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Homogenization of dispersive space-time crystals: Anomalous dispersion and negative stored energy
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We introduce a homogenization approach to characterize the dynamical response of a generic dispersive
space-time crystal in the long-wavelength limit. The theory is applied to dispersive space-time platforms with a
traveling-wave modulation. It is shown that for long wavelengths the effective response may be described by a
frequency-dependent permittivity. Due to the active nature of space-time systems, the permittivity is not bound by
the same constraints as in standard time-invariant metamaterials. In particular, we find that dispersive space-time
crystals can exhibit rather peculiar physics, such as an anomalous (“non-Foster”) permittivity dispersion with
a negative stored energy density, alternate between gain and loss regimes, and present multiple resonances in
the quasistatic regime. Furthermore, it is verified with numerical simulations that the effective theory captures
faithfully the exact dispersion of the first few photonic bands.
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I. INTRODUCTION

Metamaterials have emerged in the last decades as unique
platforms to sculpt light-matter interactions [1,2]. Tradition-
ally, metamaterials have been engineered by tailoring in shape
and in size identical meta-atoms arranged in a space lattice.
In recent years, time has been explored as a new degree of
freedom in material design, typically relying on an electrical
modulation of the material parameters [3–11]. Time-varying
materials are particularly appealing because they enable non-
reciprocal electromagnetic interactions without the need for
an external magnetic field bias [12–15].

In the long-wavelength limit, the electrodynamics of meta-
materials can be conveniently modeled using homogenization
methods [16–28]. Effective medium theory not only greatly
simplifies the description of the wave propagation but may
also be used to identify the physical mechanisms that control
the relevant electromagnetic phenomena. Thus, the effective
medium formalism combines the simplicity of the analytical
modeling with invaluable physical insights. Although homog-
enization theories for space-time metamaterials have been
recently proposed in the literature [29–34], they are typi-
cally restricted to the quasistatic regime and do not capture
the inherent frequency dispersion of the effective material
response. It was shown in Ref. [34] that temporal metama-
terials (varying periodically in time, but uniform in space)
can be characterized by strong spatial dispersion in the long-
wavelength limit.

In this work, we introduce an effective medium description
of the long-wavelength response of a dispersive space-time
crystal with a traveling-wave modulation. For a traveling-
wave modulation the relevant material parameters vary in
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space-time as u(r, t ) = u(r − vt ) with v the modulation speed
and u some generic parameter that is controlled by the mod-
ulation. Our analysis fully takes into account the inevitable
material dispersion of the constituents of the metamaterial
and determines the effective frequency-dependent material re-
sponse of the system. The developed theory may be regarded
as a generalization of the source-driven homogenization in-
troduced in Refs. [18,26] to the case of space-time crystals.
The effect of material dispersion in time-varying systems was
studied in previous works in different contexts [35–39].

Notably, we find that the complex interactions resulting
from the space-time modulation may yield an active effective
response characterized by an anomalous (“non-Foster”) ma-
terial dispersion and a negative stored energy density. Thus,
the space-time modulation can be used to engineer non-Foster
metamaterials. Non-Foster dispersions are instrumental to
boosting the bandwidth of waveguides, antennas, and related
microwave components [40–45].

The paper is organized as follows. Section II extends the
formalism of source-driven homogenization theory to space-
time metamaterials. The analysis is focused on crystals with
a traveling-wave type modulation. Section III introduces the
dispersive space-time model for the stratified photonic crystal
considered in this work. Analytical formulas for the effective
permittivity are derived under a quasistatic approximation.
Then, in Sec. IV we study different manifestations of the non-
Hermitian properties of the space-time crystal in the effective
response. In particular, it is shown that the effective per-
mittivity may present an anomalous (non-Foster) dispersion.
Furthermore, due to the active nature of the material response,
the energy supplied by an external excitation to reach a steady
state may be negative. We also discuss the conditions under
which the effective permittivity of the dispersive space-time
crystal may become complex valued. In Sec. V, the validity
of the effective medium theory is demonstrated by comparing
the exact band structure with the predictions obtained from
the homogenization approach. Additionally, we describe how
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the combination of dispersion and space-time band folding
results in elaborate band structures. Section VI presents the
main conclusions.

II. SOURCE-DRIVEN HOMOGENIZATION
OF SPACE-TIME METAMATERIALS

In this section, we generalize the formalism of source-
driven homogenization theory to space-time metamaterials.
The analysis is focused on the homogenization of metama-
terials with a traveling-wave modulation.

A. Source-driven homogenization

Let us consider Maxwell’s equations in a generic time-
variant material:

−∇ × E = ∂t [μ0H + Pm] + jm,ext,

+∇ × H = ∂t [ε0E + Pe] + je,ext. (1)

Here, Pe, Pm are the electric and magnetic polarization vec-
tors, respectively, which determine the material response
through some suitable constitutive relations. Furthermore,
je,ext, jm,ext are fictitious electric and magnetic external exci-
tations that drive the system. We consider both electric and
magnetic excitations, as both are relevant to formulating the
homogenization problem, as detailed below.

