of artificial materials and
metamaterials with index of refraction near zero has attracted
the attention of physicists and engineers for decades �1–12�.
Applications for directive radiation, enhancement of trans-
mission, tailoring of the phase pattern, and cloaking have
been suggested over the years. As a further anomalous phe-
nomenon associated with their properties, in a recent contri-
bution by our group �11,12� it has been suggested that ultra-
narrow waveguide channels and bends may sustain a
dramatic increase of transmission when filled with metama-
terials with permittivity near zero. Heuristically, this is asso-
ciated with the fact that the long wavelength in zero-
permittivity materials allows transferring, in a “staticlike”
fashion—i.e., with essentially no phase delay—the field from
input to output of a tight channel with arbitrary length,
shape, and geometry. More rigorously, it has been theoreti-
cally shown in �11� that the reflection from an arbitrarily
shaped channel filled with a material with identically zero
permittivity is surprisingly proportional to its longitudinal
cross-sectional area. In other words, when such metamaterial
fills a given channel connecting two waveguide sections, the
tighter is the transition channel, the larger is the transmission
through it, in principle independent of its specific shape.

Such a “supercoupling” phenomenon has been recently
demonstrated experimentally independently and almost si-
multaneously by two different groups. The experimental
setup considered in �13� is based on a parallel-plate wave-
guide at microwave frequencies using a screen patterned
with complementary split-ring resonators to emulate the re-
sponse of an �-near-zero �ENZ� metamaterial that fills a nar-
row waveguide channel connecting two larger waveguide
sections. Our arguably simpler experimental demonstration
of this resonant tunneling phenomenon is based on a com-

pletely different conceptual approach and exploits instead the
intrinsic dispersion characteristic of a metallic waveguide
near cutoff, as detailed in �12,14�, and briefly reviewed in
this Introduction.

For decades it has been well known how the intrinsic
dispersion of a waveguide mode is electromagnetically
analogous to the propagation in artificial materials and
metamaterials. Rotman �15� has first introduced these con-
cepts in order to realize artificial plasmalike materials at mi-
crowave frequencies using arrays of parallel-plate
waveguides, and similar concepts have been recently em-
ployed to synthesize negative-index metamaterials �16–18�.
In this sense, the intrinsic dispersion of the TE10 mode in a
rectangular metallic waveguide has been employed to realize
an effective Drude-like negative permittivity, which has been
used, together with split-ring resonators, to achieve negative-
index propagation �16–18�. Similarly, the cloaking mecha-
nism presented in �9�, which requires in principle plasmonic
materials, has been obtained using parallel-plate implants
that emulate the response of a material with negative permit-
tivity �19�.

In a rectangular waveguide, the propagation of the domi-
nant TE10 mode may indeed behave equivalently to that of a
transverse electromagnetic �TEM� wave traveling in a “ma-
terial” with constitutive parameters �12,15�

�ef f = �0��r − c2/�4f2w2�� ,

�ef f = �0, �1�

where �0 and �0 are the free-space constitutive parameters,
�r is the relative permittivity of the dielectric filling the
waveguide, c= ��0�0�−1/2 is the velocity of light in free
space, w is the waveguide width, and an e−i2�ft time conven-
tion is assumed. It is seen, in particular, that at the cutoff
frequency f0= c

2w��r
, �ef f =0. In other words, as far as the

propagation constants are concerned, even using natural ma-
terials such as metals and standard dielectrics with positive
values of permittivity, it is still possible to effectively
achieve low or negative effective permittivity values by
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varying the width w of a suitably designed rectangular wave-
guide �12�.

In Ref. �14�, we applied these concepts to demonstrate
experimentally the supercoupling effect, and we have effec-
tively realized the required zero-permittivity by simply using
an ultranarrow rectangular channel filled with air. In this
sense, we have proven experimentally that an analogous
resonant tunneling may occur at microwave frequencies
through a rectangular subwavelength channel operating at its
cutoff frequency f0, allowing dramatic squeezing of energy
by all means equivalent to what is achievable in an analo-
gous parallel-plate channel filled with ideal ENZ material.
Consistent with the theory reported in �11,12�, this tunneling
is independent of the specific shape of the channel, even
when bends or sharp abruptions are present along it. In �20�,
in fact, we have realized analogous experiments through nar-
row 90° and 180° bends, obtaining nearly unitary transmis-
sion around the same frequency f0.

