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We demonstrate that metamaterials formed by split ring resonators may exhibit strong spatial dispersion
when the effective permeability is near zero. It is shown that the nonlocal effects can be characterized using a
generalized Clausius-Mossotti formula. The proposed theory is verified using full wave simulations.
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Currently the most popular approach to create materials
with a magnetic response is based on split ring resonators
�SRRs�. These particles are formed either by a pair of copla-
nar metallic rings,1 or alternatively, in order to eliminate the
bianisotropic response,2 by two parallel rings �see Fig. 1�.
Lattices of SRRs are widely used as components of left-
handed materials3 and indefinite media.4 Their response is
usually assumed to be local. In this work, we demonstrate
that orthorhombic and bcc lattices of SRRs cannot be de-
scribed by local material parameters when the effective per-
meability is near zero. It is shown that in such regime it is
necessary to take into account spatial dispersion effects in
order to properly describe wave propagation. It is proven that
such nonlocal effects can be characterized using a general-
ized Clausius-Mossotti �CM� formula with the interaction
constant dependent on the wave vector.

Let us consider an orthorhombic lattice of SRRs �see Fig.
1�, which traditionally is described as a uniaxial material
with the effective parameters:
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The magnetic response of a generic SRR can be character-
ized by the magnetic polarizability �, which relates the in-
duced magnetic dipole moment m and the local induction
field Bloc�r�:

m = ��Bloc,z�, � = ���r
2
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where �Bloc,z�= 1
S�Bloc�r� .ds represents the local field aver-

aged over the area S=�R2 of the SRR, �r=1 /�LC is the
resonant frequency, and L and C are the self-inductance and
capacitance given by:
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These parameters are obtained as in Ref. 5 but taking also
into account the value of the ring angular width �.

The classical CM formula yields the following estimation
for the effective permeability:
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Here C is an interaction constant given explicitly in Ref. 6, p.
758. It is well-known that for a simple cubic lattice, C
=1 /3a3. Since the magnetic response can be enhanced by
closely packing the inclusions, here we will consider an
orthorhombic lattice such that az=0.5a. In this case, the in-
teraction constant is equal to C=3.1 /a3. This classical inter-
action constant is obtained under the approximation that the
local field is uniform and does not vary from cell to cell.
Such approximation typically yields satisfactory results, es-
pecially in the long wavelength limit. However, in our pre-
vious work,7 it was demonstrated that near a resonance the
classical theory does not fully describe all the physics and
phenomena. Here, we will demonstrate that a similar situa-
tion occurs when the effective permeability is near zero.

Following Ref. 7 the Clausius-Mossotti formula can be
generalized to

���,k� = 1 +
1

aza
2

1

�−1��� − C��,k�
, �5�

where k= �kx ,ky ,kz� is the wave vector, and C�� ,k� is the
spatially averaged �over the area of the SRR in the unit cell�

zz component of the interaction dyadic C̄̄int�r ;� ,k� defined
in Ref. 7.

x

y

z

d

a

az
R
�t

FIG. 1. �Color online� Geometry of an orthorhombic lattice
a�a�az of broadside coupled SRRs. Each ring covers an angular
sector defined by the angle � and has mean radius R. The rings are
made of metallic wires with radius r. The mean distance between
rings is d.
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Unlike classical theory, the results of Ref. 7 fully take into
account the dependence of the interaction constant on fre-
quency and wave vector. Since the SRRs considered in this
work are relatively large, the interaction constant is averaged
over the area of the ring. In fact, for the lattices considered
here, the interaction constant varies significantly over the

unit cell and thus the approximation C̄̄int�r ;� ,k�

� C̄̄int�0;� ,k� used in Ref. 7 may be highly inaccurate for
large rings.

In general, C�� ,k� has to be evaluated numerically for
each �� ,k�. Nevertheless, we found out that for lattices with
az�a, C�� ,k� depends mainly on the parameters � and kz,
and can be fairly well approximated by the analytical expres-
sion,

C��,k� � �C0 + C1�cos�kzaz� − 1� + C2��a

c
	2� 1

a3 , �7�

where the constants C0, C1, and C2 depend on the lattice
structure and on the radius R of the SRRs. These constants
can be determined numerically following ideas similar to
those described in Ref. 7. For example, for an orthorhombic
lattice with az=0.5a and for SRRs with mean radius R
=0.4a, it can be verified that C0=1.64, C1=0.43, and C2
=−0.12.

The value of the constants Ci �i=1,2 ,3� may depend ap-
preciably on the radius R of the particles. Indeed, for point
particles with vanishingly small radius R, we obtain C0
=3.1, C1=1.7, and C2=−0.07. This significant dependence
on R is a consequence of the local field varying very in-
tensely near a lattice point for orthorhombic lattices with
az	a, as mentioned before. Notice that for rings with very
small radius, formula �5� reduces to the classical CM formula
�4� when �=0 and k=0.

