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Shaking photons out of a topological material
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Over the past decade, there has been great interest in topological effects, with concepts originally developed
in the context of electron transport in condensed matter platforms now being extended to optical systems. While
topological properties in electronic systems are often linked to the quantization of electric conductivity observed
in the integer quantum Hall effect, a direct analog in optics remains elusive. In this paper, we bridge this gap
by demonstrating that the response of the Poynting vector (which may be regarded as a photon current) to
mechanical acceleration of a medium provides a precise photonic analog of the electric conductivity. It is shown
that the photonic conductivity determines the energy irreversibly transferred from periodic mechanical driving
of the medium to the electromagnetic field. Furthermore, it is demonstrated that, for nonreciprocal systems
enclosed in a cavity, constant acceleration of the system induces a flow of photons along a direction perpendicular
to acceleration, analogous to the Hall effect but for light. The spectral density of the photonic conductivity is
quantized in the band gaps of the bulk region with the conductivity quantum determined by the gap Chern
number.
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I. INTRODUCTION

Many similarities and connections between optics and
condensed matter physics have been uncovered and stud-
ied throughout the years, with recent examples including
the emerging field of topological physics [1–9]. An exciting
property of topological materials is that they may support
topologically nontrivial unidirectional edge states immune to
backscattering [3–5]. In condensed matter physics, the non-
trivial topology is often associated with the quantization of
the electrical conductivity of the relevant materials [10–13],
which characterizes the electron transport by an external elec-
tromagnetic field j = σ · E. However, in photonics, there is no
analog of the electrical conductivity σ.

The aim of this paper is to bridge the existing gap and
demonstrate the existence of a photonic counterpart for σ.
To achieve this goal, we introduce the concept of photonic
conductivity as the response of the Poynting vector—which
can be considered the photon current density—to mechan-
ical acceleration of a medium. We prove that the photonic
conductivity can be written in terms of the Green’s func-
tion of the relevant material (in the weak dissipation limit,
it can be written in terms of the electromagnetic modes of
the system), and as an example, we compute the photonic
conductivity of a Drude plasma with the initial system state
ruled by Bose-Einstein statistics (thermal-light). Interestingly,
it is found that a photonic conductivity with a nonzero real part
implies dissipation and the irreversible transfer of energy from
periodic-in-time mechanical driving into the electromagnetic
field. It is relevant to mention that the radiation by moving
mirrors [14–20] and related optomechanical systems [21,22]
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has been extensively discussed in the literature, e.g., in the
context of the dynamical Casimir and Unruh effects [23–30]
and sonoluminescence [31]. In this paper, we derive a linear
response function that links the momentum of the thermally
generated light and mechanical acceleration of a medium.
Furthermore, we highlight the similarities of this problem
with the transport of electrons in solids and the quantum Hall
effect.

For the case of constant acceleration and for a weakly
dissipative medium confined inside a cavity, it is shown that
the photonic conductivity is determined by an antisymmet-
ric real-valued tensor, which only depends on the spectral
density of the angular momentum of the thermal-light in the
cavity without acceleration. For nonreciprocal platforms our
theory predicts that mechanical acceleration of the cavity
originates a transverse flow of electromagnetic energy, which
is analogous to the Hall effect observed in condensed matter
systems. Additionally, we show that the photonic conductivity
of two-dimensional (2D)-type systems with a bulk band gap
is precisely quantized, with a conductivity quantum given by
the photonic Chern number. Thus, our results demonstrate a
direct analog of the integer quantum Hall effect in photonics
[10–13]. It should be noted that topological effects in other
types of driven systems were discussed previously by other
authors [32,33].

Even though in our theory the excitation is associated with
mechanical driving, most of the developed concepts can be
readily extended to the case of spacetime-modulated systems
[34], where driving is purely electric. In fact, in recent years, it
was proven that spacetime modulations of the permittivity and
permeability may be used to mimic physical motion [35–46]
and induce Doppler-type effects [46], synthetic Fresnel drags
[39,40], synthetic Goos-Hanchen shifts [45], synthetic mag-
netic fields (angular momentum bias) [47–49], and nontrivial
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FIG. 1. A closed box filled with an arbitrary material structure
is subject to mechanical shaking with frequency �. The light inside
the box is originated by thermal and/or quantum fluctuations. The
purple arrows represent the equivalent noise sources that generate the
thermal-light. The reference system (x, y, z) is attached to an inertial
(laboratory) frame, whereas the reference system (X,Y, Z ) is rigidly
attached to the accelerated cavity.

topologies [50]. It was recently shown that a particular sub-
class of (Minkowskian) spacetime modulations can mimic
exactly physical motion [45,46]. Such systems are formed
by isorefractive materials [46] and are the most promising
platforms to replicate accelerated physical motions by elec-
tronic means. It should be noted that time-varying systems
have been amply discussed in the context of the dynamical
Casimir effect [27–30].

II. PHOTON TRANSPORT IN AN ACCELERATED SYSTEM

A. Geometry and definitions

Figure 1 depicts the representative geometry of the system
studied in this paper. It consists of a cavity (box) filled with a
possibly nonuniform and dispersive medium. Due to mechan-
ical driving, the cavity is subject to a shaking-type mechanical
motion with frequency �. The cavity and all the material
structures inside it are modeled as a rigid body. Furthermore,
we assume that the radiation inside the cavity is generated by
thermal (or quantum) fluctuations.

The accelerated motion of the cavity can lead to the
emission of light quanta. This phenomenon has been widely
studied in the context of the dynamical Casimir effect [23–30].
In the dynamical Casimir effect, the emitted radiation is ex-
clusively due to the accelerated motion of the cavity walls, as
the interior of the cavity is typically unfilled (electromagnetic
vacuum). In contrast, in our case, the interfaces of the material
structures inside the box can also lead to the emission of
bulk radiation. Furthermore, we shall show that, even if the
material inside the box is uniform, it is still possible to have
bulk radiation provided the medium has a dispersive response.

We use the Poynting vector to characterize the flow of
thermal-light inside the cavity. The Poynting vector S may be
regarded as the photonic counterpart of the electric current
density j, i.e., it may be regarded as the photon current den-
sity. The analogy is particularly striking for lossless systems

(with no light sources in the region of interest) as, in such a
case, S is linked to the electromagnetic energy density W as
∇ · S + ∂tW = 0, which the counterpart of the charge conti-
nuity equation ∇ · j + ∂tρ = 0 (here, ρ is the electric charge
density).

In the electronic case, the conductivity gives the response
of the electric current (matter) to the applied electric field.
Motivated by this definition, we introduce the photonic con-
ductivity σph(�) as the response of the photon current S to
acceleration of the medium. Specifically, for instantaneous ac-
celeration of the form a(t ) = a0e−i�t + c.c. (here, c.c. stands
for complex conjugation, and a0 is a constant complex-valued
vector), the conductivity σph(�) is defined in such way that

〈Sav(t )〉 = − 1

c2
σph(�) · a0e−i�t + c.c. (1)

The conductivity σph depends on the oscillation frequency �

and has unities of W/m. In the above, 〈Sav(t )〉 is the thermal
expectation value of the Poynting vector averaged over the
cavity volume:

〈Sav〉 = 1

V

∫
box

〈S〉d3r. (2)

The symbol 〈...〉 represents the statistical expectation, and the
subscript av refers to the volume averaging.

The (Abraham) electromagnetic momentum density, i.e.,
the light momentum per unit of volume, is linked to the Poynt-
ing vector as g = S/c2 [51–55]. Therefore, 〈gav〉 ≡ 〈Sav〉/c2

is precisely the expectation of the light momentum inside the
box divided by the volume. The photonic conductivity can
also be regarded as the response of the expectation of the
(Abraham) light momentum to mechanical acceleration:

〈gav(t )〉 = − 1

c4
σph(�) · a0e−i�t + c.c. (3)

It is worth noting that, for a sufficiently large cavity, the
photonic conductivity may not be influenced by the mate-
rial properties of the cavity walls. This is because the light
emission from the bulk region tends to dominate, making
the photonic conductivity a bulk medium property. However,
there may be instances where the contributions from the
boundary walls become significant, particularly when the cav-
ity is unfilled and there is no radiation from the bulk region. In
these cases, the boundary walls can play an important role in
determining the photonic conductivity. Additionally, we will
demonstrate in Sec. V that, in topological systems, the cavity
walls play an essential role.

B. Coordinate transformations

To study the interaction of the electromagnetic field with
accelerated material bodies, it is convenient to switch to a
set of coordinates R = (X,Y, Z ) and τ = t rigidly attached
to the cavity. Loosely speaking, we will refer to R, τ as the
comoving frame coordinates, even though they are not asso-
ciated with an inertial reference frame. The coordinates in the
inertial laboratory frame are r, t with r = (x, y, z). The link
between the two sets of spatial coordinates is r = R + r0(τ ),
with r0(τ ) the coordinates of a generic point of the cavity
(the origin) as a function of time. The trajectory r0(τ ) is
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completely determined by mechanical driving. The instanta-
neous velocity and acceleration are given by the first- and
second-order derivatives in time of r0(τ ), respectively.