The objective of homogenization theory is to characterize
the slowly varying in space-time envelopes of the electromag-
netic fields 〈E〉 and 〈H〉. Here, 〈�〉 represents a “space-time
averaged” field � defined by a space-time convolution:

〈�〉(r, t ) =
∫∫

d3r0dt0 f (r − r0, t − t0)�(r0, t0). (2)

Analogous to Refs. [16–18,25,26], it is assumed that the ker-
nel f corresponds to an ideal low-pass space-time filter such
that

〈e−iωt eik·r〉(r, t ) = e−iωt eik·r f̃ (k, ω),

with f̃ (k, ω) =
{

1, (k, ω) ∈ BZ

0, otherwise
. (3)

In the above, f̃ (k, ω) = ∫∫
d3rdt f (r, t )eiωt e−ik·r is the

Fourier transform of f and BZ is some subset of the spec-
tral domain, which will be taken as a Brillouin zone. When
the system under study is time invariant, the time averag-
ing is unnecessary and one may take f (r − r0, t − t0) =
f0(r − r0)δ(t − t0) [16–18,25,26].

In this article, it is supposed that the system is periodic
both in space and in time, such that the constitutive relations
are described by some operator L̂ with the same property:
L̂(r, t, i∂t ) = L̂(r + ai, t, i∂t ) (i = 1, 2, 3) and L̂(r, t, i∂t ) =
L̂(r, t + T, i∂t ). Here ai are the spatial-lattice primitive vec-
tors, and T is the time period. Thereby, the set BZ may be
taken as the Cartesian product of the space and time Brillouin
zones. For example, for a one-dimensional (1D) space-time
crystal one may take BZ = [−π

a , π
a ]×[−π

T , π
T ].

The constitutive relations are of the generic form:

L̂(r, t, i∂t ) ·
(

Pe

Pm

)
=

(
ε0E
μ0H

)
. (4)

Thus, the dynamics of the electric and magnetic polarization
vectors is controlled by a time differential equation whose
coefficients may vary in space and in time.

The goal of the source-driven homogenization is to predict
the dynamics of the averaged fields 〈E〉 and 〈H〉 for any
macroscopic excitation j = (je,ext jm,ext )

T that varies slowly
in space-time, such that 〈j〉 = j [17,26,28]. As both the space
and time derivatives commute with the averaging operator, the
averaged fields satisfy

−∇×〈E〉 = ∂t [μ0〈H〉 + 〈Pm〉] + jm,ext,

+∇×〈H〉 = ∂t [ε0〈E〉 + 〈Pe〉] + je,ext. (5)

We would like to relate the averaged polarization vectors
〈Pe〉, 〈Pm〉 with the macroscopic fields 〈E〉, 〈H〉 through some
linear operator M̂ef that describes the response of the effective
medium: (〈Pe〉

〈Pm〉
)

= M̂ef ·
(〈E〉

〈H〉
)

−
(

ε0〈E〉
μ0〈H〉

)
. (6)

Note that the above equation is equivalent to
(〈D〉
〈B〉

) = M̂ef ·(〈E〉
〈H〉

)
, with D and B the electric displacement vector and the

induction vector, respectively.
Evidently, external excitations that satisfy 〈j〉 = j are of the

form j = ∑
(k,ω)∈BZ j0

(k,ω)e
−iωt eik·r with j0

(k,ω) some constant
“vector.” The key point is that, since the problem is linear,
the unknown (linear) operator M̂ef is fully determined by the
response of the system to space-time-harmonic excitations
of the type j0e−iωt eik·r with (k, ω) ∈ BZ [17,26,28]. There-
fore, similar to the case of time-invariant metamaterials, it
is possible to determine M̂ef in the spectral domain [Mef =
Mef (k, ω)] by finding the solution of Eq. (1) for a generic
excitation of the type j0e−iωt eik·r followed by field averaging
[Eq. (2)]. It should be noted that for an excitation of the
form j0e−iωt eik·r the solution of Eq. (1) is such that a generic
field is of the form �(r, t ) = �p(r, t )e−iωt eik·r with �p(r, t )
a periodic function of space-time. Using this property, it can
be checked that

〈�〉(r, t )=e−iωt e+ik·r 1

T

1

Vcell

∫
cell

d3r
∫ T

0
dt�(r, t )eiωt e−ik·r,

(7)

where Vcell is the volume of the unit cell. The quantities 〈Pe〉,
〈Pm〉 are determined by similar formulas.