It is worth underlining that in all our experiments the ENZ
effect in the channels is not realized using subwavelength
inclusions to tailor the material response of the channel, but
rather with the suitable design of the lateral width w of the
waveguide, in order that the ultranarrow channel be operated
at the cutoff frequency of the dominant TE10 mode. After
proper homogenization, a classic metamaterial and such
waveguide section may both be treated as ENZ metamateri-
als. The achieved supercoupling and squeezing effect is fun-
damentally different from classic wave tunneling through
waveguide channels or filters below cutoff �21,22�, which
relies on Fabry-Perot resonances. Quite differently, the en-
hancement of transmission made possible by ENZ materials
is independent of the channel length, geometry, and shape
and always occurs around the same frequency where �=0.
Moreover, the field phase variation across the channel is in-
terestingly uniform, consistent with the staticlike property of
ENZ propagation. In general, the theory of supercoupling
has been developed and established in the ideal limit of �

=0 �11,12�, which due to frequency dispersion is an ideal
condition achievable at a single frequency of operation and
which, in reality, may never be strictly observed in practice
by the necessary presence of absorption. Here, applying fa-
miliar transmission-line concepts, we analyze in more detail
this phenomenon considering frequency dispersion and a re-
alistic deviation from ideal values of permittivities, provid-
ing a novel and distinct interpretation of the anomalous tun-
neling phenomenon and of its dependence on the geometry
and the design parameters. The theoretical results derived
here underline the drastic differences between this unique
tunneling phenomenon and higher-frequency Fabry-Perot
resonances. Moreover, they provide further insights into the
phenomenon and suggest different possibilities and geom-
etries to achieve analogous tunneling effect in arguably sim-
pler or different geometries, which may be of interest for
several purposes and applications, as analyzed and discussed
in the following.

II. THEORETICAL FORMULATION:
THE U-SHAPED TRANSITION

Consider the geometry of Fig. 1�a�—i.e., two identical
parallel-plate �two-dimensional �2D�� waveguides of height
h, filled with a material with �effective� permittivity �wg and
connected by a narrow channel of height hch�hwg and �ef-
fective� permittivity �ch. At the abruptions, two narrow tran-
sition channels of length lab and permittivity �ch have also
been added, in order to accept the impinging wave and let it
tunnel into the narrow channel, giving to the transition re-
gion uniformly filled with permittivity �ch a characteristic U
shape. All the material permeabilities are assumed equal to
�0. In �11� it was proven theoretically how, in the lossless
limit for which �ch=0, the reflection coefficient at the input
of the transition region may be written in an elegant and
exact closed form as

FIG. 1. �Color online� �a� Geometry of the problem: a narrow channel of height hch and length l connects two waveguide sections of
height h�hch. �b� Corresponding transmission-line model, in analogy with �13�. The structure is uniform along the x direction.

ALÙ, SILVEIRINHA, AND ENGHETA PHYSICAL REVIEW E 78, 016604 �2008�

016604-2



R =
ik0�0A

2h − ik0�0A
, �2�

where k0=2�f /c is the wave number in free space and A is
the total longitudinal cross-sectional area filled by the mate-
rial with �ch=0. It is noted how the result in �2� is an exact
closed-form expression in this ideal limit and it does not
depend on the specific shape of the channel. In particular, Eq.
�2� counterintuitively implies that total transmission through
the channel may be achieved for hch→0.

In order to analyze the response of the structure of Fig.
1�a� in frequency and for values of �ch different from zero,
we may employ in this geometry an equivalent transmission-
line �TL� model �23�, as depicted in Fig. 1�b�. An analogous
model has been used in �13� for a parallel-plate waveguide
channel filled by ENZ materials. The outer waveguide sec-
tions may be described as TL segments with secondary pa-
rameters:

�wg = 2�f��wg�0,

�wg =
h

w

2�f�0

�wg
=

h

w
� �0

�wg
, �3�

being, respectively, the guided wave number and the normal-
ized characteristic line impedance. The quantity w is an ar-
bitrary length �it may be considered unity� in the 2D geom-
etry and corresponds to the waveguide width in rectangular
3D geometries. �wg=V+ / I+ is defined as the ratio between
the voltage across the metallic plates and the current along
the plates when the TEM mode propagates along the z direc-
tion. The characteristic line impedance �wg should not be
confused with the wave impedance in the dielectric defined
by ��0 /�wg.

In the channel region, these quantities need to be rede-
fined as �ch and �ch after the replacements �wg→�ch, h
→hch, whereas in the transition channels �i.e., the arms of
the U shape� the wave number is �ch and �ab is obtained
from �wg replacing �wg→�ch. It is noted that the line imped-
ances are normalized to the waveguide height in each section
in order to ensure continuity of the voltage across the abrup-
tions. The capacitive loads Cab in the TL model take into
account the stored reactive fields at the abruption walls, as-
sociated with the evanescent modes excited at the abrupt
discontinuities at the entrance and exit faces of the channel.
For positive values of � in each region, �wg and �wg are real
and positive quantities, consistent with propagation inside
the waveguide. However, for negative values of � or when
losses are considered, the proper square-root branches should
be chosen to have Im����0 and Im���	0, consistent with
the decay of evanescent waves and with the inductive prop-
erties of a waveguide filled with �-negative materials �24�. In
this way, the TL model in Fig. 1�b� may effectively describe
in a compact and simple way the frequency dispersion of the
waveguide transition in Fig. 1.