We demonstrate in Appendix A that the electrodynamics
of the accelerated cavity can be conveniently studied by intro-
ducing a set of fields fco = (Eco Hco)T , which can be written
in terms of the fields in the laboratory frame as in Eq. (A2). We
shall loosely refer to fco = fco(R, τ ) as the comoving frame
fields. In the nonrelativistic limit, the time evolution of fco is
determined by a differential system, which can be written in a
compact manner as

L̂ · fco + L̂int · fco = i
∂

∂τ
gco + ijext,co. (4)

In the above, L̂ = L̂(−i∇R ) is a differential operator de-
termined by the curl operators of the Maxwell’s equations
[Eq. (A10)]. Furthermore, gco = (Dco Bco)T is linked to
fco = (Eco Hco)T exactly by the same constitutive relations
as in a system without mechanical driving. For simplicity, we
assume that all the materials in the cavity are nonmagnetic so
that Bco = μ0Hco. Furthermore, jext,co represents the external
electromagnetic currents, e.g., thermal noise currents, in the
comoving frame coordinates. The effect of acceleration is
described by the interaction operator L̂int = −i a

c2 · Ŝ − i v
c2 ·

Ŝ ∂τ . Here, v and a are the instantaneous (time dependent)
velocity and acceleration, respectively, ∂τ = ∂/∂τ , and Ŝ is
a tensor determined by Eq. (A11). In the comoving frame,
all the material structures confined within the cavity have
time-independent coordinates: The effect of the accelerated
motion is fully modeled by L̂int . Without mechanical driving
(v = 0 = a), the master equation (4) reduces to the standard
Maxwell’s equations in the undriven cavity. The fields in the
laboratory frame coordinates can be found from the solution
of Eq. (4) using E(r, t ) = Eco − v × Bco and B(r, t ) = Bco +
1
c2 v × Eco, with R = r − r0(τ ) and τ = t . The reader is re-
ferred to Appendix A for additional discussion.

C. Electromagnetic inertia

In a cavity at rest, the distribution of thermal-light energy is
expected to be relatively uniform. In contrast, when the cavity
is subject to an accelerated motion toward the +x direction,
the wall X = −Lx/2 effectively closes in on the thermal-light
field, leading to an increased energy density near this wall.
At the same time, the opposite wall (X = +Lx/2) moves
away from the thermal-light field, resulting in a depleted
energy density near that wall. This discussion suggests that
acceleration may cause the accumulation of electromagnetic
energy onto the wall (X = −Lx/2) opposite the direction of
acceleration (+x direction).

We formally demonstrate this property in Appendix B by
showing that the modes of a cavity subject to constant ac-
celeration are the same as the modes of the undriven cavity
apart from an exponential decay factor exp[−X (a/c2)]. The
bunching of energy on the back cavity wall may be regarded
as a consequence of electromagnetic inertia. It implies that
the thermal-light is unevenly distributed inside the accelerated
cavity, tending to pile up on the wall X = −Lx/2, akin to a
temperature gradient caused by acceleration.

Evidently, when the box is subject to time-varying accel-
eration a = a0e−i�t + c.c., the distribution of thermal-light
energy in the box must adjust itself dynamically to the me-
chanical oscillation, leading thereby to an oscillation of the
Poynting vector, i.e., to a time-varying photon current.

It relevant to point out that our analysis neglects any local
temperature variations of the cavity walls arising from fric-
tional effects due to acceleration of the box in air. It implicitly
assumes that all the material structures are rigid and that the
noise sources are accelerated with the box.

III. PHOTONIC CONDUCTIVITY

In this section, we derive an explicit formula for the pho-
tonic conductivity σph(�), showing that it can be written in
terms of the system Green’s function.

A. Linear response function

For nonmagnetic materials, the Poynting vector
S = E × B/μ0 in the laboratory frame can be expressed
in terms of the fields fco = (Eco Hco)T as [Eq. (A2)]:

S = (Eco − v × Bco) ×
(

Bco

μ0
+ v × ε0Eco

)
= Sco + δSco + o(v2), (5)

with

Sco = Eco × Hco, δSco = Ū(fco) · v, (6a)

Ū(fco) ≡ −(ε0Eco ⊗ Eco + μ0Hco ⊗ Hco)

+ (ε0Eco · Eco + μ0Hco · Hco)13×3. (6b)

We used Hco = Bco/μ0 and ignored terms that are of second
order o(v2) in the velocity. Note that Ū may be regarded as
the energy-momentum tensor. Substituting the above formulas
into Eq. (2) and using the coordinate transformation R = r −
r0(t ) and τ = t , one sees that the photon current can be written
as

〈Sav(t )〉 = 1

V

∫
box

〈Sco + Ū(fco) · v〉d3R. (7)

As previously discussed, we want to find the response of
〈Sav(t )〉 to mechanical driving (acceleration) when the light
inside the box is generated by thermal fluctuations, i.e., by the
noise currents jN. Let us write the fluctuation-induced fields
fco in the comoving frame coordinates as a sum of the fluctua-
tion fields without mechanical driving f0

co = (E0
co H0

co)T and
a perturbation due to mechanical driving f int

co = (Eint
co Hint

co )T :
fco = f0

co + f int
co . By substituting fco = f0

co + f int
co into Eq. (7)

and retaining only the terms that are linear in the velocity
(linear response theory), it is found that

〈Sav(t )〉 = 1

V

∫
box

〈
E0

co × Hint
co + Eint

co × H0
co

〉
d3R + Ū0 · v,

(8)
with Ū0 ≡ 1

V

∫
box 〈Ū(f0

co)〉 d3R a constant symmetric and
real-valued matrix that only depends on the unperturbed
fluctuation fields. The previous formula can also be written
as

〈Sav(t )〉 = 2

V

〈
f0
co

∣∣Ŝ∣∣f int
co

〉+ Ū0 · v, (9)
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where 〈...|...〉 is the canonical inner product defined by
〈f1|f2〉 = 1

2

∫
f∗
1 · f2 d3R, and Ŝ is the operator defined in Ap-

pendix A [Eq. (A11)]. We took into account that the fields are
real valued. Note that 〈fco|Ŝ|fco〉/V = (Eco × Hco)av ≡ Sco,av

is the volume averaged Poynting vector in the comoving frame
coordinates.

B. Noise currents and thermal-light correlations

To find the perturbation due to mechanical driving, it is
convenient to introduce the Green’s function G = G(r, r′; ω)
of the unperturbed system. It is defined in such a way
that

[L̂ − ωM(r, ω)] · G = ω1δ(r − r′). (10)

Here, M(r, ω) is the material response that links gco =
(Dco Bco)T and fco = (Eco Hco)T in the frequency do-
main (without mechanical acceleration): gco,ω = M(r, ω) ·
fco,ω. For a standard dielectric, it is of the form:

M(r, ω) =
(

ε0ε 03×3

03×3 μ013×3

)
, (11)

where ε(r, ω) is the relative permittivity tensor. The fluctua-
tion dissipation theorem relates the correlations of the noise
currents jN that create the fluctuation fields with the material
loss [56,57]:

1

(2π )2 〈jN,ω(r)j∗N,ω′ (r′)〉 = ωEω

π

1

2i
[M(r, ω) − M†(r, ω)]

× δ(ω − ω′)δ(r − r′). (12)

Here, Eω = h̄ω
2 + h̄ω

exp(h̄ω/kBT )−1 = h̄ω
2 coth( h̄ω

2kBT ) is the en-
ergy of a quantum harmonic oscillator at temperature T, and
the dagger symbol † represents the Hermitian conjugate ma-
trix. In the frequency domain, the unperturbed fluctuation
fields f0 are linked to the noise currents through the Green’s
function:

f0
ω(r) =

∫
G(r, r′; ω) · 1

−iω
jN,ω(r′)d3r′. (13)

The correlations of the thermal-light fields are determined
by the Green’s function [56,57]:

1

(2π )2

〈
f0
ω(r)f0∗

ω′ (r′)
〉 = Eω

πω
δ(ω − ω′)

× 1

2i
[G(r, r′, ω) − G†

(r′, r, ω)].

(14)

C. Perturbation due to mechanical driving

With mechanical driving, the fluctuation fields fco satisfy
Eq. (4) with the excitation in the instantaneously comoving
frame determined by the noise currents jext,co = jN. We can
obtain a perturbative (series) solution in terms of the strength
of the interaction (L̂int). Evidently, the zero-order term is sim-
ply f0

co = f0, with f0 determined by Eq. (13), so that in the
time domain,

f0
co(r, t ) = 1

2π

∫ +∞

−∞
dω f0

ω(r)e−iωt . (15)

For notational simplicity, we solve the differential system
in Eq. (4) with R → r and τ → t , but it should be clear that all
the calculations are done in the comoving frame coordinates.
Feeding the zero-order solution back to Eq. (4), one sees that it
induces the additional current iL̂int · f0

co. Hence, the first-order
correction to the unperturbed solution is

f int
co (r, t ) = 1

2π

∫ +∞

−∞
dω e−iωt

∫
d3r′G(r, r′; ω)

· −1

ω

[
L̂int · f0

co

]
ω
. (16)

The term in rectangular brackets represents the Fourier
transform in time of L̂int · f0

co. To proceed, we assume that
the velocity oscillates in time with frequency �, so that
v = v0e−i�t + c.c. and a = a0e−i�t + c.c., with a0 = −i�v0.
Then using L̂int = −i a

c2 · Ŝ − i v
c2 · Ŝ ∂τ in Eq. (15), it is readily

found that[
L̂int · f0

co

]
ω

= −
[

ia0

c2
· Ŝ + (ω − �)

v0

c2
· Ŝ
]

· f0
ω−�(r)

−
[

ia∗
0

c2
· Ŝ + (ω + �)

v∗
0

c2
· Ŝ
]

· f0
ω+�(r). (17)

Thereby, it follows that the fields induced by mechanical
driving are given by

f int
co (r, t ) = 1

2π

∫ +∞

−∞
dω′

∫
d3r′G(r, r′, ω′) · v0

c2
· Ŝ · f0

ω′−�(r′)e−iω′t + 1

2π

∫ +∞

−∞
dω′

∫
d3r′G(r, r′, ω′) · v∗

0

c2
· Ŝ · f0

ω′+�(r′)e−iω′t .