B. Traveling-wave modulations

For generic space-time variations, the solution of Eq. (1)
for an excitation of the type j0e−iωt eik·r requires the use of
time-domain numerical methods (see Ref. [25]). Consider,
however, the particular subclass of space-time modulations,
such that the operator L̂ in Eq. (4) is of the form

L̂ = L̂(r − vt, ∂t ), (8)

with v the modulation speed. We shall refer to this type of
modulation as a “traveling-wave modulation.” In this case, it is
possible to get rid of the time dependence of the operator with
a simple Galilean coordinate transformation: r′ = r − vt ,
t ′ = t [9,32]. Noting that ∇ = ∇′ and ∂

∂t = ∂
∂t ′ − v · ∇′, it fol-

lows that the constitutive relations in the primed coordinates
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are of the form

L̂

(
r′,

∂

∂t ′ − v · ∇′
)

·
(

Pe

Pm

)
=

(
ε0E
μ0H

)
. (9a)

As seen, the operator L̂ becomes time independent in the
comoving frame, which greatly simplifies the homogenization
problem. On the other hand, Maxwell’s equations [Eq. (1)
with j = j0e−iωt eik·r] become

−∇′×E =
(

∂

∂t ′ − v · ∇′
)

[μ0H + Pm] + jm,0e−iω′t ′
eik′ ·r′

,

+∇′×H =
(

∂

∂t ′ − v · ∇′
)

[ε0E + Pe] + je,0e−iω′t ′
eik′ ·r′

,

(9b)

where k′ = k and ω′ = ω − k · v. It is possible to recover
the usual structure of Maxwell’s equations with some simple
manipulations:

− ∇′×[E + v×(μ0H + Pm)]

= ∂

∂t ′ [μ0H + Pm] + j′m,0e−iω′t ′
eik′ ·r′

,

+ ∇′×[H − v×(ε0E + Pe)]

= ∂

∂t ′ [ε0E + Pe] + j′e,0e−iω′t ′
eik′ ·r′

. (9b′)

The fields E′ ≡ E + v×(μ0H + Pm) and H′ =
H − v×(ε0E + Pe) may be regarded as the transformed
fields in the (Galilean) comoving frame. In the above,
j′e,0 = je,0 − vρe,0 and j′m,0 = jm,0 − vρm,0 are the equivalent
vector current amplitudes in the comoving frame, with
ρe,0 = k

ω
· je,0 and ρm,0 = k

ω
· jm,0 the electric and magnetic

charge densities associated with the external currents. Since
j′e,0 and j′m,0 are constant vectors, the system (9) may be
regarded as a homogenization problem in a time-invariant
system, somewhat analogous to the problems studied in
Refs. [16–18,25,26].

The effective medium response Mef = Mef (k, ω) can be
found by solving Eqs. (9a) and (9b′) for a generic excitation
of the type j′e,ext = j′e,0e−iω′t ′

eik′ ·r′
and j′m,ext = j′m,0e−iω′t ′

eik′ ·r′
.

There are six independent macroscopic excitations, with three
degrees of freedom purely electric and another three de-
grees of freedom magnetic. For each of the excitations, the
macroscopic fields are found by averaging the corresponding
microscopic fields [Eq. (7)]. In the comoving frame coordi-
nates, a generic field is of the form � = �p(r′)e−iω′t ′

eik′ ·r′

with �p(r′) a periodic function of space. Hence, the macro-
scopic fields can be easily calculated in the comoving frame
coordinates with a simple spatial averaging:

〈�〉(r, t ) = e−iωt e+ik·r 1

Vcell

∫
cell

d3r′�(r′, t ′)eiω′t ′
e−ik′ ·r′

.

(10)

After 〈Pe〉, 〈Pm〉, 〈E〉, 〈H〉 are determined for the six indepen-
dent excitations, one can find the (6 × 6) effective material

matrix Mef = Mef (k, ω) using(〈Pe〉
〈Pm〉

)
= Mef (k, ω) ·

(〈E〉
〈H〉

)
−

(
ε0〈E〉
μ0〈H〉

)
. (11)

The dependence of Mef on (k, ω) corresponds to a spatially
and frequency dispersive response.

To conclude this section, we note that two-dimensional
(2D) and three-dimensional (3D) periodic space crystals sub-
ject to a traveling-wave modulation may not yield a system
strictly periodic in time, but rather a quasicrystal type peri-
odicity in time [46]. In fact, consider some function (e.g., the
permittivity) that is periodic in space in the comoving frame
so that u(x′, y′) = u(x′ + a, y′) = u(x′, y′ + a) with a the lat-
tice period. Then, the corresponding function evaluated in the
laboratory frame, u(r, t ) = u(r − vt ), with v = vxx̂ + vyŷ the
modulation speed, is periodic in time only when vx/vy is a
rational number.

III. HOMOGENIZATION OF DISPERSIVE
1D SPACE-TIME CRYSTALS

A. Model of the space-time crystal

In order to illustrate the theory developed in the previ-
ous section, we consider a 1D nonmagnetic photonic crystal
(Pm = 0). Without loss of generality, it is supposed that E =
E (x, t )ŷ and H = H (x, t )ẑ. Furthermore, the electric polar-
ization vector in the material is of the form Pe = P(x, t )ŷ. The
dynamics of the electromagnetic fields in the laboratory frame
is ruled by

−∂xE = μ0∂t H, −∂xH = ∂t [ε0E + P] + je,ext. (12)

We discard the magnetic excitation ( jm,ext=0) because Pm=0.
Indeed, in the absence of a magnetic response at the micro-
scopic level, it is possible to characterize the effective medium
using only an equivalent (scalar) permittivity εef (k, ω) that
relates the mean electric polarization with the mean electric
field: 〈P〉 = [εef (k, ω) − ε0] · 〈E〉 [16–18]. For a 1D problem
the effective permittivity εef (k, ω) can be calculated using a
single electric excitation controlled by je,ext.