It is noted that this model effectively applies also to the
3D geometry considered in �14�, consisting of a rectangular
waveguide, in which the finite lateral width w may modulate
and determine the effective permittivity in each region, as

discussed in the introduction and described by Eq. �1�. In this
case, in Eq. �3� and analogous formulas one should consider
the effective permittivity �ef f in each region and the value of
w in the formulas should be taken equal to the waveguide
width.

The reflection at the entrance of the abruption region �area
in blue� may be evaluated in closed form for the model of
Fig. 1�b�. In particular, the presence of the transition chan-
nels of length lab is negligible in evaluating the reflection
coefficient �their effect is important in reducing the effect of
Cab, as discussed in the next section� and we find

R =
2B�wg

2 �ch − ��ch
2 + �B2�ch

2 − 1��wg
2 �tan��chl�

��ch
2 �B�wg + i�2 − �wg

2 �tan��chl� − 2�ch�wg�B�wg + i�
,

�4�

where B=
Cab is the load susceptance of the abruption sec-
tions �normalized to w�. In the limit for which B=0—i.e., the
abruption effects are negligible—zero reflection may be
achieved in two scenarios: �a� when tan��chl�=0, which cor-
responds to a standard Fabry-Perot tunneling condition,
strongly dependent on the length of the channel and on its
geometry; �b� when �ch=�wg—i.e., when the two sections
are impedance matched. The possibility that �ch may be
equal to �wg may seem surprising at first glance, since the
wave impedances �� /� in the two dielectrics are completely
mismatched when the narrow channel is filled with an ENZ
material. However, as discussed in the following, this does
not necessarily imply that the line impedances are mis-
matched. In fact, quite interestingly, in case there is a strong
cross-section mismatch between the waveguide sections and
the channel, this second condition may be achievable when
the �effective� permittivity of the channel region is suffi-
ciently low to compensate the height mismatch. In particular,
from �3� we obtain the simple condition

h
��wg

=
hch

��ch

, �5�

which would ensure line impedance matching and total
transmission through the channel for B=0. It is evident that
when hch�h, it is required that �ch��wg, confirming Eq. �2�
in the ideal limit of �ch→0. It should be noted, however,
that, Eq. �2� applies to an arbitrary shape of the channel, even
if it is valid only in the ideal limit �ch→0. Equation �5�, on
the other hand, is a generalized condition valid also for finite
values of permittivity of the channel, even though it is rigor-
ously valid only for the straight channel of Fig. 1.

When considering the presence of the abruption loads, it
is noted that a small finite value of B slightly detunes the
tunneling condition, but still allows a resonant tunneling ba-
sically independent of the channel length under the general-
ized condition

�ch �
hch

2

h2 �wg −
2B��0hch

k0lw
+

�0B2hch
2

w2 , �6�

which has been obtained under the approximation tan��inl�
��inl, valid around the ENZ operation of the channel of
interest here. It is noted that Eq. �6� implies again �ch→0
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when hch→0. In other words, despite the presence of a finite
abruption admittance due to the height mismatch, resonant
tunneling and total transmission are achievable around the
ENZ operation of the channel, provided that its cross-
sectional area is sufficiently small, supplying an interesting
transmission-line interpretation to the results presented in
�11�. It is noted that Eq. �6� establishes a condition on the
�effective permittivity� �ch for obtaining total transmission,
resonant tunneling, and supercoupling. For nonzero values of
hch and B, the predicted value of �ch is distinct from zero �but
close to it�, implying that at the �different� frequency for
which �ch=0 the transmission is not ideally unity, despite
being possibly high. This is consistent and provides a gener-
alization of the ideal result represented by �2�, which is lim-
ited to the single frequency for which �ch is identically zero.
In other words, Eq. �2� does not pose a minimum limit to the
reflection from the channel, but only evaluates the reflection
at the frequency for which �ch=0. At a close frequency, for
which Eq. �6� is verified, the reflection may become identi-
cally zero despite the finiteness of hch and B. It is worth
underlining, moreover, that since the values of B are usually
relatively small and positive, Eq. �6� suggests that total tun-
neling may occur under some conditions �mainly when B is
not negligible, which happens when the transition regions are
not considered, or are not large enough� for low negative
values of �ch, implying that the weakly inductive properties
of the channel slightly below the cutoff may compensate the
small capacitive impedance of the abruption.

It is evident how the supercoupling phenomenon is very
distinct from a Fabry-Perot tunneling, being totally indepen-
dent of the length of the channel and being based on the
anomalous line impedance match ��ch=�wg� provided by the
ENZ material. In a 3D rectangular waveguide the same re-
sults may be obtained operating at the channel cutoff fre-
quency, for which effectively �ch→0, as discussed above and
experimentally verified in �14,20�.