(18)

D. Derivation of the photonic conductivity

With the help of Eqs. (15) and (18), we can evaluate the term 〈f0
co|Ŝ|f int

co 〉 in Eq. (9). It is given by

2
〈
f0
co

∣∣Ŝ∣∣f int
co

〉 = 1

(2π )2

∫ +∞

−∞
dω

∫ +∞

−∞
dω′

∫
d3r
∫

d3r′ f0,∗
ω (r) · Ŝ · G(r, r′, ω′) · v0

c2
· Ŝ · f0

ω′−�(r′)e−i(ω′−ω)t

+ 1

(2π )2

∫ +∞

−∞
dω

∫ +∞

−∞
dω′

∫
d3r
∫

d3r′ f0,∗
ω (r) · Ŝ · G(r, r′, ω′) · v∗

0

c2
· Ŝ · f0

ω′+�(r′)e−i(ω′−ω)t . (19)
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Using the fluctuation dissipation theorem [Eq. (14)], we take the statistical expectation of the right-hand side. After some
analysis, one finds that

2
〈
f0
co

∣∣Ŝ∣∣f int
co

〉 = σ(�) · v0e−i�t + c.c., (20)

where σ(�) is the tensor with generic components i and j:

σ i j (�) = 1

c2

∫ +∞

−∞
dω Eω

∫
d3r
∫

d3r′Tr

{
Ŝi · G(r, r′, ω + �) · Ŝ j · 1

2π iω
[G(r′, r, ω) − G†

(r, r′, ω)]

}
. (21)

In the above, Ŝi are the matrices defined in Eq. (A11), and
Tr {...} represents the trace of a matrix. We used the reality
property G(r, r′, ω) = G∗

(r, r′,−ω∗). Combining the above
result with Eq. (9), we conclude that the (linear) response of
the photon current to mechanical driving v = v0e−i�t + c.c.
is such that

〈Sav(t )〉 =
[

1

V
σ(�) + Ū0

]
· v0e−i�t + c.c. (22)

The response function is the term in rectangular brackets.
In principle, it is possible to have a nontrivial response even
for a linear motion, i.e., when � = 0. In fact, for v = const.,
an observer in the laboratory frame sees the thermal-light en-
ergy in the box traveling with a constant velocity, and this may
correspond to a nontrivial flow. Evidently, such a convective-
type term is not associated with light-matter interactions and
hence is not relevant for our purposes. We aim to characterize
the perturbation of the Poynting vector expectation due to
acceleration as defined by Eq. (1). Clearly, from the previous
considerations, it is given by σph(�) = 1

i�
c2

V [σ(�) − σ(0)],

where we eliminated the part of the response 1
V σ(0) + Ū0 that

is responsible for the convective flow in the case of a linear
uniform motion with v = const. The photonic conductivity
tensor can be explicitly written as

σph,i j (�) = −1

V

∫ +∞

−∞
dω Eω

∫
d3r
∫

d3r′

× Tr

{
Ŝi · 1

�
[G(r, r′, ω + �) − G(r, r′, ω)]

· Ŝ j · 1

2πω
[G(r′, r, ω) − G†

(r, r′, ω)]

}
. (23)

When the undriven system is reciprocal, the photonic con-
ductivity tensor is transpose symmetric, consistent with the
Onsager principle [58]. The proof relies on Eq. (E9) and is
omitted for conciseness. In Appendix C, we obtain a modal
expansion for the photonic conductivity applicable in the
weak dissipation limit.

It is convenient to introduce a (unilateral) spectral density
of the photonic conductivity σph(�) = ∫ +∞

0+ dω σph,ω(�) de-
termined by

σph,ω,i j (�) = σb
ph,ω,i j (�) + σb

ph,−ω,i j (�), (24a)

σb
ph,ω,i j (�) = −Eω

V

∫
d3r
∫

d3r′Tr

⎧⎨
⎩Ŝi · 1

�
[G(r, r′, ω + �) − G(r, r′, ω)] · Ŝ j · 1

2π

⎡
⎣G(r′, r, ω)

ω
−
(
G(r, r′, ω)

ω

)†
⎤
⎦
⎫⎬
⎭.

(24b)

It is simple to check that σb
ph,−ω,i j (�) = [σb

ph,ω∗,i j (−�)
]∗

.
Note that σb

ph,ω,i j (�) is the bilateral spectral density defined
for positive and negative ω. The spectral density σph,ω(�)
determines the part of the photon current associated with
radiation with frequency ω that is induced by mechanical
acceleration 〈Sav,ω(t )〉 = − 1

c2 σph,ω(�) · a0e−i�t + c.c.

IV. IRREVERSIBLE LIGHT EMISSION

A. Power transferred from mechanical driving
to electromagnetic field

As discussed in Sec. II C, acceleration of the box leads
to an asymmetric distribution of the thermal-light energy
within the box and to an oscillating light flow. It is natural
to wonder if, in a full oscillating cycle, there is net transfer of
energy from mechanical driving to the electromagnetic field.
To investigate this aspect, we note that, from the stress-tensor

theorem, the Lorentz force FL acting on a set of particles
within a volume V is related to the electromagnetic stress
tensor T̄ as follows [55]:∫

∂V
ds T̄ · n̂ = FL + d

dt

∫
V

d3r
1

c2
S. (25)

The integral on the left gives the flux of the stress-tensor
over the boundary surface of V. If this surface completely
encloses the cavity walls, it only depends on the fields ex-
ternal to the box, and hence, it may be identified with the
mechanical force (Fdrive). On the other hand, from Newton’s
law, the Lorentz force equals Ma, with M the total mass of the
box. Finally, the integral

∫
V d3r 1

c2 S gives the light momentum
inside the box, whose expectation is linked to acceleration
through Eq. (3). Thus, the previous discussion shows that

Fdrive = Ma + V
d

dt
〈gav(t )〉. (26)

205142-5



MÁRIO G. SILVEIRINHA PHYSICAL REVIEW B 108, 205142 (2023)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

3

2

1

0

1

2

3

p

/ pkc

s

l

FIG. 2. Band structure of the bulk material showing both the
positive (green lines) and negative (purple lines) frequency bands
and the interband transitions (vertical arrows) that determine the real
part of the photonic conductivity. The dispersion of the transverse
(longitudinal) plasmons is depicted with solid (dashed) lines. The
black arrows (upward transitions) are associated with the generation
of light quanta, which are eventually absorbed in the material (ex-
traction of energy from mechanical driving). The light red arrow
(downward transition) is associated with the absorption of quanta
from the thermal-light field, which is returned to the mechani-
cal driver. The interactions between the positive frequency bands
are possible for arbitrarily small oscillation frequencies (�s > 0),
whereas the interactions with positive and negative frequency bands
are only feasible for �l > 2ωp.

It is interesting to note that the term d
dt 〈gav(t )〉 may be

regarded as a radiation-reaction term, as it is proportional to
the derivative of the acceleration, analogous to the Abraham-
Lorentz self-force for a point charge [59]. The instantaneous
power transferred from mechanical driving to the electromag-
netic field pd→EM(t ) is given by

pd→EM(t )

V
= v(t ) · d

dt
〈gav(t )〉, (27)

with v(t ) the velocity of the box. For a time-harmonic me-
chanical oscillation with a(t ) = a0e−i�t + c.c. and v(t ) =

a0
−i� e−i�t + c.c., the time-averaged power (per unit of volume)
is

〈pd→EM〉
V

= 2

c4
Re{a∗

0 · σph(�) · a0}. (28)

Hence, the Hermitian part of the conductivity tensor
σph+σ†

ph

2
controls the irreversible light-matter interactions. In principle,
σph+σ†

ph

2 must be positive definite (or nonnegative) to ensure
that the energy is transferred from mechanical driving to the
field and not the other way around. We mention in passing
that the term 1

V σ(0) + Ū0 dropped after Eq. (22) would do
not contribute to 〈pd→EM〉 for any linear mechanical oscil-
lation, had it been retained. Furthermore, it can be shown
that Eq. (28) agrees exactly with the result obtained from the
intuitive formula (proof is omitted for conciseness):

〈pd→EM〉
V

= − 1

T

∫
dt〈fco · jco〉av, (29)

with fco = f0
co + f int

co the total fields and jco = jN + iL̂int · f0
co

the equivalent external current. As before, 〈...〉 represents the
statistical expectation, and av refers to volume averaging. The
time integral in the above equation is over one oscillation
period T = 2π/�. Note that −fco · jco is the power drawn
from the external currents per unit of volume.

The energy transferred to the field is dissipated in the form
of heat (see Sec. IV C). It is useful to briefly comment on the
difference between the dissipation mechanisms in photonic
and electronic cases. In electronic transport problems, the
energy is dissipated through charge collisions with the other
charges. In contrast, the classical electromagnetic field does
not self-interact, and hence, the dissipation must be mediated
by interactions with matter.

