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Non-Hermitian photonic spin Hall insulators
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Photonic platforms invariant under parity (P), time-reversal (T ), and duality (D) can support topological
phases analogous to those found in time-reversal invariant Z2 electronic systems with conserved spin. Here, we
demonstrate the resilience of the underlying spin Chern phases against non-Hermitian effects, notably material
dissipation. We identify that non-Hermitian, PD-symmetric, and reciprocal photonic insulators fall into two
topologically distinct classes. Our analysis focuses on the topology of a PD-symmetric and reciprocal parallel-
plate waveguide (PPW). We discover a critical loss level in the plates that marks a topological phase transition.
The Hamiltonian of the PT D-symmetric system is found to consist of an infinite direct sum of Kane-Mele-type
Hamiltonians with a common band gap. This structure leads to the topological charge of the waveguide being
an ill-defined sum of integers due to the particle-hole symmetry. Each component of this series corresponds to a
spin-polarized edge state. Our findings present a unique instance of a topological photonic system that can host
an infinite number of edge states in its band gap.
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Topological photonics [1,2] establishes a unique paradigm
to create unidirectional channels immune to back-scattering.
The topological protection of Chern insulators originates from
an electromagnetic “quantum Hall effect” rooted in the time-
reversal symmetry breaking [3,4]. Time-reversal invariant
photonic structures also may host a plethora of topological
phases [5–15], such as the optical counterpart of the quantum
spin Hall state [16,17]. Due to the distinct nature of fermionic
and bosonic systems, additional symmetries, such as dual-
ity symmetry which ensures balanced electric and magnetic
responses, are essential for establishing Z2 topological pro-
tection in photonic platforms [9,18].

To our best knowledge, the most general symmetry trans-
formation that can enable the Z2 topological protection in
photonic systems is a combination of the parity (P), time-
reversal (T ), and duality (D) operators, T̃ = PT D [9,18–20].
The T̃ operator may be regarded as a pseudo-time-reversal
operator, as it is antilinear and satisfies T̃ 2 = −1. This prop-
erty ensures that photonic states in a PT D symmetric system
are degenerate, in accordance with Kramers’ theorem [9,18].
Moreover, it implies the existence of a basis where the sys-
tem’s scattering matrix is anti-symmetric [18]. Importantly,
in systems with an odd number of bidirectional propagation
channels, this property implies that light transport can occur
without back-reflections [18].

Recently, the study of topological phases was extended
to non-Hermitian systems through a generalization of the
notion of band gaps to complex spectra [21–33]. How-
ever, previous studies on PT D-symmetric systems dealt
exclusively with energy conserving (Hermitian) platforms
[19,20,34–36]. Here, we study the impact of non-Hermitian
effects, notably material dissipation, on the topological phases
of PT D-symmetric systems. In time-reversal-invariant

electronic systems, the topological protection of the edge
channels is stronger when spin is also conserved [37]. A
mapping can be established between the Z2 invariant and
the Z-valued Chern numbers associated with the spin sectors
[38]. The topological indices of the spin sectors offer the most
comprehensive description of the properties of the edge states.
In PT D-invariant optical platforms, light modes also have a
preserved polarization (pseudospin). Therefore, we focus on
the Z-valued Chern numbers of the pseudospin sectors. We
discover that these topological indices demonstrate remark-
able resilience to material absorption. Notably, we identify a
topological phase transition controlled by the strength of the
loss parameter. This transition is characterized by exceptional
mode degeneracies and resonant energy absorption. More-
over, the topological charge of our system is characterized
by a nonconvergent sum of integers. This distinct feature is
a consequence of the particle-hole symmetry of the spectrum
of photonic systems and is manifested by the emergence of an
infinite number of edge states within the topological band gap.

Our system consists of a parallel-plate waveguide [see
Fig. 1(a)], where the electromagnetic responses of the top
and bottom plates are interconnected through electromag-
netic duality [19,39]. Each plate is modeled by an impedance
boundary condition, defined as Zi n̂ × H = E tan with n̂ the
unit normal vector to the plate, oriented towards the dielec-
tric. Here, E tan is the tangential electric field and Zi the
surface impedance of the i = +/− (top/bottom, respectively)
plate. Similar to Ref. [18], we consider the parity transforma-
tion (x, y, z) → (x, y,−z) that exchanges the positions of the
plates, and the duality mapping D : (E, H ) → (HZ0,−E/Z0)
that converts Z+ → Z− and vice versa (Z0 is the vacuum
impedance). The composition of these two transformations
leaves the air region of the guide unaltered. The system is
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FIG. 1. (a) Structure of the PD-symmetric parallel-plate waveg-
uide with a dielectric block (air) of width a in between two
impedance surfaces. (b) Real ω′

n and (c) imaginary ω′′
n parts of

the eigenfrequencies as functions of k. We choose s = + (positive
bands) and consider the first few guided modes: n = 1, 2, 3. Dashed
(solid) curves refer to ρ = 0 (ρ = 0.6). ω′′

n in (c) is normalized to the
function F (ρ ). (d) Projected band structure in the complex plane for
the case ρ = 0.6. Positive (negative) frequency branches are in red
(blue). The frequency values for k = 0 are marked by solid dots.

