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COMMENTARY

Hawking-type radiation in transluminal gratings
Mário G. Silveirinhaa,1

In recent times, there has been a significant surge in interest 
toward time-varying optical platforms (1). These platforms 
hold a dual allure: Not only do they promise novel nonrecip-
rocal and active electromagnetic devices, but they also open 
doors to explore the intriguing landscapes of wave physics 
(1–7). The interaction of light with spacetime gratings stands 
out as particularly captivating, as it mimics the way waves 
engage with moving systems, a subject that has been 
explored in depth (4–7). Now, a new and remarkable prop-
osition comes from Horsley and Pendry, introducing a the-
oretical concept that pushes the boundaries even further (8). 
Their proposal envisions spacetime gratings functioning 
within a transluminal regime, giving rise to an optical analogy 
of the Schwarzschild singularity found in Einstein’s field 
equations.

The theoretical model of Horsley and Pendry relies on a 
matched spacetime grating described by identical permittiv-
ity and permeability with a sinusoidal-type profile:

	 [1]

The permittivity and permeability are defined with respect 
to some background where light propagates with speed c

0
 . 

In the above, � determines the modulation strength, a = 2�∕g 
is the grating spatial period, and c

g
> 0 is the grating 

modulation speed. The parameters of the grating are dynam-
ically modulated in time with frequency Ω = c

g
g  . The space-

time modulation of the grating parameters is reminiscent of 
a linear physical motion with a constant speed c

g
 . Therefore, 

the optical response of the spacetime grating shares some 
similarities with the response of a moving system, albeit the 
two cases are not in general equivalent (6).

The local speed of light in the grating is governed  
by c(X ) = c

0
∕�(X ) . This speed varies within the range 

c
−
≤ c(X ) ≤ c

+
 with c

±
= c

0
∕(1 ∓ 2�) . In their proposition, 

Horsley and Pendry venture into the peculiar transluminal 
regime where the grating speed is c

g
= c

0
 . In such translu-

minal setting, the grating propagates faster than light in 
some segments ( c

g
> c(X ) , superluminal region), while it 

�(X ) = �(X ) = 1+2�cos
(

gX

)

, X = x−c
g
t
.
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Fig. 1. (A, Top) Permittivity profile of a matched transluminal grating. The arrows indicate the direction of the relative velocity of the wave that propagates toward 
+x with respect to the grating. The dashed vertical lines delimit the subluminal and superluminal regions and indicate the location of the event horizons (WH 
and BH). (Middle and Bottom) Electric field profile along the grating right after the modulation is switched on (Middle) and after some time interval has elapsed 
so that the amplification factor is 1∕� = 4 . The initial field distribution is drained toward the WH singularities. (B) Illustration of the allowed interband transitions 
in a transluminal grating when 𝛼 << 1 . The figure shows the band structure of the modes that copropagate with the matched grating in the absence of the time 
modulation. The transitions triggered by the time modulation resonantly couple the modes with frequencies �

k
 and �

k−g leading to the spontaneous emission 
of correlated photon pairs. The mode with frequency �

g∕2
= Ω∕2 is resonantly coupled to itself and is the primary radiation channel in the transluminal grating.
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propagates slower than light in other segments ( c
g
< c(X ) , 

subluminal region).
Remarkably, the coexistence of subluminal and superlu-

minal regions within the same grating forges spacetime pock-
ets from which light waves copropagating with the grating 
cannot escape: the singularity region ( c

g
> c(X )   ). Each of these 

spacetime pockets is demarcated by two-event horizons, 
where the local speed of light matches the grating speed, 
c = c

g
   —an optical analogue of the Schwarzschild singularity. 