In Fig. 2, as an example, we have considered a rectangu-
lar waveguide with uniform width w=2h=10.16 cm and lab
=hch=h /64=0.8 mm, consistent with the experimental setup
analyzed in �14� and the geometry of Fig. 1. The outer wave-
guide sections are filled with Teflon �with permittivity 2�0�,
and the ultranarrow channel is filled with air �with permittiv-
ity �0�. Two different channel lengths are considered: l
=12.7 cm �black lines� and l=10.2 cm �red lines�.

The cutoff frequency of the channel, for which effectively
�ch=0, in this geometry arises at f0=1.47638 GHz, at which
�wg=�0. Neglecting the presence of Cab, Eq. �5� predicts
resonant tunneling at f =1.47674 GHz, slightly above f0, due
to the finite value of hch /h. This is consistent with the dashed
lines in Fig. 2, which reports the power transmission coeffi-
cient through the channel, as predicted by TL theory neglect-
ing the presence of Cab. Full-wave simulations obtained us-
ing CST Microwave Studio �25� confirm the possibility of
resonant transmission around the cutoff frequency, but
slightly below the value predicted by TL theory, as reported
by the solid lines in Fig. 2, at frequency f =1.4562 GHz. In
order to match this transmission frequency, it is necessary to
consider a value of capacitance Cab=1.6 pF in Eq. �4�. This
is consistent with the negative shift in �ch produced by a
small positive B in Eq. �6�. The dashed lines correspond to

the curves yielded by the TL model considering this value of
Cab, showing how perfect agreement at the tunneling fre-
quency is obtained in this case between full-wave simula-
tions and TL theory. It is noticeable how the resonant fre-
quency in this scenario does not depend on the length of the
channel, but it is simply based on the impedance matching
ensured by the ENZ response of the channel, irrelevant of its
geometry and shape.

At larger frequencies, another tunneling peak is visible,
due to a classic Fabry-Perot resonance. This is obtained near
the frequency for which tan��chl�=0, consistent with Eq. �4�.
It is evident how this resonance, however, is strongly depen-
dent on the length of the channel, and it is very different
from the supercoupling operation. Also at this frequency the
presence of Cab allows a better matching with full-wave
simulations, even if a larger value of Cab should be consid-
ered for a perfect agreement, consistent with the increase of
the abruption capacitance with frequency �23�.

Another remarkable difference between classic Fabry-
Perot resonances and the supercoupling effect resides in the
nearly uniform phase and amplitude distribution across the
channel, independent of its total length, due to the quasistatic
properties of the ENZ region. This is depicted in Fig. 3,
which compares the phase of the magnetic field �Figs. 3�a�
and 3�b�� and the electric field distributions �Figs. 3�c� and
3�d�, snapshot in time� along the channel considered in Fig. 2
with l=12.7 cm at the two tunneling frequencies f0
�1.46 GHz �supercoupling effect, Figs. 3�a� and 3�c�� and
f �1.82 GHz �first Fabry-Perot resonance, Figs. 3�b� and
3�d��. Drastic differences are evident in the two scenarios:
the supercoupling phenomenon, in fact, does not rely on an

FIG. 2. �Color online� Power transmission through a narrow
channel in a rectangular waveguide as in Fig. 1, with lab=hch

=0.8 mm and w=2h=10.16 cm. The outer sections are filled with a
material with 2�0, whereas the transition region has permittivity �0.
l is varied as indicated in the legend. Solid lines refer to full-wave
simulations performed with �25�, dashed lines use the TL model
with Cab=0, and dotted lines use Cab=1.6 pF.
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intrinsic resonance of the channel, but rather on impedance
match and energy squeeze, which provide a uniform electric
field distribution �much enhanced across the channel due to
the squeezing� and low phase delay. In comparison, the mag-
netic field amplitude inside the channel �not reported here� is
comparable with the impinging one �12�. On the other hand,
the Fabry-Perot resonance is characterized by a standing-
wave distribution, with strong variations of amplitude and
phase along the channel, such that both the electric and mag-
netic fields are enhanced. The small lowering of the tunnel-
ing frequency due to the reactive fields at the abruption, as
described above, slightly affects the uniform-phase property
across the channel �since the channel does not possess an
identically zero permittivity, but a slightly negative one�.
Due to the presence of weakly evanescent impinging and
reflected modes inside the channel, a small phase delay
across the channel is produced by their interference. For the
geometries of Fig. 2, the phase delay between entrance and
exit faces is limited to 4° and 5° for l=12.7 cm and l
=10.2 cm, respectively. This is consistent with the results in
�11–14�, corresponding in this case to more than 95% reduc-
tion of the effective phase delay in the transition region. In
comparison, the first Fabry-Perot resonance provides a 180°
phase shift, consistent with Fig. 3.