In this study, it is supposed that the dynamics of the po-
larization vector is controlled by a dispersive Drude-Lorentz
model with time-varying coefficients (the modulation speed is
v = vx̂):[

∂2

∂t2
+ ω2

0(x − vt )

]
P(x, t ) = ε0ω

2
p(x − vt )E (x, t ). (13)

Related models have been considered by other authors
[47,48]. In the above, ω0 is the resonance frequency of the
Drude-Lorentz model and ωp is the plasma frequency. The
two frequencies may be subject to a space-time traveling-wave
modulation with modulation speed v. In the absence of a
time modulation (v = 0), the polarization P in the frequency

domain is linked to the electric field as Pω = ε0ω
2
p

ω2
0−ω2 Eω. Note

that ω0 typically describes the interaction of the electromag-
netic field with bound charges, and so it may be dynamically
modulated by applying a strong time-varying electric bias
to a nonlinear dielectric material (similar to the electric bias
acting on a “varactor”). On the other hand, the parameter ωp is
mainly controlled by the number of charges in the system and

035119-3



JOÃO C. SERRA AND MÁRIO G. SILVEIRINHA PHYSICAL REVIEW B 108, 035119 (2023)

hence its modulation may require charge injection/removal
(e.g., using a gate, analogous to a transistor).

Comparing Eqs. (4) and (13), we see that the operator L̂
is given by (from now on we ignore the magnetic degrees of
freedom)

L̂(x, t, ∂t ) = 1

ω2
p(x − vt )

[
∂2

∂t2
+ ω2

0(x − vt )

]
. (14)

Switching to the comoving frame coordinates (x′, t ′) =
(x−vt, t ), one obtains a simplified version of the system (9):

− ∂

∂x′ (E − vμ0H ) = μ0
∂

∂t ′ H,

− ∂

∂x′ (H − vε0E − vP) = ∂

∂t ′ [ε0E + P] + je,0e−iω′t ′
eik′x′

,

(15a)

1

ω2
p(x′)

[(
∂

∂t ′ − v
∂

∂x′

)2

+ ω2
0(x′)

]
P = ε0E , (15b)

with k′ = k and ω′ = ω−vk. Note that Eq. (15a) is the coun-
terpart of (9b′) as in the 1D problem j′e,0 = je,0.

By definition, the effective permittivity must satisfy
εef (k, ω) = ε0 + 〈P〉/〈E〉, where P and E are the (source-
driven) solutions of Eq. (15). In the next subsection, we obtain
a quasistatic solution of the homogenization problem.

B. Quasistatic limit

To begin with, we note that as the coefficients of the
differential system (15) are time independent, one can use
∂
∂t ′ = −iω′. Here, we want to focus on the quasistatic limit
such that the fields vary slowly both in space and in time and
the excitation is periodic in space (k ≈ 0). As the relevant
length scale in the comoving frame is the lattice period a,
the condition k ≈ 0 should be understood as equivalent to
ka � 1. This long-wavelength condition is unchanged in the
lab frame coordinates because the Galilean transformation
does not contract distances.

In the discussed quasistatic regime, the left-hand sides and
the right-hand sides of the two equations in (15a) vanish
independently. In particular, this means that ∂

∂x′ E ′ ≈ 0 and
∂

∂x′ H ′ ≈ 0 with the primed fields defined by

E ′ = E − vμ0H,

H ′ = H − v(ε0E + P). (16)

Thus, the primed fields can be assumed constant in the qua-
sistatic limit. This approximation is mostly accurate when
v2/c2 � 1. It is relevant to note that since we take k ≈ 0, there
is no Doppler shift, so that ω′ ≈ ω.

As the original fields can be written in terms of the primed
fields as

E = E ′ + μ0vH ′ + μ0v
2P

1 − v2/c2
, H = H ′ + ε0vE ′ + vP

1 − v2/c2
,

(17)

it follows from Eq. (15b) that the polarization vector satisfies

L̂coP
(
x′) = ε0

E ′ + μ0vH ′

1 − v2/c2
, (18a)

with

L̂coP(x′) ≡
[

−1

ω2
p(x′)

(
−ω + vi

∂

∂x′

)2

+ ω2
0(x′)

ω2
p(x′)

− v2/c2

1 − v2/c2

]
P(x′). (18b)

Since the excitation has k ≈ 0, the polarization P(x′) is deter-
mined by the periodic solution of the above equation. Thus,
the quasistatic solution neglects the effects of spatial disper-
sion so that the effective permittivity will depend exclusively
on frequency. Interestingly, the excitation current je,0 does not
appear explicitly in Eq. (18a), but only indirectly through the
primed fields E ′, H ′.