The physical reason for the emergence of spatial disper-
sion is the intrinsic granularity of the composite material
which may cause the dipole-like interactions �described by
the interaction constant� to depend appreciably on the spe-
cific phase shift between adjacent particles. Notice that
within the approximation �7�, the permeability depends only
on � and kz, and thus for propagation along directions par-
allel to the xoy plane the structured material has a local re-
sponse.

In order to check the accuracy of the analytical model
�Eq. �5��, we used the full wave homogenization method
proposed in Ref. 8 to extract the effective parameters of a
lattice of SRRs with the parameters indicated in the legend
of Fig. 2. The extracted effective permeability �solid black
line� and permittivity �solid dashed line� are depicted in Fig.
2 as a function of normalized frequency. The effective per-
meability has a resonance at �a /c=0.76. These local effec-
tive parameters are meaningful only when the spatial disper-
sion effects are weak. It is thus interesting to compare the
extracted � with the values predicted by the classical CM
formula �solid red line� and the nonlocal homogenization
model �Eq. �5�� �solid blue line�. Figure 2 shows that the

classical CM formula does not predict accurately the reso-
nance frequency because it overestimates the interaction be-
tween the rings. The results obtained with our new model are
significantly better.

To assess the effect of possible spatial dispersion effects,
we have calculated the band structure of the material using
the full wave hybrid plane-wave-integral-equation method
proposed in Ref. 9 along the Z
 and 
X segments of the
Brillouin zone, where X= �� /a ,0 ,0� and Z= �0,0 ,� /az�. The
dispersion diagram of the first few modes is shown in the left
panel of Fig. 3 �solid black lines� and compared to results
predicted by the nonlocal homogenization model �Eq. �5��
�solid blue lines� and by the CM-classical formula �Eq. �4��
�dashed green lines�. These analytical results were obtained
by solving the well-known dispersion equation for transverse
electric �TEz� waves in uniaxial media,

kx
2 + ky

2 + �kz
2 = ����

c
	2

. �8�

As illustrated in Fig. 2, the permittivity varies slowly in the
considered frequency range, and thus for simplicity we have
approximated it by its static value: ��1.9.
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FIG. 2. �Color online� Effective permittivity and permeability of
a lattice of SRRs with rw=0.005a, d=0.04a, �=350°, R=0.4 a,
and az=0.5a.
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FIG. 3. �Color online� Left panel: Dispersion diagram for an
orthorhombic lattice of SRRs. Right panel: Dispersion diagram for
a bcc lattice of SRRs. The SRRs have the same parameters as in
Fig. 2. Dashed �green/light gray� lines: CM-classical model. Solid
�thick� blue/dark gray lines: nonlocal homogenization model. Solid
�thin� black lines: full wave simulations.
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As seen in Fig. 3, a good qualitative agreement is ob-
tained between our nonlocal homogenization model and the
full wave results. Apart from the shift of the resonance fre-
quency, the main difference between the classical CM theory
and the nonlocal homogenization results is the nearly flat line
in the Z
 segment. It can be easily verified from Eq. �8� that
this line corresponds to longitudinal modes �magnetic field is
along the direction of propagation z� with the dispersion
characteristic �=0. The classical model �Eq. �4�� predicts
that the dispersion relation of these modes is completely flat,
since � does not depend on the wave vector. In a different
manner, the nonlocal model �Eq. �5�� predicts that the band
associated with longitudinal modes has a positive slope. This
is consistent with the full wave results �solid black lines�,
even though the full wave results predict a slightly smaller
slope than that yielded by our homogenization model. These
results indicate that spatial dispersion effects may be impor-
tant at the plasma frequency for which �=0, especially for
propagation along directions close to the z axis.

In order to further investigate these effects, we have cal-
culated the isofrequency contours in the plane X
Z �Fig. 4�.
The insets in the graphics indicate the values of the associ-
ated normalized frequency �a /c. Panel �a� shows the con-
tours predicted by the classical CM model. For frequencies
below the resonance frequency the contours are elliptic
�black contours, e.g., �a /c=0.63�. For frequencies very
close to the resonance ��=��, the contours are nearly flat
�e.g., �a /c=0.66�. Above the resonance the effective perme-
ability becomes negative and the medium is indefinite with
hyperbolic contours �blue contours�. As the effective perme-
ability approaches zero, the asymptotes of the hyperbolas are
closer and closer to the z axis, and when the permeability is
exactly zero the dispersion contour collapses into the z axis.
For frequencies corresponding to permeability values above
zero �red contours, e.g., �a /c=0.74�, the contours become
again elliptic.