The supercoupling and energy squeezing produced at the
ENZ frequency of operation may have several appealing
applications—i.e., perfect coupling of distant waveguides,
filtering independent of the length of the channel, and sens-
ing applications that may benefit from the strong and uni-
form electric field induced across the channel region.

III. SQUEEZING ENERGY INTO AN ULTRANARROW
WAVEGUIDE: RELEVANCE OF THE TRANSITION

CHANNELS

Following the results of the previous section, it is evident
how the supercoupling phenomenon is based on the line im-
pedance matching of an ultranarrow channel having near-
zero �effective� permittivity with an outer waveguide of
much larger cross section, very different from the intrinsic
resonance of the channel length associated with a standard
Fabry-Perot resonance. Therefore, we may foresee the possi-
bility of squeezing the impinging energy inside an ultranar-
row channel even if there is no exit side to the channel—for
example, if the ENZ channel is either infinitely extended or
terminated by a matched load. This effect highlights the dras-
tic difference with a classic Fabry-Perot tunneling phenom-
enon, which indeed requires a standing-wave resonance and,

FIG. 3. �Color online� �a�, �b� Phase of the magnetic field and �c�, �d� electric field distribution �snapshot in time� for the geometry of Fig.
2 with l=12.7 cm at the two tunneling frequencies f0�1.46 GHz ��a�, �c�: supercoupling effect� and f �1.82 GHz ��b�, �d�: Fabry-Perot
resonance�. Brighter colors refer to larger field amplitudes.
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therefore, an entrance and an exit side. This property may
suggest exciting potential applications in which the energy
squeezed inside the channel may be absorbed or used for
purposes different than tunneling. Such energy absorption
would indeed smother any Fabry-Perot resonance based on
multiple reflections along the channel length.

Considering only the first transition in the geometry of
Fig. 1, as depicted in the inset of Fig. 4, the reflection coef-
ficient at the entrance port is given by the following formula:

R =
�ch − �wg + iB�ch�wg

�ch + �wg − iB�ch�wg
, �7�

where once again the irrelevant small transition channel �i.e.,
the arms of the U channel� at the entrance plane has been
neglected in the calculation for simplicity. The condition of
minimum reflection is achieved when Eq. �5� is verified—
i.e., near the ENZ operation of the channel for which �ch

=�wg—providing a minimum reflection Rmin=−
B�wg

2i+B�wg
. Of

course, in this scenario no Fabry-Perot resonance may be
supported. In this case the presence of a finite abruption ad-
mittance B cannot be compensated for by slightly detuning
the supercoupling frequency; as for a finite channel length, a
nonzero reflection is always expected for finite values of B.
This phenomenon actually shows the importance of the pres-
ence of the transition channels, as considered in �11�. In the
following, we analyze their effect quantitatively.

The quasistatic equivalent susceptance of an abrupt tran-
sition like the one of interest here, uniformly filled by a
material with permittivity �, may be evaluated using varia-
tional methods �23,26�. Its value for the case at hand is given
by the following formula �26�:

B =
k0h��

�
�2 ln

h2 − hch
2

4hhch
+ � h

hch
+

hch

h
	ln

h + hch

h − hch

 , �8�

which shows how indeed a large cross-section mismatch—
i.e., hch�h—as expected, considerably increases the abrup-
tion admittance B. For hch→0, the value of B would tend to

infinity, unless the material filling the abruption region has
identically zero permittivity. This implies that the presence
of a uniform material surrounding the abruption with a low
permittivity value may sensibly lower the effects of the
abruption due to its staticlike properties discussed above.
This explains the fundamental role taken by the transition
channels, in the limit �ch→0 considered in �11�, in lowering
the value of B for such sharp abruptions. Here the transition
channels may play an equally important role in maximizing
the transmission through the abruption. Clearly, the length lab
of the transition channels inside the waveguide section
should be large enough to ensure capturing most of the eva-
nescent modes stored at the abruption in such a way that Eq.
�8� is applicable, but on the other hand it should remain
electrically small, not create unwanted extra reflection. In the
limit of �ch�0, which is of interest here, both these condi-
tions are satisfied with small values of lab, since the evanes-
cent fields are very much attenuated and concentrated by the
staticlike wave properties in the ENZ region, whereas the
electrical length of the transition channels is reduced by the
corresponding long wavelength.