Let G(x′) be the periodic solution of the equation
L̂coG(x′) = 1 with L̂co defined as in Eq. (18b). As E ′,
H ′ are approximately constants, one can write P(x′) =
G(x′)ε0

E ′+μ0vH ′
1−v2/c2 . For k = 0, the macroscopic polarization

vector is given by 〈P〉 = Pav(ω) = 1
a

∫ a
0 P(x′)dx′. This shows

that

〈P〉 = ε0χ
′
ef (ω)

E ′ + μ0vH ′

1 − v2/c2
,

with χ ′
ef (ω) = 1

a

∫ a

0
G

(
x′)dx′. (19)

Recalling that E (x′) = E ′+μ0vH ′
1−v2/c2 + μ0v

2

1−v2/c2 P(x′), it is clear

that 〈E〉 = E ′+μ0vH ′
1−v2/c2 + μ0v

2

1−v2/c2 〈P〉. Combining this result with
Eq. (19), one finds that the effective relative permittivity in the
laboratory (unprimed) frame in the quasistatic limit [εef (ω) ≡
εef (k ≈ 0, ω)] is given by

εef (ω) = 1 + 〈P〉
ε0〈E〉 = 1 + χ ′

ef (ω)

1 + v2/c2

1−v2/c2 χ
′
ef (ω)

. (20)

In summary, the solution of L̂coG(x′) = 1 determines the
effective response of the space-time crystal in the long-
wavelength limit ka � 1. In Sec. III D, we derive an explicit
analytical formula for the case of a binary crystal.

C. Symmetries of εef (ω)

There are a few symmetries that guarantee that the ef-
fective permittivity of the space-time crystal is real valued
for real-valued frequencies. Specifically, it is demonstrated
in Appendix A that when the operator L̂co = L̂co(x′, i∂x′ , ω)
defined by Eq. (18b) is either Hermitian with respect to the
canonical inner product, L̂co = L̂†

co, or, alternatively, parity-
time (PT ) symmetric [49–52] such that L̂co(x′, i∂x′ , ω) =
L̂co(−x′,−i∂x′ , ω)∗, then εef (ω) is forcibly real valued.

It is evident from physical considerations that the homog-
enized system must inherit the same symmetries as the mi-
croscopic space-time crystal. A uniform (space-independent)
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a

0,1ω
p,1ω

0,1ω
p,1ω

0,1ω
p,1ω

p,2
ω

0,2
ω

p,2
ω

0,2
ω

p,2
ω

0,2
ω

FIG. 1. Geometry of a one-dimensional binary crystal described
by a time-varying Drude-Lorentz model with a traveling-wave
modulation.

dielectric exhibits PT symmetry if and only if εef (ω) =
ε∗

ef (ω∗). Thus, it follows that the effective permittivity of an
arbitrary PT -symmetric crystal must be real valued, which
aligns with our theoretical framework.

D. Binary crystal

Consider now that the space-time crystal is formed by
two homogeneous layers of thickness an, n = 1, 2, with each
layer described by some parameters ωp,n and ω0,n as repre-
sented in Fig. 1. The lattice period is a = a1 + a2.

The solution of Eq. (18) for the binary crystal is of the form

P(x′) = ε0
E ′ + μ0vH ′

1 − v2/c2

{
A1eiα1(x′− a1

2 ) + B1eiβ1(x′− a1
2 ) + C1, 0 � x′ < a1

A2eiα2(x′− a2
2 −a1 ) + B2eiβ2(x′− a2

2 −a1 ) + C2, a1 � x′ < a
, (21)

with

Cn = ω2
p,n

(
ω2

0,n − ω2−ω2
p,n

v2/c2

1 − v2/c2

)−1

, αn = −ω

v
−

√
ω2

0,n

v2
− ω2

p,n

v2

v2/c2

1 − v2/c2
,

and βn = −ω

v
+

√
ω2

0,n

v2
− ω2

p,n

v2

v2/c2

1 − v2/c2
, n = 1, 2.

The unknown coefficients An, Bn are determined by
imposing the continuity of P and ∂P/∂x′ at the material inter-
faces. As previously mentioned, in the long-wavelength limit
(ka � 1) the electric polarization P(x′) may be assumed
periodic in x′, and so the relevant boundary conditions
are P(a−

1 ) = P(a+
1 ), ∂P

∂x′ (a−
1 ) = ∂P

∂x′ (a+
1 ), P(0+) = P(a−), and

∂P
∂x′ (0+) = ∂P

∂x′ (a−). Explicit formulas for A1, A2, B1, B2 for
the case of binary crystals with layers of identical thickness
(a1 = a2 = a/2) are given in Appendix B.

The effective permittivity in the laboratory frame [Eq. (20)]

is written in terms of χ ′
ef (ω) = 1

a

∫ a
0 dx′P(x′)

(
ε0

E ′+μ0vH ′
1−v2/c2

)−1

[Eq. (19)]. Straightforward calculations show that for a1 =
a2 = a/2,

χ ′
ef (ω) = 2

A1

α1a
sin

(
α1a

4

)
+ 2

B1

β1a
sin

(
β1a

4

)

+ 2
A2

α2a
sin

(
α2a

4

)
+2

B2

β2a
sin

(
β2a

4

)
+C1+C2

2
.