Event horizons wherein dc∕dX < 0   ( dc∕dX > 0   ) are optical 
analogues of black (white) holes (BH and WH). Correspondingly, 
light copropagating with the grating finds itself trapped within 
the singularity region, unable to traverse beyond the BH-like 
event horizon. Conversely, light waves that traverse the sub-
luminal regions cannot breach the confines of these space-
time pockets, defined by the WH-like event horizon. Over time, 
the energy of the wave copropagating with the grating under-
takes a fateful process and is inexorably drawn toward the 
WH event horizons (Fig. 1A). This accumulation arises due to 
the opposite signs of the relative velocity of the wave with 
respect to the grating within and outside the singularity pock-
ets (9, 10). Roughly speaking, each parcel of the wave in a unit 
cell is simultaneously amplified and compressed by a factor 
1∕� , where 1∕� = e

2�Ωt grows exponentially with the interaction 
time (8) (Fig. 1A). It is noteworthy that light waves counterprop-
agating with the grating can pass through the singularity 
region without being drawn toward the event horizons.

Horsley and Pendry delve into the interaction of the 
quantum vacuum with a transluminal grating. Interestingly, 
they demonstrate that the coupling between positive and 
negative frequency oscillators can lead to the emission of 
correlated photon pairs, bearing resemblance to the radi-
ation predicted by Hawking to arise from a BH event 
horizon.

It is enlightening to examine the significance of negative 
frequencies in the Hawking-like spontaneous emission pro-
cess identified in ref. 8. Due to the reality of the electromag-
netic fields, positive and negative frequencies inevitably blur 
together, describing the same physical process like a shared 
oscillation that cannot be distinguished separately. However, 
the presence of temporal modulation allows for a clear dif-
ferentiation of the interactions involving positive and nega-
tive frequencies.

To further expand on this point, consider the interband 
transition process in a spacetime-modulated grating (11): If 
one begins with a mode with frequency � , it may resonate 
with other modes with frequencies � ± Ω . The transition 
�→ � + Ω is due to the interaction of oscillators with the 
same frequency sign ( e±i�t interacts with e±iΩt ; it is implicit 
that 𝜔,Ω > 0 ), whereas the transition �→ � − Ω is due to an 
interaction of oscillators with the different frequency signs 
( e±i�t interacts with e∓iΩt ). The reason why the two processes 

are fundamentally different is that the transition �→ � + Ω 
always describes the coupling between two physically dis-
tinct oscillators, whereas the transition �→ � − Ω may 
describe the coupling of a mode with itself. Such a situation 
occurs when � − Ω = − � because positive and negative fre-
quencies of the same mode describe the same physical 
oscillation. Thus, through the interaction between negative 
and positive frequencies, it may be possible to resonantly 
extract energy from the time modulation to the system, lead-
ing to an amplification of the modes with oscillation fre-
quency � = Ω∕2 . The electromagnetic instabilities that may 
arise from this process have been previously discussed in 
different contexts (12–17).

The above discussion can be readily extended to the 
quantum realm. For example, consider the case of a finite-
length spacetime grating terminated with periodic bound-
ary conditions. This is a slightly modified version of the 
setup considered in ref. 8. Such a system may be imple-
mented, for example, in the form of a circular resonator. 
Suppose that the time modulation is switched on at time 
t = 0 . A linear time-variant system can always be modeled 
by a quadratic time-dependent Hamiltonian written in 
terms of the creation and annihilation operators associ-
ated with the grating modes of the static system. Thereby, 
the system Hamiltonian can always be expressed as 
̂(t) = ̂

c
(t) + ̂

nc
(t) , with

	 [2]

where “h.c.” stands for the Hermitian conjugate 
term. For simplicity, I consider a single band 
model, so that k labels the Bloch wave vector of 

the 1st positive dispersion branch of the static grating (solid 
blue line in Fig. 1B). Furthermore, it was taken into account 
that the time modulation cannot change the wave vector 
k. Due to this reason, interactions of the type 

(

â
k
â
†

k
�
+ h.c.

)

 
are only feasible for Bloch waves with k� = k , whereas inter-
actions of the type 

(

â
k
â
k
� + h.c.