B. Photonic conductivity for a Drude permittivity dispersion

To illustrate the ideas developed so far, let us consider
the case where the box is filled uniformly by a nonmag-
netic material with the Drude permittivity dispersion ε/ε0 =
1 − ω2

p/ω(ω + i
), with ωp the plasma frequency and 
 the
collision frequency. In Appendix D, we prove formally that
(for a sufficiently large box) the corresponding photonic con-
ductivity tensor is a scalar σph(�) independent of the box
dimensions.

The irreversible interactions between external mechanical
driving and the medium are described by the real part of the
conductivity Re{σph(�)}. It is shown in Appendix D that, in
the weak dissipation limit 
 → 0+ and for � > 0, the spectral
density of the photonic conductivity is [Eq. (D13)]

Re{σph,ω(�)} = Eω

12πc
(� + 2ωp)

√
(� + ωp)2 − ω2

p

� + ωp

{−ωpδ(ω − (� + ωp)) + (� + ωp)δ(ω − ωp)
}

+ Eω

12πc
(� − 2ωp)

√
(� − ωp)2 − ω2

p

� − ωp

{+ωpδ(ω − (� + ωp)) + (� − ωp)δ(ω − ωp)
}
. (30)

In the ωp → 0 limit, i.e., when the Drude plasma reduces to
the electromagnetic vacuum, one finds that Re{σph,ω(�)} →
0. As expected, in such a case, the bulk region cannot con-
tribute to the photonic conductivity. As already discussed in

Sec. II A, for an unfilled cavity, the dissipation is uniquely
controlled by the interactions with the cavity walls [such an
effect is not described by Eq. (30), which was derived con-
sidering periodic boundary conditions]. The imaginary part
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of the conductivity cannot be evaluated in closed analytical
form. It sets the relative phase of the photonic current relative
to mechanical acceleration.

The dissipation due to Re{σph,ω(�)} �= 0 can be traced
back to interband transitions induced by mechanical driving
(see Appendix D), analogous to the loss induced by interband
transitions in electronic systems. Photonic interband transi-
tions have been previously discussed in different contexts
[60,61]. All four terms in Eq. (30) describe the interactions
between volume plasmons and the transverse electromagnetic
modes. The terms in the first line describe interactions be-
tween photonic bands with the same frequency sign (e.g.,
positive-frequency oscillators), whereas the terms in the
second line describe interactions between photonic bands
with opposite-frequency signs (e.g., positive- and negative-
frequency oscillators; see Fig. 2). The latter are only feasible
for sufficiently large �, specifically for � > 2ωp. All the

upward transitions give rise to generation of light quanta
(extraction of energy from mechanical driving), whereas the
downward transition gives rise to the absorption of light
quanta (energy is returned to mechanical driving).

The two terms of the first line in Eq. (30) describe the
downward transition from a positive-frequency transverse
mode to a positive-frequency longitudinal mode, and the
opposite upward transition from a positive-frequency longi-
tudinal mode to a positive-frequency transverse mode. The
second process dominates so that mechanical driving pumps
energy into the transverse modes.

On the other hand, the two terms in the second line of
Eq. (30) describe the transfer of energy from the branches with
negative frequency to the branches with positive frequency,
which always lead to irreversible light emission [16–20,62].

The total conductivity σph(�) = ∫ +∞
0+ dω σph,ω(�) is

given by

Re{σph(�)} = 1

12πc
(� + 2ωp)

√
(� + ωp)2 − ω2

p

� + ωp

[−ωpE�+ωp + (� + ωp)Eωp

]

+ 1

12πc
(� − 2ωp)

√
(� − ωp)2 − ω2

p

� − ωp

[+ωpE�−ωp + (� − ωp)Eωp

]
. (31)

Again, the term in the second line should be considered only
when � > 2ωp. In the practical limit � � ωp, the conductiv-
ity reduces to

Re{σph(�)} ≈ (h̄ωp)2

kBT sinh2
(

h̄ωp

2kBT

) �

12πc

√
�ωp

2
, (� � ωp).

(32)

As illustrated in Fig. 3, the total conductivity σph(�)
is strictly positive, and hence, in each oscillation cycle,

0 1 2 3 4
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FIG. 3. Photonic conductivity as a function of the normalized
mechanical driving frequency �/ωp for different temperature val-
ues. In the T = 0+ limit, the real part of the photonic conductivity
vanishes exactly for � < 2ωp.

mechanical driving transfers energy to the system. For � <

2ωp, the extracted energy originates exclusively from the
interaction between bulk plasmon and transverse mode os-
cillators with the same frequency sign (positive-frequency
oscillators). Curiously, in the zero-temperature limit, i.e.,
when the light fluctuations have a purely quantum origin,
the contributions of the terms in the first line cancel out,
and thereby, Re{σph(�)} = 0, for � < 2ωp. In contrast, the
dissipation arising from the interactions between positive-
and negative-frequency oscillators (for � > 2ωp) is not sup-
pressed for T → 0+. In fact, one obtains the following explicit
formula for the zero-temperature conductivity:

Re{σph(�)}T =0+ = h̄ωp

12πc
(� − 2ωp)

√
(� − ωp)2 − ω2

p,

� > 2ωp. (33)

C. Perturbation of the thermal-light energy in the cavity

Consider again the scenario of the previous subsection.
Mechanical driving leads to an increase in the energy stored
in the cavity. For � � ωp, the generated light has a spectrum
peaked at ωp + � [see Eq. (30)]. In the presence of some
material dissipation, the δ functions suffer some broadening
resulting in a finite bandwidth �ω. For simplicity, we shall
identify �ω with the collision frequency 
 of the material.
The thermal energy in the undriven cavity in this spectral
interval is Eth = Eωp+�nωp+�V �ω . Here, V is the cavity vol-
ume, and nω is the density of photonic states (number of
states per unit of frequency and per unit of volume). The
density of states can be written as nω = 1

3π2
d

dω
(ω

√
εμ0)3,
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which for a Drude model with weak dissipation reduces to
nω = 1

π2
1
c3 ω(ω2−ω2

p)1/2, for ω > ωp. Using this result, al-
ways supposing that � � ωp, we find that the thermal energy
is Eth ≈ 1

π2
1
c3 ωp

√
2ωp�EωpV �ω .

The accelerated motion induces an excess of the thermal
energy δEth in the relevant spectral range. The variation in
time of δEth is ruled by 〈pd→EM〉 [Eq. (28)] as well as by the
intrinsic dissipation of the material. Hence, it can be described
by a differential equation of the type:

d

dt
δEth = 〈pd→EM〉 − 
δEth. (34)

The second term on the right-hand side describes the dis-
sipation in the material. It was taken into account that the
damping rate near the plasma frequency is approximately
the collision frequency 
. Evidently, in a steady state, we
get δEth = 〈pd→EM〉/
. To characterize the excess of thermal
energy, next, we evaluate δEth/Eth. Using Eqs. (28), (32), and
�ω ≈ 
, it can be shown that

δEth

Eth
≈ π

12

(
vmax

c

�




)2 h̄�

kBT

[
sinh

(
h̄ωp

kBT

)]−1

. (35)

In the above, vmax is the peak velocity of the body in
each oscillation cycle (the peak acceleration is 2a0 = vmax�).
It is interesting to consider the limit case h̄ωp � kBT . For
example, at room temperature, the inequality is satisfied up
to terahertz frequencies, e.g., it is satisfied for typical semi-
conducting materials. In this case, the energy perturbation be-

comes independent of h̄, kB, T and can be simply expressed as

δEth

Eth
≈ π

12

(vmax

c

)2
(

�




)2
�

ωp
. (36)

Recall that the formula assumes that � � ωp. To give an
idea of the possibilities, consider a semiconductor material
with ωp = 2π × 2 THz and collision frequency 
 = 0.05ωp

at room temperature (T = 300 K). Consider the rather op-
timistic scenario where the peak velocity of the material
is vmax/c = 10−3 and the driving frequency is � = 2π ×
20 GHz. Then Eq. (36) predicts that δEth/Eth ∼ 10−10 which
is too small to be detected experimentally. Indeed, much like
the dynamical Casimir effect, it appears that experimental
verification is impractical when utilizing mechanical systems.
The limited magnitude of the effect arises from the vast
disparity in velocity and frequency scales between electro-
magnetic and mechanical parameters.

However, in principle, it is perfectly plausible to create
an electronic synthetic motion that can mimic the required
acceleration, e.g., with suitable spacetime modulations of the
plasma. In such a case, it is possible to consider much larger
vmax/c and �. For example, using vmax/c = 0.1 and � =
0.1ωp, the relative energy variation becomes δEth/Eth ∼ 10−3,
which may be within experimental reach.

V. PHOTONIC HALL EFFECT

When the frequency of mechanical driving is vanishingly
small � → 0, i.e., for constant acceleration, the spectral den-
sity in Eq. (24) reduces to

σph,ω,i j |�=0 = −2Eω

V
Re
∫

d3r
∫

d3r′Tr

{
Ŝi · ∂ωG(r, r′, ω) · Ŝ j · 1

2πω
[G(r′, r, ω) − G†

(r, r′, ω)]

}
. (37)

In the following, we focus on the limit case where (in the
spectral region of interest) the materials inside the box are
nearly lossless. It will be shown that constant acceleration of
the box may lead to a photonic Hall effect, such that accel-
eration along a certain direction of space induces a photon
current along a perpendicular direction. Furthermore, we will
prove that, for 2D-type platforms, the photonic conductivity
σph,ω is quantized in the bulk band gaps and is determined by
a topological invariant.