Figure 4, as an example, shows the power transmission at
the entrance abruption of Fig. 1, evaluated using �25�, con-
sidering that the narrow channel is now impedance matched
at its end �as if it were ideally extended to infinity�. The
different curves correspond to different values of lab, and the
geometry corresponds to the rectangular waveguide of Fig.
2, being the ENZ response once again obtained with the
presence of a finite width w. It is evident how increasing the
length of the transition channel may enable maximal energy
squeezing and impedance matching between the two wave-
guide sections, obtaining nearly unity transmission and zero
reflection despite the huge cross-section mismatch �hch
=h /64�. Already with lab=4hch reflection at the abruption
and the associated admittance are close to zero. This effect
clearly highlights the difference between this phenomenon
and any other Fabry-Perot tunneling effect, which may not
be supported over a single abruption, as confirmed by the
plot, and therefore it confirms the distinct features of the
supercoupling phenomenon.

The figure shows that without the presence of a transition
channel �lab=0�, maximum transmission is found at the cut-
off frequency f0 of the narrow channel, but its peak is less
than 40%, due to the presence of the abruption admittance.
However, introducing the transition channels and increasing
lab, it is possible to dramatically increase the energy squeeze
inside the narrow waveguide, up to total transmission and
supercoupling in the narrow waveguide, despite the abrup-
tion and the absence of reflections at the end of the channel.
The energy in the channel may now be absorbed and used for
different purposes without affecting the supercoupling prop-
erties of the transition region, since the transmission en-
hancement is not based on the presence of the exit face of the
channel. Such an operation is not possible with Fabry-Perot
resonant tunneling, which requires the formation of a stand-
ing wave. Using Eq. �7�, the capacitance Cab associated with
the abruption when lab=0 may be evaluated as equal to 4 pF.
Its value may be dramatically reduced considering the pres-
ence of the transition channel, as shown in the curves of
Fig. 4.

FIG. 4. �Color online� Power transmission evaluated using �25�
through a single abruption in a rectangular waveguide as in Fig. 2,
with hch=0.8 mm and w=2h=10.16 cm. The outer section �orange,
darker� is filled with a material with 2�0, whereas the ultranarrow
channel �blue, lighter� has permittivity �0. lab is varied as indicated
in the legend.
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It is worth noticing how, consistent with our previous
theory, the tunneling frequency is not affected by the varia-
tion of lab, being simply related to the ENZ properties of the
narrow waveguide. Once again, the energy squeezing
achieved in this geometry has been obtained without relying
on any subwavelength inclusion to form the required ENZ
response in the narrow waveguide section, but rather is based
on the proper choice of the width w of the rectangular wave-
guide and of the two different materials—Teflon and free
space—filling the two waveguide sections, respectively.
These results may be of interest in applications that require
squeezing the electromagnetic energy from a larger conduit
to an ultranarrow channel in order to facilitate the use and
absorption of the impinging power for various purposes.

The presence of the transition channels is of extreme im-
portance in this scenario in order to achieve maximized �to-
tal� transmission into the ultranarrow waveguide by effec-
tively canceling the value of the abruption admittance B. In
the examples of the previous section where the channel had
also an exit face, the presence of the transition channel is not
strictly necessary, since supercoupling is still possible and a
finite B has the effect of just slightly detuning the tunneling
frequency. As an example, Fig. 5 shows the transmission in
amplitude and phase for a parallel-plate waveguide as in Fig.
1 �same geometry as in Fig. 3, but in the 2D case� filled with
an ideal Drude material following the same dispersion as
predicted by Eq. �1� and for a rectangular waveguide as in
Fig. 3. The two geometries are simulated both without tran-
sition channels and with lab=hch. In Fig. 5�a� the thin solid
line represents the dispersion of the �effective� �ch with fre-
quency, which crosses zero at the cutoff frequency f0.

It is noticed how the behavior of the different waveguides
is similar in the 2D and 3D geometries, consistent with the
results of �12�, and how the presence of the transition chan-
nels affects only in a minor way the supercoupling frequency
in both cases. When the transition is not present, parallel-
plate and rectangular waveguides have very similar proper-
ties, supporting tunneling at a frequency for which �ch is
negative and close to zero, as predicted by Eq. �6�. When the
channels are added, their effect shifts up the supercoupling
frequency, closer to f0. The residual value of B is slightly
larger in the rectangular geometry, for which a somewhat
larger lab would be required to tune the supercoupling fre-
quency exactly at f0, due to the larger reactive fields at the
rectangular abruption. Anyhow, Fig. 5 supports the complete
correspondence between the 2D parallel-plate problem filled
with an ideal Drude metamaterial and the rectangular geom-
etry that we have described above filled with air.

The phase of the transmission coefficient in Fig. 5�b� con-
firms the staticlike property of the ENZ channel in both con-
figurations, for which, despite its length, a total phase delay
of just few degrees is measured across the channel �com-
pared to the 214° expected if the channel were filled with the
same material as the outer waveguide section�.