(22)

IV. NON-HERMITIAN EFFECTS IN THE EFFECTIVE
RESPONSE OF SPACE-TIME CRYSTALS

A. Anomalous permittivity dispersion

In order to illustrate how the space-time modulation can
tailor in unique ways the effective response, we consider in
the first example a binary dispersive crystal with parame-
ters ωp,1 = ωp,2 = 2.0c/a, ω0,1 = 1.0c/a, ω0,2 = 1.5c/a, and
a1 = a2 = a/2. Figures 2(ai) and 2(bi) depict the effective
permittivity of the space-time crystal (in the laboratory frame)

as a function of frequency for the cases v = 0 and v = 0.25c
(blue lines). The results were calculated using the quasistatic
approximation discussed in the previous subsections. The ef-
fective permittivity is always real valued for binary crystals
[for the material model in Eq. (18b)], as it can be easily
checked that such systems are always PT invariant. The
dashed red lines in Fig. 2 were calculated using a nondis-
persive homogenization theory that will be discussed a few
paragraphs below.

When v = 0 the effective response has two poles coinci-
dent with the poles ω0,n of the individual material responses.
In fact, in the static case, the effective permittivity reduces to
the spatial average of the material permittivities: εef (ω)|v=0 =
f1ε1(ω) + f2ε2(ω) with fn = an/a the volume fraction of the
nth layer and

εn(ω) = 1 + ω2
p,n

ω2
0,n − ω2

(23)

the dispersive permittivity of the nth material in the absence
of the time modulation.

The most notable difference between Figs. 2(ai) and 2(bi)
is the monotonic behavior of the permittivity dispersion. In
particular, the dispersion predicted by the source-driven ho-
mogenization exhibits an anomalous (non-Foster) behavior
such that in some spectral regions the permittivity decreases
with the frequency. For transparent (i.e., weakly absorptive)
passive linear materials, such a behavior is forbidden by the
Kramers-Kronig relations [53]. In fact, the permittivity of
a regular transparent material must increase monotonically
with frequency due to the well known analytical properties of
Herglotz-Nevanlinna functions. On the other hand, space-time
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FIG. 2. Effective permittivity (i) εef (ω) and (ii) ∂ω[ωεef (ω)] as a function of the frequency ω, for a binary crystal with a1 = a2 = a/2,
ωp,1 = ωp,2 = 2.0c/a, ω0,1 = 1.0c/a, ω0,2 = 1.5c/a and for the modulation speed (a) v = 0 and (b) v = 0.25c. Blue lines: our theory. Dashed
red lines: ND homogenization.

modulated platforms are active, and thereby are not bound by
the same constraints as passive materials. For example, in an
active system it is possible to have Im{ε(ω)} < 0 in the upper-
half frequency plane, different from passive systems [54]. Our
results show that the active response of a dispersive space-
time crystal may be used to engineer an effective medium with
an anomalous dispersion. As discussed in the Introduction,
non-Foster materials are useful to compensate the “positive”
dispersion of conventional Foster elements, enabling the de-

sign of broadband microwave and optical components, such
as waveguides [42], antennas [43], cloaking devices [44], and
others.

The anomalous dispersion persists even for very small
modulation speeds, but typically with narrower bandwidths.
This can be seen in Fig. 3, which depicts the effective per-
mittivity for progressively smaller values of v. The spectral
windows (with positive frequency) with anomalous permit-
tivity dispersion are roughly centered at −〈ω0〉 + mv 2π

a with

(a) (b)

(c) (d)
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FIG. 3. Effective permittivity of a binary crystal with the same parameters as in Fig. 2 for different modulation velocities: (a) v = 0.20c,
(b) v = 0.15c, (c) v = 0.10c, (d) v = 0.05c. The spectral regions that exhibit an anomalous dispersion are highlighted by the vertical shaded
blue strips. Blue lines: our theory. Dashed red lines: ND homogenization.
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m a positive integer and 〈ω0〉 some “effective” resonance
frequency in the interval determined by ω0,1 and ω0,2. For
small velocities, 〈ω0〉 is approximately the spatial average of
ω0(x′). The number of resonances increases for smaller values
of v.

The permittivity resonances may be attributed to the
resonances of the materials at ω = ±ω0,n, which lead to reso-
nances at ω′ ≈ ±〈ω0〉−kv + m 2π

a v, with m an integer, in the
comoving frame. This result is a consequence of the synthetic
Doppler shift (term −kv) and of the band folding induced by
the periodicity of the system in the comoving frame. When
such resonances are brought back to the laboratory frame, they
emerge at ω ≈ ±〈ω0〉 + m 2π

a v.
The positive frequency resonances associated with the

anomalous dispersion are of the form −〈ω0〉 + mv 2π
a , i.e., are

due to the band folding of the negative frequency resonance.
In other words, the space-time folding of the dispersion of
the bulk material creates “copies” of a negative (positive)
resonance at −〈ω0〉 (+〈ω0〉) in the positive (negative) half of
the frequency axis, which are responsible for the regions of
anomalous dispersion. Thus, the non-Foster behavior results
from the interaction of positive (negative) frequencies with
negative (positive) resonances, which is only possible due to
the combination of dispersion and space-time band folding.