A. Weak dissipation limit

Interestingly, in the weak dissipation limit (ideally for in-
finitesimal loss), σph,ω|

�=0 can be expressed in terms of the
thermal-light angular momentum in the box in the absence of
mechanical driving. It is proven in Appendix E that

σph,ω|�=0
weak dissipation

= c2 1

V
Lω × 1. (38)

This result assumes that the box is terminated with
opaque-type (noncyclic) boundary conditions (e.g., per-
fectly conducting—PEC—walls). Here, Lω is the unilat-
eral spectral density of the Abraham angular momentum

L = ∫box dV 1
c2 r × S(r), so that L = ∫∞

0 dωLω. It is under-
lined that Lω is evaluated without mechanical driving.

Evidently, Lω depends on the temperature, and it can
be expressed in terms of the system Green’s function as in
Eq. (E8). Moreover, Lω vanishes for reciprocal platforms (see
Appendix E) [57,63]. Thereby, we conclude that, for weakly
dissipative systems, the photonic conductivity for constant
acceleration � → 0 can be nontrivial only when the cavity
contains nonreciprocal materials.

B. Hall effect

Interestingly, Eq. (38) shows that σph,ω|�=0
weak dissipation

is an

antisymmetric tensor such that the induced photon current is
〈Sav,ω〉 = − 1

V Lω × a for constant acceleration a. Thus, the
component of the photon current with frequency ω is per-
pendicular to acceleration a and to the fluctuation-induced
light angular momentum, analogous to the Hall effect in elec-
tronics. In physical terms, this implies that there is a net
transverse light flow in the cavity. Curiously, from the per-
spective of mechanical driving, there is no power dissipation
because a · (Lω × a) = 0. We shall show in the following
subsection—which is focused on topological systems—that
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FIG. 4. (a) Illustration of a two-dimensional (2D)-type topological cavity subject to constant acceleration a. The bulk region does not
support electromagnetic states at the frequency range of interest. For topological systems, the thermal-light spectrum inside the cavity is
determined by the number of topological states. Here, it is assumed that the topological gap is associated with a single counterclockwise
unidirectional edge state (C = −1). (b) Sketch of the expectation of the Poynting vector lines when the cavity is accelerated along the +x
direction. Due to electromagnetic inertia, the thermal energy associated with the perturbed unidirectional edge state tends to be concentrated
on the wall X = −Lx/2. This originates a photonic Hall effect, with the averaged Poynting vector expectation oriented along −y.

the photonic Hall effect is a consequence of non-Hermitian
asymmetric light-matter interactions. It is underlined that the
Hall effect can only occur in nonreciprocal systems.

C. Topological platforms and quantized photonic conductivity

It is relevant to consider 2D-type cavities, such that two
dimensions of the box are much larger than the thickness
along the z direction: Lx, Ly � Lz. In such a case, for suffi-
ciently long wavelengths, the light in the box can only flow
along directions parallel to the xoy plane. Thus, the thermal-
light angular momentum is directed along z: Lω = Lωẑ. For
2D-type systems, it is convenient to introduce 〈gav,ω〉2D =
1
A

1
c2

∫
box 〈Sω〉d3r, which is the spectral density of the light

Abraham (kinetic) momentum in the box per unit of cross-
sectional area A = Lx × Ly. From 〈Sav,ω〉 = − 1

V Lω × a, it is
evident that, for weakly dissipative 2D-type systems, 〈gav,ω〉2D
is linked to constant acceleration through a 2D photonic con-
ductivity σ2D,ω as follows [compare with Eq. (3)]:

〈gav,ω〉2D = − 1

c4
σ2D,ω · a, with σ2D,ω = c2Lω

A
ẑ × 1.

(39)
Thus, the spectral density of the angular momentum per unit
of area determines the 2D photonic conductivity spectrum for
� → 0. Importantly, it was shown in Refs. [64,65] that, in the
bulk band gaps of the (undriven) cavity, Lω/A is quantized and
is determined by the gap Chern number C of the bulk material
band gap as follows:

Lω

A

∣∣∣∣
band gap

= − C
πc2

Eω. (40)

Note that Lω/A has unities of mass. Thus, in the band gaps,
the 2D-photonic conductivity is quantized in units of Eω/π :

σ2D,ω = − C
π
Eωẑ × 1 (band gaps). (41)

For sufficiently large temperatures, h̄ω
2kBT � 1, the energy

Eω is determined simply by Eω ≈ kBT . Evidently, σ2D,ω is
associated with a quantum-photonic Hall effect.

The origin of the quantum-photonic Hall effect may
be understood as follows. From Sec. II C (see also
Appendix B), constant acceleration of the box leads on
nonuniform distribution of the thermal-light energy inside the
box, such that the energy density is larger near the wall oppo-
site the direction of a (wall X = −Lx/2 for acceleration along
+x). In a band gap of a topological material, the thermal-light
energy is transported by unidirectional topological edge states
that circulate around the cavity walls [64,65]. As the Poynting
vector of a mode is proportional to the energy density, the
enunciated properties lead to the picture shown in Fig. 4,
which represents the Poynting vector lines for a 2D-type cav-
ity accelerated along the +x direction. The sketch assumes
that, in the considered band gap, the cavity supports a single
topological edge state that circulates in the counterclockwise
direction (C = −1, see Refs. [64,65]). Consistent with the pre-
vious discussion, the Poynting vector has the largest intensity
(largest arrows) near the wall X = −Lx/2 and the smallest
intensity near the opposite wall X = +Lx/2 (smallest arrows).
In the side walls, the Poynting vector varies exponentially. For
realistic values of acceleration, the Poynting vector amplitude
change is rather tiny, and due to this reason, in practice, the
exponential variation can be approximated by a linear varia-
tion with a very small slope. Consistent with Appendix B, the
decay rate is independent of direction of propagation of the
edge mode. Hence, the Poynting vector (or the light momen-
tum) averaged over the transverse cross-section is determined
only by the contributions of the walls X = ±Lx/2. Evidently,
in the conditions of Fig. 4, the averaged light momentum is
directed along the −y direction, in agreement with Eqs. (39)
and (41). Note that the Poynting vector lines in Fig. 4 in-
clude both the thermal contribution (without driving) and the
perturbation due to mechanical driving. The Poynting vector
lines without mechanical driving are nontrivial [57], but their
volume average vanishes exactly [65] (i.e., the expectation of
the light momentum in the cavity without driving vanishes
exactly). Note that 〈gav,ω〉2D given by Eq. (39) depends only
on the perturbation of the Poynting vector lines.

The nonuniformity of the Poynting vector lines along the
sidewalls (Y = ±Ly/2) implies that the fields near these walls
must be pumped by the accelerated motion. The edge wave
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near the wall Y = +Ly/2 (Y = −Ly/2) draws energy from
(returns energy to) the mechanical driver, respectively. Over-
all, this process does not require any transfer of energy from
driving (〈pd→EM〉 = 0) because the contributions of the two
opposite walls cancel out. The phenomenon is reminiscent of
the photon thermal Hall effect [66], where a longitudinal tem-
perature gradient (mimicking acceleration along x) induces
a transverse heat flux between two reservoirs initially at the
same temperature.

In principle, the described effect may be experimentally
verified using spacetime-crystals that mimic the accelerated
motion of the medium and cavity walls. In such a context, it is
expected that the thermally generated heat current (in the gap
spectral region) is stronger near the wall at X = −Lx/2 and
weaker near the wall X = +Lx/2. Similar to the mechanical
problem, it is expected that with the electronic driving the cir-
cuitry near the wall Y = +Ly/2 pumps energy into the cavity,
leading to the amplification of the edge mode, whereas the
circuitry near the opposite wall Y = −Ly/2 extracts energy
from the edge mode, leading to its exponential decay. On
average, the driving circuit does not inject or remove energy
into the system.

VI. CONCLUSIONS

In summary, it was shown that one may formally define
a photonic conductivity that describes the thermal-light mo-
mentum linear response to the mechanical oscillations of a
medium. Similar to the electronic case, the real (Hermitian)
part of the photonic conductivity determines a dissipative
response which is associated with an irreversible transfer of
energy from mechanical driving to the electromagnetic field.
The energy extracted from mechanical driving is ultimately
dissipated in the form of heat. We determined the photonic
conductivity for a weakly dissipative dispersive plasma with
the initial field distribution determined by the Bose-Einstein
statistics. Our results show that the irreversible light emission
is originated by the upward interband transitions triggered by
mechanical driving.

Our findings reveal that the photonic conductivity of a
weakly dissipative material enclosed in a cavity, under con-
stant acceleration, is determined by the thermal-light angular
momentum spectrum. Mechanical driving originates a pho-
tonic Hall effect where the induced light momentum is
perpendicular to the constant acceleration. The photonic Hall
effect arises due to strongly asymmetric light-matter interac-
tions. Specifically, the edge mode near one of the cavity walls
draws energy from the mechanical system, whereas the edge
mode on the opposite wall returns energy to the mechanical
system, analogous to a transverse temperature gradient.