parity-duality (PD) symmetric if and only if the two surface
impedances satisfy Z+Z− = Z2

0 [40].
For simplicity, we assume the surface impedances Z± to

be real and frequency independent, defined as Z± = Z0ρ
±1,

where ρ is the normalized resistivity parameter. When ρ = 0,
the plates act as perfect electric (PEC) or magnetic (PMC)
conductors, as in Ref. [19]. In our analysis, ρ is allowed to
span real values. Positive ρ values indicate that the plates
are dissipative. Conversely, negative ρ values correspond to
active (amplifying) plates. The waveguide is Hermitian and
time-reversal invariant (PT D-symmetric) only when ρ = 0.

In the following, we denote a point in space (x, y, z) by (z),
and the mirror-symmetric point (x, y,−z) by (−z). For PD-
symmetric and reciprocal systems, such that ε(z) = μ(−z),
the frequency-domain (source-free) Maxwell equations can be
split into two independent sets of equations [19]

± ic

ε(z)

⎛
⎝

0 ∂z ∂y

−∂z 0 −∂x

∂y −∂x 0

⎞
⎠�±(−z) = ω�±(z), (1)

that are formally equivalent to Ĥ±�±(z) ≡ ω�±(z) with the
eigenstates �± written in terms of the electric and mag-
netic fields E and H as �±(z) = [Ex(z) ∓ Z0Hx(−z), Ey(z) ∓
Z0Hy(−z), Ez(z) ± Z0Hz(−z)]ᵀ [19]. The “polarization” as-
sociated with the superscript “+” or “−” is conserved and
represents an internal degree of freedom. We refer to it as
pseudospin and to the modes �± as pseudospinors, following
the terminology of topological photonics. Here, c denotes the
speed of light in vacuum and ω is the oscillation frequency.
As E = 1

2 (�+ + �−), the dynamics of the electric field is
controlled by the dynamics of the two pseudospinors [Eq. (1)].
Different from the original Maxwell’s equations, the dynam-
ics of the pseudospinors is strongly nonlocal, as the two sides
of Eq. (1) are evaluated at mirror-symmetric points. Interest-
ingly, the pseudospin decomposition remains valid even when

the plate walls or the dielectric are lossy. In our guide, the
dielectric is air (ε = μ = 1), so that non-Hermitian effects
arise exclusively due to the plates.

In the Hermitian case, where both the dielectric and the
plates are lossless, the eigenstates with pseudospin “+” can
be transformed into eigenstates with pseudospin “−” using the
time-reversal operator. While such a construction is not feasi-
ble in the non-Hermitian case, a crucial observation is that the
electromagnetic reciprocity of the system guarantees that the
total topological charge vanishes [21], similar to the fermionic
case [44]. Thereby the Chern indices of the operators Ĥ± in
Eq. (1) must be exactly balanced: C+ + C− = 0. Therefore,
PD-symmetric reciprocal systems may host nontrivial topo-
logical phases determined by the invariant C+ = −C−. In the
following, we apply the non-Hermitian topological band the-
ory to determine the phase diagram of the nonlocal operators
Ĥ± [22].

Since the system is invariant under continuous transla-
tions in the xoy plane, the eigenstates can be factorized as
�±(r, t ) = �±

k (z)e−iωt eik·r, where k is an in-plane real-valued
wave vector of magnitude k. The pseudospinors are found by
first solving Maxwell’s equations subject to the appropriate
boundary conditions in the guide, and then projecting the field
solutions onto the pseudospinor subspaces [40]. Because the
PPW is also invariant under arbitrary rotations around the
z-axis, it is convenient to write the eigenstate in terms of the
unit vectors (k̂, ẑ × k̂, ẑ). In this basis, the coordinates of the
pseudospinors are

�±
k,n(z) ∝

⎛
⎜⎜⎝

∓(e−iκnz + hneiκnz )

− ωn
cκn

(eiκnz − hne−iκnz )

∓ k
κn

(e−iκnz − hneiκnz )

⎞
⎟⎟⎠, (2)

where n = 1, 2, . . . , labels different modes, κn is a transverse
wave number, ωn is the eigenfrequency, and hn ≡ eiκna ωn−cρκn

ωn+cρκn
.