It is interesting to compare our dynamical homogenization
with the theory of Ref. [32] for nondispersive materials. For
a bilayer nonmagnetic and nondispersive crystal the relative
effective permittivity satisfies [32]

εND
ef = ε′

(1 − ξ ′v/c)2 − ε′μ′v2/c2
, (24a)

with

ε′ = f1
ε1

1 − ε1v2/c2
+ f2

ε2

1 − ε2v2/c2
, (24b)

μ′ = f1
1

1 − ε1v2/c2
+ f2

1

1 − ε2v2/c2
, (24c)

ξ ′ = −v

c

[
f1

ε1

1 − ε1v2/c2
+ f2

ε2

1 − ε2v2/c2

]
. (24d)

The effective permittivity εND
ef was derived under the as-

sumption that the material parameters ε1, ε2 are independent
of frequency [32]. It is natural to ask if εND

ef can be used
to predict the effective permittivity of the dispersive crystal
simply by replacing the symbols ε1, ε2 in the above formulas
by the dispersive material permittivities ε1(ω), ε2(ω), defined
as in Eq. (23). We shall refer to such an approximate theory as
nondispersive (ND) homogenization.

The dashed red lines in Figs. 2(ai), 2(bi), and Fig. 3
were calculated with εND

ef , using the procedure outlined in
the previous paragraph. Although the ND homogenization
agrees precisely with the dynamical homogenization for v=0
[Fig. 2(ai)], the two methods predict totally different results
when the modulation speed is nontrivial, particularly for
moderate and large values of ωa/c. In particular, the ND
homogenization misses completely the resonances associated
with the space-time band folding.

Interestingly, as shown in Fig. 4, the ND homogeniza-
tion and the source-driven homogenization agree precisely in
the limit ω2

p,n → ∞, ω2
0,n → ∞ with ω2

p,n/ω
2
0,n → const. ≡

FIG. 4. Effective permittivity of a binary crystal subject to a
traveling-wave modulation with v = 0.25c for ω0,1 = ωp,1 = ωp,2 =
1000.0c/a and ω = 0.1c/a as a function of ω0,2/ω0,1. Blue lines: our
theory. Dashed red lines: ND homogenization.

εn−1, i.e., in the nondispersive limit (here, we neglect spu-
rious resonances due to the space-time band folding whose
bandwidths are too narrow to represent graphically). Thus, our
theory generalizes the results of previous work [32].

B. Negative stored energy

As is well known, the energy stored in a passive isotropic
dielectric material in a transparency window is determined by
(V represents the volume of the material) [53]:

Eav = 1

4

∫
V

dV

(
ε0

∂

∂ω
[ωε(ω)]E∗

ω(r) · Eω(r)

+μ0H∗
ω(r) · Hω(r)

)
. (25)

A time-harmonic variation of the fields is implicit. The stored
energy is the energy transferred to the material during the
transient process that sets up the stationary-state field distri-
bution. Thus, for a passive (weakly dissipative) material it is
mandatory that ∂

∂ω
[ωε(ω)] > 0. This ensures that the energy

transferred by the generator to the material is “positive,” i.e.,
that it is necessary to pump energy into the material to reach
the relevant steady state. In agreement with this property,
the effective permittivity that characterizes the considered
photonic crystals in the absence of a space-time modula-
tion satisfies ∂

∂ω
[ωε(ω)] > 0. This property is illustrated in

Fig. 2(aii) for a particular realization of a photonic crystal.
In Appendix C, it is demonstrated that Eav defined as in

Eq. (25) may still have a physical meaning when the material
is active, e.g., a homogenized space-time crystal with v �= 0.
Specifically, provided εef (ω) is real valued for real-valued
frequencies, then Eav determines the energy transferred from
the external excitation (e.g., an antenna) during the transient
period that precedes the steady-state regime. As discussed
above, for conventional passive materials Eav must be strictly
positive, and accordingly one needs that ∂

∂ω
[ωε(ω)] > 0. Dif-

ferently, for an active system the direction of flow of energy
from the generator to the material can be arbitrary due to
the gain of the material response. Hence, it is in principle
possible to have situations in which ∂

∂ω
[ωε(ω)] < 0 and where

Eav < 0. Indeed, as shown in Fig. 2(bii), our simulations
(blue line) confirm that there are spectral windows wherein
∂

∂ω
[ωε(ω)] < 0, such that the “stored” energy is negative.

This means that the material radiates away more energy than
what it receives from the excitation in the transient process
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FIG. 5. (a) Geometry of a dispersive space-time crystal with a ternary structure. (b) Real and imaginary parts of the effective permittivity
as a function of ω for a1 = a2 = a3 = a/3, ωp,1 = 1.0c/a, ωp,2 = 2.0c/a, ωp,3 = 1.5c/a, ω0,1 = 1.0c/a, ω0,2 = 1.5c/a, ω0,3 = 1.25c/a,
v = 0.25c. If Im{ε}< 0 (Im{ε} > 0), the material response is active (lossy). Solid blue lines: our theory. Dashed red lines: ND homogenization.

that leads to a steady state. As seen in Fig. 2(bii), the ND
homogenization completely fails to predict such regimes. As
might be expected, the spectral region wherein the stored
energy is negative is approximately coincident with the region
of anomalous permittivity dispersion.