Notably, for 2D-type cavities, the photonic conductivity
under constant acceleration is quantized in the gaps of the
bulk region, with the quantum of photonic conductivity being
determined by the Chern number of the 2D-photonic system.
This quantization establishes a precise parallel with the elec-
tronic quantum Hall effect. Moreover, these results can be
extended to certain classes of spacetime-modulated systems,
where mechanical driving is replaced by the electronic time
modulation of the material parameters.
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APPENDIX A: COORDINATE TRANSFORMATIONS

We start from the Maxwell’s equations in the laboratory
reference frame:

∇ × E = −∂t B, ∇ × B
μ0

= ε0∂t E + j. (A1)

Here, j includes all the polarization currents of the accelerated
medium. The corresponding electric charge density is ρ. The
trajectory of the medium (regarded as a rigid body) is deter-
mined by r0(t ). The instantaneous velocity of the medium
with respect to the laboratory frame is v = dr0/dt , and the
acceleration is a = dv/dt . For simplicity, it is supposed that,
at initial time, r0(0) = 0, and so r0(t ) is the rigid body dis-
placement due to the motion.

We consider a field transformation of the type:

Eco = E + v × B, Bco = B − 1

c2
v × E, (A2a)

jco = j − ρv, ρco = ρ − j · v/c2. (A2b)

Neglecting terms that are on the order of v2 [o(v2)
approximation], the inverse transformation is E = Eco −
v × Bco, B = Bco + 1

c2 v × Eco, and j = jco + ρcov, ρ = ρco +
jco · v/c2. Within an o(v2) approximation, the fields with sub-
scripts co may be regarded as the fields in the frame that move
with velocity v with respect to the laboratory frame [55]. The
transformation leads to

∇ × (Eco − v × Bco
)+
(

1

c2
a + 1

c2
v∂t

)
× Eco = −∂t Bco,

(A3)

∇ ×
(

Bco

μ0
+ v × ε0Eco

)
+
(

1

c2
a + 1

c2
v∂t

)
× Bco

μ0

= ε0∂t Eco + jco + ρcov. (A4)

Next, we consider a Galilean-type coordinate transforma-
tion:

r = r0(τ ) + R, t = τ. (A5)

The coordinate transformation implies that

∇R = ∇, ∂τ = v · ∇ + ∂t . (A6)

Neglecting terms that are o(v2), we get

∇R × (Eco − v × Bco
)+
(

1

c2
a + 1

c2
v∂τ

)
× Eco

= −(∂τ − v · ∇R
)
Bco, (A7a)

∇R ×
(

Bco

μ0
+ v × ε0Eco

)
+
(

1

c2
a + 1

c2
v∂τ

)
× Bco

μ0

= (∂τ − v · ∇R
)
ε0Eco + jco + ρcov. (A7b)
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Taking into account that ∇R · Bco = o(v) and ∇R · Eco =
ρco/ε0 + o(v), we see that ∇R × (v × Bco) = v∇R · Bco −
(v · ∇R )Bco = −(v · ∇R )Bco + o(v2) and ∇R × (v × Eco) =
vρco/ε0 − (v · ∇R )Eco + o(v2). This finally shows that

∇R × Eco +
(

1

c2
a + 1

c2
v∂τ

)
× Eco = −∂τ Bco, (A8a)

∇R × Bco

μ0
+
(

1

c2
a + 1

c2
v∂τ

)
× Bco

μ0
= ε0∂τ Eco + jco.

(A8b)

It is useful to note that τ = t may be regarded as the proper
time measured by an observer [e.g., a clock attached to the
point with coordinates r = R at initial time when r0(0) =
0] that follows the same trajectory as the moving body. In
fact, as a proper time (infinitesimal) interval is determined
by dτ =

√
(dt )2− 1

c2 (�r)2 =
√

(dt )2− 1
c2 [�r0(t )]2, it follows

that the proper time is τ = ∫ t
0 dt

√
1− v0(t )·v0(t )

c2 ≈ t + o(v2).
For a local material, the dynamics of the polarization currents
jpol,co = ∂

∂τ
Pco is controlled by a differential equation that

depends on the proper time (Pco is the polarization vector
in the comoving frame). For example, for a Drude plasma
(e.g., a metal) the current should satisfy ∂τ jpol,co + 
jpol,co =
ε0ω

2
pEco, with 
,ωp the collision and plasma frequencies,

respectively. This observation shows that the polarization cur-
rents jpol,co = ∂

∂τ
Pco are controlled by the same differential

equations in time as in the static case (without any motion).
Hence, Eq. (A8) can be written in the compact form as

L̂(−i∇R ) · fco +
(
−i

a
c2

· Ŝ − i
v
c2

· Ŝ ∂τ

)
︸ ︷︷ ︸

L̂int

·fco

= i
∂

∂τ
gco + ijext,co. (A9)

Here, fco = (Eco Hco)T , gco = (Dco Bco)T , where by defi-
nition, Hco = Bco/μ0 and Dco = ε0Eco + Pco. For a dispersive
dielectric, the field Dco(R, τ ) is linked to Eco(R, τ ) exactly by
the same differential equations in time as in the rest case (or
alternatively, by a time convolution with a suitable kernel).
Moreover, jext,co represents the external excitation currents
(i.e., the currents that are not part of the medium). The dif-
ferential operator L̂ is given by

L̂(−i∇R ) =
(

03×3 i∇R × 13×3

−i∇R × 13×3 03×3

)
. (A10)

On the other hand, the interaction term L̂int due to medium
acceleration is written in terms of the matrices:

Ŝi =
(

03×3 −ûi × 13×3

ûi × 13×3 03×3

)
, i = 1, 2, 3, (A11)

with ûi a unit vector along the ith space direction.
By definition, we have a · Ŝ = a1Ŝ1 + a2Ŝ2 + a3Ŝ3 =( 03×3 −a × 13×3

a × 13×3 03×3

)
. Note that, in the absence of mechanical

driving (v = 0 = a), Eq. (A9) reduces the Maxwell’s
equations in the relevant dispersive material structure.

APPENDIX B: ELECTROMAGNETIC MODES
IN THE LIMIT � → 0

Here, we study how acceleration affects the electromag-
netic modes of the cavity in the limit � → 0 (constant
acceleration, a = ax̂). It is supposed that, in the time range
of interest, the velocity of the system is negligible. Then
the source-free master Eq. (A9) [with jext,co = 0] in the R, τ

coordinates is equivalent to

∇R × Eco + 1

c2
a × Eco = −∂τ Bco, (B1a)

∇R × Hco + 1

c2
a × Hco = ∂τ Dco. (B1b)

It is underlined that, without mechanical driving, the above
equations reduce to the Maxwell’s equations in the undriven
system (with all the material structures at rest). It is straight-
forward to construct the modes of the above equation (with
a = const.) from the modes of the undriven system. In fact,
the solutions with a �= 0 are related to the solutions with a = 0
as

Eco = Ea=0 exp

(
− a

c2
· R
)

, Hco = Ha=0 exp

(
− a

c2
· R
)

.

(B2)

Thus, in the comoving frame coordinates, electromagnetic
modes of the accelerated system are the same as the modes
of the undriven system, apart from the exponential factor
exp(− a

c2 X ). In other words, the accelerated motion leads to an
exponential decay along +x and to the concentration of energy
on the back wall of the box. Note that the exponential decay
is insensitive to the direction of propagation of the wave.
Clearly, the exponential factor implies that both the fields and
the Poynting vector in the laboratory frame coordinates decay
exponentially along +x.

APPENDIX C: MODAL EXPANSION OF THE PHOTONIC CONDUCTIVITY IN THE LOSSLESS LIMIT

In the following, we obtain a modal expansion of the photonic conductivity [Eq. (23)] in the limit of weak dissipation. In this
limit, the Green’s function can be expanded into the electromagnetic modes of the system fn(r) = (En Hn)T , with real-valued
eigenfrequencies ωn [67,68]:

G(r|r′, ω) = ω

2

∑
n

1

ωn − ω
fn(r) ⊗ f∗

n (r′). (C1)

205142-11



MÁRIO G. SILVEIRINHA PHYSICAL REVIEW B 108, 205142 (2023)

Note that the Green’s function definition here differs slightly from the definition in Refs. [67,68]. The eigenmodes are normalized
as [67,68]

1

2

∫
V

d3r f∗
n (r) · ∂ω[ωM(ω, r)]ω=ωn

· fn(r) = 1, (C2)

where M(ω, r) is the material matrix [Eq. (11)].
It is straightforward to show that [57,67]

1

2π

⎧⎨
⎩G(r′, r, ω)

ω
−
[
G(r, r′, ω)

ω

]†
⎫⎬
⎭

ω+0+i

= i

2

∑
n

δ(ω − ωn)fn(r′) ⊗ f∗
n (r). (C3)

Using this result in the conductivity spectral density [Eq. (24), evaluated with ω → ω + 0+i, i.e., a small positive imaginary
part], one finds that

σph,ω,i j (�) = −Eω

V

∫
d3r
∫

d3r′Tr

{
Ŝi ·
[

1

2

∑
m

1

ω − ωm

ωm

ω + � − ωm
fm(r) ⊗ f∗

m(r′)

]
ω+0+i

· Ŝ j · i

2

∑
m

δ(ω − ωn)fn(r′) ⊗ f∗
n (r)