For each k real-valued, the transverse wave number satisfies
the modal equation

e2iκna = ωn + cρκn

ωn − cρκn

ρωn + cκn

ρωn − cκn
, (3)

with ωn = s × c
√

k2 + κ2
n and s = ±. Each eigenmode is as-

sociated with an in-plane wave vector k, with an integer n
that identifies the band and with s = ± that specifies the
square root branch. Importantly, the modal equation is inde-
pendent of the pseudospin, resulting in an identical spectrum
for the operators Ĥ±. When k = 0, the modal equation yields
analytical solutions κn = (2n − 1)π/2a − s × iF (ρ)/a [40]
with F (ρ) = sgn(ρ) ln

∣∣ |ρ|+1
|ρ|−1

∣∣. These solutions are extended
numerically to k > 0 via a Nelder Mead minimization scheme
[40], allowing us to obtain the corresponding frequencies. We
shall see that the singularities ρ = ±1 in the function F (ρ)
play an important role in the topological properties of the
waveguide.

Figures 1(b) and 1(c) show how the real ω′
n and imaginary

ω′′
n frequency parts vary with k, in systems with ρ = 0 (dashed

lines) and ρ = 0.6 (solid lines). If the system is conservative
(ρ = 0), the modal Eq. (3) reduces to e2iκna = −1, so the
frequencies are real-valued, as expected. In the dissipative
case (ρ = 0.6), the frequencies exhibit complex values.
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FIG. 2. (a), (b) High-order (n = 2, 3) frequency bands projected on the complex plane, with (a) δ = 1 − |ρ| = 10−3 and (b) δ = 10−6.
The frequencies associated with k = 0 are represented by solid dots. (c)–(e) First-order branches (n = 1) near the critical resistivity ρ = 1
(δ → 0+). (f) Topological phase diagram. The values of C+

n are given for the range of ρ where they are defined. The gap is closed in the
white-shaded regions, near ρ = ±1.

Figure 1(d) displays the projected band structure for ρ =
0.6, representing the locus of ωn(k) for all k real-valued.
Notably, the diagram exhibits a mirror symmetry about the
imaginary frequency axis: ωn → −ω∗

n . This symmetry, stem-
ming from the reality of the electromagnetic field, correlates
the positive and negative parts of the photonic spectrum
(s = ±), and is known as the particle-hole symmetry [40].
The positive and negative frequencies are separated by a gap
on the complex plane (beige vertical strip). The frequency
branches are disjoint, meaning they exhibit no intersections or
self-intersections. These characteristics are typical of the band
structure, except when the resistivity approaches ρ = ±1. The
band structure resides in the lower (upper) half of the complex
plane when ρ > 0 (ρ < 0), indicative of the plates being lossy
(active).

The topological classification of a generic non-Hermitian
operator Ĥ �= Ĥ† requires a biorthogonal basis of left φL

n and
right φR

n eigenstates, such that Ĥ†φL
n = E∗

n φL
n and ĤφR

n =
Enφ

R
n , with En generally being complex-valued [22]. In

the Supplemental Material [40], we extend the standard
non-Hermitian topological band theory to nonlocal oper-
ators in continuous platforms [45]. The detailed analysis
shows that the Chern number of the nth band is C+

n =
s × (−1)n+1sgn(δ) with δ = 1 − |ρ|, and s = +/− for
positive/negative bands [40]. As previously noted, C−

n = −C+
n

due to reciprocity. Remarkably, the critical values ρ = ±1
separate distinct topological phases.

Figures 2(a) and 2(b) show that high-order photonic
branches (n = 2, 3, . . . , ) remain disconnected in the vicinity
of ρ = 1. Yet, as ρ → 1−, their imaginary parts descend along
the imaginary frequency axis. At the critical resistivity ρ =
1, the bands diverge, touch at infinity, and their topological
charges switch sign. The evolution of the n = 1 branches is
distinct: the gap between the positive and negative frequency
spectra is initially open [Fig. 2(c)], but it closes as ρ → 1−.
Specifically, when ρ = 0.943, the positive and negative n = 1
bands intersect at a single point ωn = −2.55 i c/a for k =
1.36/a [Fig. 2(d)]. As the resistivity further increases, this
degeneracy extends to a line along the imaginary frequency
axis [Fig. 2(e)]. The band gap then reopens for ρ > 0.943−1.
This specific resistivity range, where the gap remains closed,
is dictated solely by the planar geometry of the system [40].

The gapped phases of the PPW are linked by an interme-
diate series of exceptional points (EPs) [46–50]. These EPs

emerge when the n = 1 bands intersect over the imaginary
axis (ω′

n = 0), resulting in the coalescence of the correspond-
ing pseudospinors. Owing to the system cylindrical symmetry,
the EPs form a annulus ring. As the resistivity nears its
critical value, δ → 0, the decay rate of the EPs diverges log-
arithmically ω′′

n ∼ (c/a) ln |δ|−1. Thus, the topological phase
transition is marked by enhanced absorption, a phenomenon
that parallels other photonic systems [22,26–33,51–57].