It is interesting to compare the isofrequency contours pre-
dicted by the classical CM model, with the results obtained
using the nonlocal theory �panel �b� of Fig. 4�. A simple
inspection of the two plots shows that the isofrequency con-
tours are completely different for frequencies in the range
0.80��a /c�0.90, i.e., for frequencies such that ��0. In

particular the contours associated with the green insets
��a /c=0.815,0.825,0.837� are neither elliptic nor hyper-
bolic, but instead have both elliptic and hyperbolic compo-
nents. This indicates that at these frequencies two different
eigenwaves with the same �TEz� polarization can propagate
in the material. This phenomenon was originally reported in
Ref. 10 and is a consequence of the nonlocal material re-
sponse. It is important to underline that in general the modes
associated with these contours are not longitudinal, and thus
it is expected that both modes can be excited in typical con-
figurations, as the analysis of Ref. 11 suggests.

The described results are completely consistent with full
wave simulations9 �panel �c� in Fig. 4�. In fact, apart from a
slight difference between the frequency values associated
with contours, the qualitative variation with frequency of the
contours of panels �b� and �c� is very similar. This confirms
the existence of significant spatial dispersion effects in
metamaterials formed by SRRs. Our simulations �not shown
here� indicate that these effects are increasingly important
when az /a is decreased. On the other hand, for very long
wavelengths a /�	0.1, the effects of spatial dispersion may
become less relevant because the interaction constant be-
comes independent of kz in the limit a→0 and thus the ma-
terial response may become nearly independent of the wave
vector, even for values of kzc /� that are relatively large.
However, in practice it is extremely difficult to design SRRs
with a sufficiently high capacitance that may enable a strong
magnetic response at the required low values of a /�, particu-
larly at the infrared and optical regimes.

We have also analyzed the effect of shifting adjacent
planes of SRRs by the half-lattice constant along the x- and
y-directions, so that the primitive vectors of the lattice be-
come a1= �1,0 ,0�a, a2= �0,1 ,0�a, and a3= �0.5,0.5,0.5�a. It
can be verified that for such primitive vectors the particles
are packed into a bcc lattice. The classical interaction con-
stant for point particles arranged into a bcc lattice is C
=1 / �3Vcell�=0.67 /a3, where Vcell=0.5a3 is the volume of the
unit cell. On the other hand, for SRRs with radius R=0.4a,
our theory predicts that the averaged interaction constant is
described to a first approximation by Eq. �7� with C0=0.72,
C1=−0.45, and C2=−0.17. Notice that the coefficient C1,
which describes the effects of spatial dispersion, has a differ-
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FIG. 4. �Color online� Isofrequency contours for an orthorhombic lattice of SRRs with the same parameters as in Fig. 2: �a� local model,
�b� nonlocal model, and �c� full wave simulation. The insets indicate the value of the corresponding normalized frequency �a /c.
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ent sign as compared to the coefficient C1 associated with the
orthorhombic lattice considered previously. This change of
sign has an important consequence: The longitudinal modes
become backward waves. This phenomenon is clear from the
band structure diagram in the right-hand side panel of Fig. 3
and is also completely supported by full wave simulations.

It is also evident from Fig. 3 that the classical CM model
is more accurate for a bcc lattice than for an orthorhombic
lattice, predicting almost exactly the resonance and plasma
frequencies of the material. In fact, for a bcc lattice, the
classical value of C is almost coincident with the value of C0
given by our nonlocal model, showing that the despite the
large diameter of the rings, the SRRs can be accurately mod-
eled as point particles.

The isofrequency contours for the bcc lattice are depicted
in Fig. 5. It is remarkable how different the contours are as
compared to the orthorhombic case. Indeed, slightly below
the plasma frequency the hyperbolic contours become el-
lipses that shrink into a point as �→0− and transform into a
line segment when �=0+. When the permeability becomes
slightly positive, �=0+, the isofrequency contours are very

similar to those predicted by the classical local model. Thus,
for a bcc lattice the spatial dispersion effects seem to be
more important in the regime where the structure behaves as
an indefinite medium ��0, being not so relevant when �
0. In particular, unlike in the case of an orthorhombic lat-
tice, in the regime �0 only a single propagating mode can
be excited. This suggests that the increased symmetry of the
bcc lattice may help to some extent to make the response of
the material local.

In conclusion, it was demonstrated that metamaterials
formed by magnetic scatterers may suffer from strong spatial
dispersion in the regime where � is near zero. Such effects
can be accurately described by a generalized Clausius-
Mossotti formula. These findings are confirmed by full wave
simulations.
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FIG. 5. �Color online� Isofrequency contours for a bcc lattice of SRRs: �a� local model, �b� nonlocal model, and �c� full wave simulation.
The insets indicate the value of the corresponding normalized frequency �a /c.
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