}
+Tr

{
Ŝi ·
[

1

2

∑
m

1

ω − ωm

ωm

ω − � − ωm
fm(r) ⊗ f∗

m(r′)

]
ω+0+i

· Ŝ j · i

2

∑
m

δ(ω − ωn)fn(r′) ⊗ f∗
n (r)

}∗
. (C4)

This can also be written as

σph,ω,i j (�) = −Eω

V
i
∑
m,n

δ(ω − ωn)

[
1

ωnm + 0+i

ωm

ωnm + (� + 0+i)
〈n|Ŝi|m〉〈m|Ŝ j |n〉

− 1

ωnm − 0+i

ωm

ωnm − (� + 0+i)
〈m|Ŝi|n〉〈n|Ŝ j |m〉

]
, (C5)

with ωnm = ωn − ωm and 〈m|Ŝi|n〉 = 1
2

∫
f∗
m · Ŝi · fn d3r. Noting that the δ functions with negative frequency can be dropped due

to the unilateral nature of the spectral density and that the terms with m = n cancel out, one finally finds

σph,ω,i j (�) = i
Eω

V

∑
ωm �=ωn,
ωn>0

δ(ω − ωn)
ωm

ωmn

[
1

(� + 0+i) − ωmn
〈n|Ŝi|m〉〈m|Ŝ j |n〉+ 1

(� + 0+i) + ωmn
〈m|Ŝi|n〉〈n|Ŝ j |m〉

]
, (C6)

with ωmn = ωm − ωn.
Let us now consider the limit � → 0, i.e., constant acceleration. In that case, the spectral density of the conductivity reduces

to

σph,ω,i j |�=0 = i
Eω

V

∑
ωm �=ωn,
ωn>0

δ(ω − ωn)
ωm

ω2
mn

[−〈n|Ŝi|m〉〈m|Ŝ j |n〉+〈m|Ŝi|n〉〈n|Ŝ j |m〉]. (C7)

The above tensor is clearly antisymmetric and real valued.

APPENDIX D: PHOTONIC CONDUCTIVITY OF A DRUDE PLASMA

Here, we derive the photonic conductivity of a uniform Drude plasma. For simplicity, we neglect the effect of the boundary
walls, i.e., we only consider the bulk interactions. This can be done by enforcing periodic boundary conditions in a large volume
with dimensions Lx × Ly × Lz. Evidently, within such approximation, the system becomes effectively invariant to continuous
translations of space, and thereby, the Green’s function is of the form G(r, r′, ω) = G(r − r′, ω).

To proceed, it is convenient to switch to the spectral domain and use

G(r, r′, ω) = 1

(2π )3

∫
d3kGk(ω) exp

(
ik · (r − r′)

)
, (D1)

where Gk(ω) = ω[k · Ŝ − ωM(ω)]
−1

is the Fourier transform of G(r, ω) [see Eq. (10)]. Substituting the above formula into
Eq. (24b), it can be shown after straightforward manipulations that the bilateral photonic conductivity spectral density can be
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expressed as

σb
ph,ω,i j (�) = − Eω

(2π )3

∫
d3kTr

(
Ŝi · 1

�
[Gk(ω + �) − Gk(ω)] · Ŝ j · i

π
Im

{
Gk(ω)

ω

})
. (D2)

We took into account that for an isotropic dispersive dielectric, Gk(ω) has transpose symmetry.
To derive an explicit analytical formula for σb

ph,ω,i j (�), next, we consider the weak dissipation limit. In such a case, the

function Gk (ω)
ω

can be expanded into partial fractions. The poles of Gk (ω)
ω

are determined by the dispersion of the electromagnetic
modes of the bulk material and by the pole at ω = 0. A lossless Drude plasma supports transverse electromagnetic modes with
dispersion ωk = ±

√
ω2

p + c2 k2, and longitudinal modes (bulk plasmons) with dispersion ±ωp. Note that one needs to consider

both positive- and negative-frequency modes in the partial-fraction expansion. Thus, Gk (ω)
ω

has a partial fraction expansion of the
form:

Gk(ω)

ω
= R0

ω
+ RLk

[
1

ω − ωp
+ 1

ω + ωp

]
+
[

R+
T k

ω − ωk
+ R−

T k

ω + ωk

]
. (D3)

In the above, R0, RLk, R±
T k are the residues of the Green’s function, for example, RLk = limω→ωp (ω − ωp)Gk (ω)

ω
, etc. Explicit

calculations show that

Rs
T k =

⎛
⎝ 1

2ε0k2 (k ⊗ k − 13×3k2) s c2

2ωk
k × 13×3

−s c2

2ωk
k × 13×3

ε0c4

2ω2
k

(k ⊗ k − 13×3k2)

⎞
⎠, s = ±, (D4a)

RLk =
( −1

2ε0k2 k ⊗ k 03×3

03×3 03×3

)
, (D4b)

R0 =
⎛
⎝03×3 03×3

03×3 − ε0c4

ω2
k

(
k ⊗ k + 13×3

ω2
p

c2

)
⎞
⎠. (D4c)

Using the partial fraction expansion, it is possible to show that

1

�

[
Gk(ω + �) − Gk(ω)

] = RLkAL(ω) + R+
T kA+

T k (ω) + R+
T kA−

T k (ω), (D5a)

AL(ω) = −ωp

(ω − ωp)(ω + � − ωp)
+ ωp

(ω + ωp)(ω + � + ωp)
, (D5b)

A±
T k (ω) = −(±ωk )

[ω − (±ωk )][ω + � − (±ωk )]
. (D5c)

On the other hand, considering that ω → ω + 0+i is in the upper-half frequency plane, one finds that

1

π
Im

{
Gk(ω)

ω

}
= −RLk

(
δ(ω − ωp) + δ(ω + ωp)

)− (R+
T kδ(ω − ωk ) + R−

T kδ(ω + ωk )
)
. (D6)

In the above formula, we dropped the contribution from R0 as the fluctuation-induced light is associated with modes with ω �= 0.
Substituting Eqs. (D3) and (D6) into Eq. (D2), we find that the bilateral spectrum is determined by

σb
ph,ω,i j (�) = Eωi

(2π )3

∫
d3kTr

{
Ŝi · [RLkAL(ω) + R+

T kA+
T k (ω) + R+

T kA−
T k (ω)

]
·Ŝ j · [RLkδ(ω − ωp) + RLkδ(ω + ωp) + R+

T kδ(ω − ωk ) + R−
T kδ(ω + ωk )

]}
. (D7)

To further simplify the formula, we take into account that Tr{Ŝi · RLk · Ŝ j · RLk} = 0, Tr{Ŝi · R±
T k · Ŝ j · R∓

T k} = 0, and

Tr
{
Ŝi · RLk · Ŝ j · R±

T k

} = c4

4ω2
k

(k2δi j − kik j ), (D8a)

Tr
{
Ŝi · R±

T k · Ŝ j · R±
T k

} = 2c4

ω2
k

kik j, (D8b)
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where δi j is the Kronecker’s symbol. Using these formulas, one finds that the bilateral spectrum tensor can be written as

σb
ph,ω(�) = Eωi

(2π )3

∫
d3k

c4

4ω2
k

[
AL(ω)(k21 − k ⊗ k) + 8A+

T k (ω)k ⊗ k
]
δ(ω − ωk )

+ c4

4ω2
k

[
AL(ω)(k21 − k ⊗ k) + 8A−

T k (ω)k ⊗ k
]
δ(ω + ωk )

+ c4

4ω2
k

[
A+

T k (ω)(k21 − k ⊗ k)+A−
T k (ω)(k21 − k ⊗ k)

]
[δ(ω − ωp) + δ(ω + ωp)]. (D9)

It is now convenient to switch to a system of spherical coordinates k, θ, ϕ in the wave vector space. The integrand depends on
θ, ϕ only through the terms k ⊗ k. Since

∫∫
dθdϕ sin θk ⊗ k = 13×34πk2/3, it is clear that σb

ph,ω(�) is a scalar determined by

σ b
ph,ω(�) = Eωi

(2π )3 4π

∫ ∞

0
dk

c4 k4

4ω2
k

[
2

3
AL(ω) + 8

3
A+

T k (ω)

]
δ(ω − ωk )+c4 k4

4ω2
k

[
2

3
AL(ω) + 8

3
A−

T k (ω)

]
δ(ω + ωk )

+ c4 k4

4ω2
k

[
2

3
A+

T k (ω) + 2

3
A−

T k (ω)

]
(δ(ω − ωp) + δ(ω + ωp)). (D10)

Feeding the above formula into Eq. (24a) with AL(ω), A+
T k (ω) evaluated with ω → ω + 0+i to consider infinitesimal losses, one

finds that the unilateral spectrum (ω > 0) of the conductivity is given by

σph,ω(�) = Eωi

12π2

∫ ∞

0
dk

c4 k4

ω2
k

ωp

[
1

(� − �k )�k

+ 1

(� + �∗
k )�∗

k

− 1

(� − �̃k )�̃k

− 1

(� + �̃∗
k )�̃∗

k

]
δ(ω − ωk )

− c4 k4

ω2
k

ωk

[
1

(� − �k )�k

+ 1

(� + �∗
k )�∗

k

+ 1

(� − �̃k )�̃k

+ 1

(� + �̃∗
k )�̃∗

k

]
δ(ω − ωp), (D11)

with �k = +ωp − ωk−i0+ and �̃k = −ωp − ωk−i0+. Note that the photonic conductivity has a spectrum with ω � ωp,
consistent with the spectrum of the bulk material.