As an aside, it is noted that the drastic difference between
the supercoupling phenomenon and a classic Fabry-Perot
tunneling may make the former much more robust to the
presence of losses. In fact, as proven in this section, the
suitable design of the transition channels may make the en-
trance abruption completely matched with the outer wave-

guide sections, independent of the presence of the exit face
of the channel, despite a huge cross-section mismatch. This
implies that possible presence of losses or imperfections in-
side the channel may not influence the zero reflection at its
entrance. Still the transmission may be affected by these
losses, due to the large electric field necessarily induced in-
side the channel, but the reflection at the abruption would
remain minimized. The higher-order Fabry-Perot resonances,
on the other hand, requiring a strong standing-wave contri-
bution for their sustainability, would be much more sensitive
to the presence of losses, possible absorption, or other im-
perfections.

To conclude this section, it is interesting to note that Eq.
�8� implies, as an interesting corollary, that any abruption,
discontinuity, sharp bend, or geometry or shape modification
in the ENZ channel at the supercoupling frequency would
not sensibly affect its tunneling properties. This is because
the associated propagation at the supercoupling frequency
inside the narrow channel is staticlike in nature, implying
total transmission and negligible associated evanescent fields
and abruption admittance at any of these abruptions. This is
consistent with the results in �11�, which are valid indepen-

FIG. 5. �Color online� �a� Power transmission and �b� phase of
the transmission coefficient evaluated with �25� through the channel
of Fig. 3, comparing the cases of a parallel-plate waveguide filled
by an ideal Drude metamaterial and a rectangular waveguide as in
Fig. 3, for which the material dispersion is provided by the wave-
guide width w. In the case transition channels are used, their thick-
ness is lab=hch. The thin gray line in panel �a� indicates the varia-
tion of �ch /�0 with frequency.
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dent of the specific geometry and shape of the channel in the
limit of �ch=0.

IV. ALTERNATIVE GEOMETRIES: SHRINKING AND
BENDING IN THE H PLANE

Having established a general theory for interpreting the
supercoupling phenomenon in the geometries analyzed in
�11–14�, in this section we can apply these concepts to the
design of alternative setups that may have interesting poten-
tials for various applications.

As a first example, we notice from Eq. �1� that by modu-
lating the width w of a rectangular waveguide at different
sections, it may be possible to effectively realize different
permittivity profiles, even in waveguide sections filled with
the same material. This may become particularly interesting
for the easiness of realization of the supercoupling phenom-
enon, which may avoid the use of different materials to fill
the different waveguide sections involved. For instance, in
the previous sections we have considered rectangular
waveguides having the same uniform widths in each of their
sections and we have selected different materials with differ-
ent permittivities �i.e., Teflon and air� to fill each region in
order to achieve the required effective permittivity. If the
narrow channel was designed to be at the cutoff when filled
by air at frequency f0, the rest of the waveguide was required
to support a propagating mode at the same frequency, and
therefore it was filled by Teflon, which has a larger permit-
tivity. Here, on the other hand, we consider using the same
material for all sections �for simplicity, just air�, but we
modulate the width in the channel region to achieve a similar
variation in the effective permittivity, following Eq. �1�.

In Fig. 6, we report our full-wave simulation results for
the abruption geometry designed following this concept, as
depicted in the inset of the figure. The chosen channel
lengths, its height, and the length of the transition channels
are the same as for the geometry in Fig. 2, even if now the
whole waveguide is filled with air with permittivity �0. To be
“electromagnetically” equivalent to the problem of Fig. 2,

following Eq. �1� we have increased the width of the outer
waveguide sections to w=15 cm and we have compared the
results for the two different channel lengths with those in
Fig. 2.

It can be clearly seen how the effects are very similar,
achieving a supercoupling transmission around the frequency
f0, independent of the channel length. It is interesting to
observe how in this situation the tunneling frequencies are
closer to the ideal values predicted by TL theory that neglect
the abruption loads, or in other words, how the abruption
admittance in this geometry is interestingly lower than in the
geometry in Fig. 2. This is easily explained by the fact that
an abruption in the H plane, as the one introduced by the
width variation, is well known to provide an inductive ad-
mittance, which is summed algebraically to the capacitive
one due to the sharp E plane height abruption. The two ef-
fects �one capacitive and one inductive� compensate each
other in this geometry, bringing the full-wave simulations
closer to the ideal behavior of the supercoupler with no
abruption admittance. A similar trend is verified also for the
higher-frequency Fabry-Perot resonances in Fig. 6, which, as
expected, depend strongly on the channel length and geom-
etry.

As a second important application that follows the find-
ings of the previous sections, it may be possible to consider
arbitrary bends and abruptions along the channel without
sensibly affecting the supercoupling mechanism. If bending
in the E plane has been proven theoretically �12� and experi-
mentally �14,20� in recent works, here we want to show that
a similar result may be obtained even for arguably more
arduous H-plane bends. Bending in this plane may occur
only for 3D geometries, and maintaining the ENZ properties
of the channel requires keeping the waveguide width con-
stant in the bending process. However, the robustness of the
ENZ operation, as we describe in the following, provides
sufficient flexibility in the design.