)

 are only feasible when 
k
�
= − k modulo g. For convenience, I take the Brillouin zone 

as 0 < k < g  . Note that at initial time ̂
c
 is the Hamiltonian 

of the static grating and ̂
nc

 vanishes. For t > 0 , the two 
operators depend on the spacetime modulation.

As explained by Horsley and Pendry, the term ̂
c
(t) is asso-

ciated with conservative interactions as it preserves the total 
particle number. Thereby, when it interacts with the quantum 
vacuum, it cannot generate light quanta (8). In contrast, the 
second component of the Hamiltonian, ̂

nc
(t) , does not pre-

serve the total particle number and describes a squeezing 
process that generates correlated photon pairs.

For a weakly modulated system, ( 𝛼 << 1 ) the band structure 
of the static grating is roughly identical to the light dispersion 
in a dielectric with �(X ) = �(X ) ≈ 1 . Thus, the light dispersion in 
the static grating can be approximated by �

k
≈ c

0
k , so that ̂

nc
 

models the interaction of modes with frequencies �
k
≈ c

0
k and 

�
g−k

≈ c
0

(

g − k

)

 (Fig. 1B). As �
k
+ �

g−k
≈ c

0
g ≈ Ω , it follows that 


nc

 describes the interband transition −�
g−k

→ �
k
 (or alterna-

tively −�
k
→ �

g−k
 ), i.e., it describes a transition between fre-

quencies with opposite signs.

̂
c
(t) =

∑

k

h
c,k
(t)

(

â
k
â
†

k

+h.c.
)

,

̂
nc
(t) =

∑

k

h
nc,k

(t)

(

â
k
â
g−k

+h.c.

)

,

“The insights from Horsley and Pendry’s research 
in ref. 8 suggest the possible application of 
transluminal gratings to compress and amplify 
electromagnetic waves at synthetic event-horizon 
singularities. This is likely to stimulate additional 
studies in this thought-provoking area.”
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Importantly, Horsley and Pendry show that the number 
density of the emitted quanta peaks near frequency 
� = Ω∕2 . This corresponds to the situation discussed 
before, where a mode is resonantly coupled to itself 
through interband transitions pumped by the time modu-
lation (green arrow in Fig. 1B). Thus, the spectral peak at 
� = Ω∕2 confirms the role of the negative frequencies in 
the emission process analyzed in ref. 8. Note that the 
Hamiltonian 

nc
 generates components of the field state 

of the type 
|

|

|

1
k
, 1

g−k

⟩

 , which in the resonant case ( 
√

2

�

�

�

2
g∕2

�

 ) 
is boosted by a factor of 

√

2.
Interestingly, the analysis in ref. 8 reveals a notable 

trend: The spectrum of the radiation emitted by the translu-
minal grating asymptotically adopts a quasi-thermal distri-
bution, akin to e−ℏ�∕kBTH with T

H
 an equivalent Hawking 

temperature. Importantly, this Hawking temperature 
undergoes exponential growth in tandem with the interac-
tion time. Consequently, even with a relatively modest 
modulation strength � , the prospect of experimentally 
observing Hawking-type radiation emanating spontane-
ously from the transluminal grating becomes conceivable. 

However, realizing this requires the modulation of the sys-
tem for an adequately extended time period at a large 
modulation speed. Although this poses a significant chal-
lenge at optical frequencies, it could potentially be achiev-
able at lower frequencies. Additionally, it is worth noting 
that the interaction of the grating with thermal light could 
potentially lead to a related spontaneous emission process. 
Therefore, exploring this avenue in the terahertz regime 
offers an interesting alternative direction to consider.

In conclusion, spacetime gratings offer an intriguing set-
ting for investigating extreme wave phenomena. The insights 
from Horsley and Pendry’s research in ref. 8 suggest the 
possible application of transluminal gratings to compress 
and amplify electromagnetic waves at synthetic event-
horizon singularities. This is likely to stimulate additional 
studies in this thought-provoking area.
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