As discussed in the main text, the real part of the conductivity determines the irreversible light matter interactions. Evidently, it
is determined by the contributions of the poles of the integrand of the form �−�k = 0, � + �∗

k = 0, �−�̃k = 0, and � + �̃∗
k =

0. Supposing without loss of generality that � > 0, only the poles of � + �∗
k = 0 and � + �̃∗

k = 0 contribute to the unilateral
spectral density:

Re{σph,ω(�)} = Eω

12π

∫ ∞

0
dk

c4 k4

ω2
k

ωp

[
1

�0
k

δ
(
� + �0

k

)− 1

�̃0
k

δ
(
� + �̃0

k

)]
δ(ω − ωk )

− c4 k4

ω2
k

ωk

[
1

�0
k

δ
(
� + �0

k

)+ 1

�̃0
k

δ
(
� + �̃0

k

)]
δ(ω − ωp), (D12)

with �0
k = +ωp − ωk < 0 and �̃0

k = −ωp − ωk < 0. Comparing the above formula with the modal expansion in Eq. (C6),
one can see that the dissipative terms emerge from interband transitions that start from the positive-frequency transverse modes
(terms in the first line) and positive-frequency bulk plasmons (terms in the second line). All the transitions are between transverse
modes and longitudinal modes. The function δ(� + �0

k ) is associated with transitions between the positive frequency branches,
whereas the function δ(� + �̃0

k ) is associated with transitions between a positive-frequency branch and a negative-frequency
branch.

The function δ(� + �0
k ) is singular for the wave number k+ = 1

c

√
(� + ωp)2−ω2

p, whereas the function δ(� + �̃0
k ) is

singular for k− = 1
c

√
(� − ωp)2−ω2

p. The latter condition is only possible when � � 2ωp. Considering that ∂kωk = c2 k
ωk

, one
can show after some simplifications that the real part of the conductivity satisfies

Re{σph,ω(�)} = Eω

12πc
(� + 2ωp)

√
(� + ωp)2 − ω2

p

� + ωp

{−ωpδ[ω − (� + ωp)] + (� + ωp)δ(ω − ωp)
}

+ Eω

12πc
(� − 2ωp)

√
(� − ωp)2 − ω2

p

� − ωp

{+ωpδ[ω − (� − ωp)] + (� − ωp)δ(ω − ωp)
}
. (D13)

The term in the second line only contributes when � � 2ωp; otherwise, it should be ignored.
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APPENDIX E: LINK BETWEEN PHOTONIC
CONDUCTIVITY AND ANGULAR MOMENTUM

Here, we prove that, in the weak dissipation limit, the
spectral density of the photonic conductivity for constant
acceleration (� → 0) is strictly determined by the angular
momentum of the thermal-light in the unperturbed cavity.

To show this, we note that, in the lossless limit, the
(source-free) electrodynamics of the unperturbed cavity can
be formulated as a Hermitian problem of the type ĤgQ =
i d

dt Q, with Ĥg = Ĥg(r,−i∇ ) an Hermitian operator with re-
spect to some weighted inner product 〈...|...〉g [65,67]. Here,

Q = (f Q(1) ...)T is a state vector written in terms of
the electromagnetic fields f = (E H)T and of other internal
degrees of freedom of the system (Q(α), α � 1) due to the
dispersive material response [65,67]. In this framework, the
electromagnetic modes of the system are the nontrivial solu-
tions of the spectral problem ĤgQn = ωnQn.

Following Ref. [65], it is convenient to introduce the op-
erator ∂iĤg, which is defined as ∂iĤg = ∂

∂ki
Ĥg(r,−i∇ + k)

evaluated for k = 0. As demonstrated in Ref. [65], ∂iĤg can
be identified with the ith component of the Poynting vector.

For arbitrary state vectors QA = (fA Q(1)
A ...)

T
and QB =

(fB Q(1)
B ...)

T
, it is easy to prove that

〈fA|Ŝi|fB〉 = 〈QA|∂iĤg|QB〉g. (E1)

Here, Ŝi is given by Eq. (A11), and 〈...|...〉 is the canonical
inner product of the main text. The weighted inner product
〈...|...〉g is defined as in Ref. [65]. Thus, for a dispersive (local)
material, the operator ∂iĤg acts only on the electromagnetic
fields (fA, fB). Using the above result, one can rewrite the
modal expansion in Eq. (C7) of the photonic conductivity
spectral density in terms of the eigenmodes of the operator
Ĥg:

σph,ω,i j |�=0 = i
Eω

V

∑
ωm �=ωn,
ωn>0

δ(ω − ωn)

× ωm

ω2
mn

[−〈Qn|∂iĤg|Qm〉g〈Qm|∂ j Ĥg|Qn〉g

+ 〈Qm|∂iĤg|Qn〉g〈Qn|∂ j Ĥg|Qm〉g

]
. (E2)

The normalization condition in Eq. (C2) is equivalent to
〈Qn|Qm〉g = δn,m [65,67].

To proceed, we use the property (see Eq. (A6) of Ref. [65]):

〈Qn|∂ j Ĥg|Qm〉g = ωm − ωn

i
〈Qn|x j |Qm〉g. (E3)

This result holds true when the box is terminated with opaque-
type (noncyclic) boundary conditions, e.g., with PEC walls
[65]. Thus, Eq. (E2) may be rewritten as

σph,ω,i j |�=0 = i
Eω

V

∑
ωm �=ωn,
ωn>0

δ(ω − ωn) ωm
[−〈Qn|xi|Qm〉g〈Qm|x j |Qn〉g〈Qm|xi|Qn〉g〈Qn|x j |Qm〉g

]

= i
Eω

V

∑
ωn>0

δ(ω − ωn)〈Qn|x jĤgxi − xiĤgx j |Qn〉g. (E4)

In the last identity, we used the spectral theorem Ĥg =∑
ωm

ωm|Qm〉〈Qm|. Taking into account that ∂iĤg can be ex-
pressed in terms of the commutator [xi, Ĥg] = xiĤg − Ĥgxi

as ∂iĤg = −i[xi, Ĥg] [65], one finds that x jĤgxi − xiĤgx j =
i(xi∂ j Ĥg − x j ∂iĤg). Since ∂iĤg only acts on the electromag-
netic degrees of freedom, it can be identified with the Poynting
vector operator (Ŝi). Thus, it follows that

σph,ω,i j |�=0 = −Eω

V

∑
ωn>0

δ(ω − ωn)〈n|xiŜ j − x j Ŝi|n〉. (E5)

We switched back to the canonical inner product of
the main text and to a state vector formed exclusively
by the electromagnetic fields. The inner product
〈n|xiŜ j − x j Ŝi|n〉 can be written explicitly in terms
of the Abraham (kinetic) angular momentum of the
nth mode Ln = 1

c2

∫
V dV r × Re{En(r) × H∗

n (r)} as
〈n|xiŜ j − x j Ŝi|n〉 = εi jkc2Ln,k , where εi jk is the Levi-Civita
symbol. Thus, the photonic conductivity spectral density

satisfies

σph,ω|
�=0 = c2

V

⎡
⎣Eω

∑
ωn>0

δ(ω − ωn)Ln

⎤
⎦× 1. (E6)

The term inside rectangular brackets is exactly the (ther-
mal) fluctuation unilateral angular momentum spectral density
Lω of the unperturbed cavity (see Eq. (20) of Ref. [65])
in the weak dissipation limit. Therefore, we have shown
that

σph,ω|�=0
weak dissipation

= c2 1

V
Lω × 1. (E7)

It should be noted that, from the fluctuation dissipation the-
orem [Eq. (14)], the (unilateral) angular momentum spectral
density can also be expressed as

Lω,k = Eω

1

π

1

c2
Re
∫

d3rTr

{
(xiŜ j − x j Ŝi ) · G(r, r, ω)

iω

}
,

(E8)

with (i, j, k) identical to (1, 2, 3) or to its positive permuta-
tions. As a side note, we mention that it is also possible to
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obtain Eq. (E7) through direct manipulations of Eq. (37) using
Eq. (E8). The details are omitted here for conciseness.

It is straightforward to show that, for reciprocal platforms,
the Green’s function has the symmetry:

G(r, r′, ω) = σz · GT
(r′, r, ω) · σz,

with σz =
(

13×3 03×3

03×3 −13×3

)
. (E9)

Since Ŝ j is real valued and transpose symmetric,
we have for reciprocal systems Tr{Ŝ j · G(r, r, ω)} =

Tr{Ŝ j · GT
(r, r, ω)} = Tr{Ŝ j · σz · G(r, r, ω) · σz}. This also

implies that Tr{Ŝ j · G(r, r, ω)}=Tr{σz·Ŝ j · σz · G(r, r, ω)}.
However, explicit calculations using Eq. (A11) show that
σz · Ŝ j · σz = −Ŝ j . This proves that, for reciprocal platforms,
Tr{Ŝ j · G(r, r, ω)} = 0, and thereby, the fluctuation-induced
angular momentum vanishes [57,63]:

Lω| reciprocal
systems

= 0. (E10)

Note that the above formula holds true even in the case of
strong loss. Evidently, it implies that, for reciprocal platforms,
the constant-acceleration photonic conductivity vanishes in
the weak dissipation limit σph,ω|�=0

weak dissipation
reciprocal system

= 0.
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