Figure 2(f) presents the detailed topological phase dia-
gram for C+

n . Intriguingly, at a given resistivity ρ, the Chern
numbers of different bands alternate between +1 and −1.
According to the principle of bulk-edge correspondence, the
gap Chern number is correlated with the net number of reflec-
tionless states that propagate at a material interface [1,2,58].
The gap Chern number is determined by the sum of the
contributions from all bands below the gap. For instance, for
a gapped system with −1 < ρ < 1, the gap Chern number
for the pseudospin “+” is given by C+

gap = −1 + 1 − 1 . . . .
This sequence is notably nonconvergent, a feature that is quite
unique in the realm of topological physics. This property
can be attributed to the particle-hole symmetry characteristic
of photonic systems [40,59]. Indeed, this symmetry implies
that the band diagram comprises an infinite number of bands
below the zero-frequency gap, resulting in the nonconvergent
series. It is important to contrast this with condensed matter
systems, where the total topological charge is always finite
due to the existence of a well-defined ground state.

To elucidate the implications of the non-convergent se-
ries, we next turn our attention to the edge states at the
system boundary and their association with the topological
charge. For simplicity, our analysis is concentrated on the
ρ = 0 case. This is because non-Hermiticity is known to
impact [22,28,29,46,60], and in some cases even challenge
[61–64], the bulk-edge correspondence. Remarkably, under
the Hermitian condition, the label “n” that identifies the bulk
bands continues to be a valid quantum number [40]. This
remains true even when the waveguide is closed with a PT D-
symmetric lateral vertical wall with an arbitrary contour.
Thus, the physical waveguide can be conceptualized as a jux-
taposition of infinitely many uncoupled virtual waveguides, as
sketched in Fig. 3. All the virtual waveguides share a common
band gap that separates the positive and negative frequency
bands. Each bulk virtual guide describes a degenerate two-
band Kane-Mele type model [16].
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FIG. 3. Conceptualization of the physical guide terminated with the lateral wall as a juxtaposition of infinite virtual guides. For the
pseudospin “+”, the Hamiltonian Ĥ+ is the infinite direct sum of partial Hamiltonians Ĥ+

n . Positive/negative bulk modes are shown in
red/blue tones. The edge waves associated with the quantum numbers n = 1, 2, 3 are marked in green, gray, and pink, respectively. The edge
modes are shown pictorially with arrows along the lateral wall and are gapless. The details of the simulations and analytical derivations can be
found in the SM [40].

Focusing our attention in the “+” spin polarized waves, the
previous discussion shows that the operator Ĥ+ can be written
as a direct sum of the Hamiltonians associated with the virtual
guides: Ĥ+ = Ĥ+

1 ⊕ Ĥ+
2 ⊕ · · · (see Fig. 3). The operator Ĥ+

n
has a single band below the gap, and has a well-defined
topology determined by the “charge” C+

n = (−1)n. Thus, the
bulk-edge correspondence implies that each virtual guide sup-
ports exactly one “+” polarized unidirectional edge state. The
direction of propagation of the edge state of Ĥ+

n is strictly
locked to the sign of the respective gap Chern number [58].
In the Supplementary Material, we present closed analytical
formulas for the edge states supported by a straight lateral
wall [40]. Consistent with the bulk-edge correspondence, each
virtual guide accommodates a single gapless edge state (with
“+” polarization), with the direction of propagation depen-
dent on the parity of n (see Fig. 3) [40]. Therefore, the physical
guide hosts an infinite number of gapless scattering-immune
edge-states, each corresponding to a term in the ill-defined
series C+

gap = −1 + 1 − 1 + . . . . In this example, the edge-
states are backward waves [40].

In summary, we introduced a novel class of non-Hermitian,
PD-symmetric, and reciprocal photonic insulators. Our find-
ings demonstrate that, despite the non-Hermitian nature
of these systems, Maxwell’s equations can be decou-
pled into spin-up and spin-down states, interconnected by
PD-symmetry. Notably, the Chern numbers associated with

one of these spin sectors are nonzero, revealing a nontrivial
topological characteristic within the sector. We identified two
distinct topological phases, differentiated by the degree of
material dissipation. The transition between these phases is
characterized by the merging of the positive and negative fre-
quency spectra, leading to the formation of a ring of EPs. This
phenomenon is particularly significant as it is associated with
resonant energy absorption when the impedance of the plates
matches that of the dielectric. Moreover, our study uncovered
a unique topological phase characterized by a nonconvergent
gap Chern number. We elucidated that this peculiar behavior
stems from the particle-hole symmetry. By correlating each
term of the divergent series with a topologically protected
edge state at the system boundary, we have provided a precise
interpretation to this otherwise ill-defined series.
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