Consider the geometry of Fig. 7, which consists of similar

FIG. 7. �Color online� Geometry and electric field distribution
�snapshot in time, normal component� through a supercoupler with
a 90° bend in the H plane. The average rotation radius in this case
is R=17.8 cm. The corresponding time-domain animation has been
reported in �27�.

FIG. 6. �Color online� Power transmission, evaluated using �25�,
through a similar geometry as in Fig. 2, but varying the width w in
the different waveguide sections instead of varying the material
filling the waveguide, as depicted in the inset.
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waveguide geometry as in Fig. 6—i.e., rectangular
waveguides with width w=15 cm and height h=5.08 cm,
connected through an ultranarrow channel of height hch
=h /64=0.8 mm bending by 90° in the H plane. All the
waveguide sections are filled by air, and therefore we have
employed the technique of shrinking the H-plane width, as
described above, to achieve ENZ operation of the channel at
frequency f0, having a smaller width wch=10.16 cm, consis-
tent with Fig. 6. The channel rotates in the H plane with an
average radius of curvature R=17.8 cm, maintaining the
same width all over the bend. Proper transition channels are
also considered at the E-plane abruptions, consistent with the
previous discussion, with lab=hch.

Figure 8�a� reports the transmission coefficients through
the bend for two different radii of curvature, as simulated
with �25�. Notice that, despite the channel length, which in
this case is relatively long, the huge cross-section mismatch,
and the bending in the H plane, total transmission is
achieved, independent of the length of the channel and its
radius of curvature, at the ENZ operation frequency f0. Other
Fabry-Perot resonant peaks are visible also in this scenario at
higher frequencies, even though they are very much depen-
dent on the length of the channel and on its shape. For what
discussed above, they would also be more sensitive to pos-

sible material imperfections, absorption and losses, being
based on a truly resonant phenomenon substantially different
from the matching mechanism at the basis of the supercou-
pling.

Figure 7 also reports the distribution of the normal com-
ponent of the electric field distribution �snapshot in time�
along the waveguide at the supercoupling frequency f0 for
the geometry corresponding to the black line in Fig. 8�a�.
Besides the energy squeezing and tunneling across the nar-
row channel, we notice that the phase is nearly uniform all
over the channel. Despite its total length �the total length of
the longer �outer� part of the channel is 36 cm�1.8�0, with
�0 being the wavelength in free space�, the phase is trans-
ported in a static like fashion from entrance to exit of the
channel, despite abruptions in the E and H planes and bend-
ing. This is even more evident in the corresponding time-
domain field animation, deposited in EPAPS �27�.

For a smaller radius of curvature case �red line in Fig.
8�a��, Fig. 8�b� reports the geometry and the corresponding
real part of the Poynting vector distribution on the bottom

FIG. 9. �Color online� �a� Geometry and electric field distribu-
tion �snapshot in time, normal component� and �b� amplitude and
phase of the transmission through a supercoupler, consistent with
the geometry of Fig. 7, but with a 90° bend in the H plane following
a 90° bend in the E plane.

FIG. 8. �Color online� �a� Power transmission for the geometry
of Fig. 7. �b� Real part of Poynting vector distribution on the H
plane with R=12.7 cm at the cutoff frequency f0.
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plane cross section. It is evident how the energy is dramati-
cally squeezed in the ultranarrow channel and, despite the
bending, the power is completely channeled towards the exit
face at the supercoupling frequency.

As a final example, Fig. 9 reports the full-wave simulation
results for a geometry in which the supercoupler channel in
Fig. 7 is cascaded by another 90° bend, this time in the E
plane. Despite the huge abruptions, width squeezing, bend-
ings, and manipulation of the channel geometry, consistent
with the previous discussion, total transmission and zero
phase delay are again achieved at the same ENZ frequency
f0. Once again, the whole geometry is filled with air and the
ENZ operation is achieved by proper choice of the channel
width. The field distribution �Fig. 9�a�� and transmission
�Fig. 9�b�� are strikingly consistent with the previous discus-
sions.

V. CONCLUSIONS

To conclude, we believe that the results presented in this
extensive analysis may shed light and insight onto the super-
coupling effect, energy squeezing, and anomalous tunneling
effect produced by ENZ materials. Following our TL inter-
pretation of this phenomenon, we have shown the drastic
differences between this phenomenon and Fabry-Perot reso-
nant tunneling and we have envisioned and presented alter-
native setups to achieve similar effects, involving hollow
waveguides properly designed and connected. These results
may be of importance for several applications, spanning
waveguide connections and coupling, filtering, sensing,
power conversion, and absorption. Applying analogous con-
cepts to plasmonic waveguides at the cutoff, the possibility
of extending these concepts at optical frequencies may be
also envisioned.
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