C. Complex effective permittivity

Notwithstanding the active nature of time-variant systems,
in the previous examples the effective permittivity was al-
ways real valued for real-valued frequencies. As discussed
in Sec. III C, the reality of εef is guaranteed when either
(i) L̂co is Hermitian or (ii) L̂co is parity-time symmetric (see
Appendix A).

Thus, in order that the non-Hermitian character of the
space-time crystal may manifest itself in the stationary-state
effective response it is necessary to break both the PT sym-
metry and the Hermitian property of L̂co. The operator L̂co

in Eq. (18b) is always PT symmetric for binary crystals.
Thereby, εef can be complex valued in the real-frequency axis
only if the unit cell of the crystal is formed by three or more
layers [see Fig. 5(a)]. In addition, we need to ensure that
L̂co is not Hermitian, which requires that ωp(x′) �= const. (see
Appendix A). Hence, next we consider ternary crystals such
that ωp,1 �= ωp,2 �= ωp,3.

As illustrated in Fig. 5(b), consistent with the symme-
try analysis of the previous paragraphs, such systems are
generally characterized by a complex effective permittiv-
ity, such that the material response can alternate between
gain (Im{ε} < 0) and loss (Im{ε} > 0) regimes depending
on the frequency of operation. This type of non-Hermitian
behavior persists for arbitrarily small velocities (not shown).
In the example of Fig. 5, the source-driven and the ND-
homogenization methods yield the same results in the static

limit but differ substantially for ωa/c > 0.3. In particular, the
ND homogenization (dashed red curves) fails to predict the
existence of gain and loss regimes. It is worth noting that,
while ω0 is modulated in Fig. 5, the non-Hermitian character
of the operator L̂co is independent of such modulation. In fact,
it is still possible to obtain a complex effective permittivity
with a constant parameter ω0.

The gain response of the system can be suppressed by
including a dissipative term in Eq. (13) as follows:[

∂2

∂t2
+ �

∂

∂t
+ ω2

0(x − vt )

]
P(x, t ) = ε0ω

2
p(x − vt )E (x, t ).

(26)

Here, � represents a collision frequency, which for simplicity
is assumed independent of space and time. In such a case the
L̂co operator in the comoving frame must be modified as (still
assuming that k ≈ 0):

L̂co → L̂co,0 + i
�

ω2
p(x′)

(
−ω + vi

∂

∂x′

)
, (27)

where L̂co,0 is the operator defined in Eq. (18b). The effective
permittivity can be numerically determined using the same
procedure as in Sec. III B. Figure 6 shows the imaginary com-
ponent of the effective permittivity for different values of the
collision frequency. As seen, for nonzero collision frequencies
the gain response is weakened, and for a sufficiently large
collision frequency it can even be eliminated. It should be
noted that for � ≈ 0 the system response may have reso-
nances nearby the real-frequency axis, some of which may
possibly lie in the upper-half frequency plane (UHP). In fact,
time-modulated systems are often characterized by parametric
instabilities. Such resonances are expected to migrate to the
lower-half frequency plane for a sufficiently large damping

035119-8



HOMOGENIZATION OF DISPERSIVE SPACE-TIME … PHYSICAL REVIEW B 108, 035119 (2023)

0.0 0.5 1.0 1.5
aω /c

2.0

0.0

0.1

0.2

0.3
{
}

Im
ε

0.1−

FIG. 6. Imaginary part of the effective permittivity of a ternary
space-time crystal with the same parameters as Fig. 5 for different
values of the collision frequency: � = 0.00c/a (solid blue curve),
� = 0.01c/a (dashed black curve), � = 0.12c/a (solid green curve),
� = 0.18c/a (dashed red curve).

rate (� > �c). Thus, the qualitative difference between the
results with � ≈ 0 and curves with large � can be justified,
noting that, in the former case, the material resonances lie
nearby the real-frequency axis, whereas in the latter case they
are well below the real-frequency axis.

V. PHOTONIC BAND STRUCTURE

In order to validate our theory, in the following we compare
the exact photonic band structure of the space-time crystals
with the dispersion predicted by the homogenization.

Figure 7 shows the exact (blue lines) and approximate
(dashed black lines) band diagrams calculated for binary crys-
tals with different parameters ωp,n, ω0,n, and v. The exact band
structure of the dispersive space-time crystals is determined
using a transfer matrix approach detailed in Appendix D. On
the other hand, the band structure predicted by our source-
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FIG. 7. Band structure for binary crystals with a1 = a2 = a/2
and characterized by different parameters: (a) ωp,1 = ωp,2 = 1.5c/a,
ω0,1 = 1.5c/a, ω0,2 = 2.5c/a, v = 0.15c; (b) ωp,1 = 1.0c/a, ωp,2 =
2.0c/a, ω0,1 = 1.0c/a, ω0,2 = 1.5c/a, v = 0.25c; (c) ωp,1 = ωp,2 =
2.0c/a. ω0,1 = 1.0c/a, ω0,2 = 1.5c/a, v = 0.25c; (d) same as (b)
but with v = 0.40c. Blue lines: exact formulation. Dashed black
lines: source-driven homogenization. Dash-dotted green lines: ND
homogenization.

driven homogenization is found using the secular equation:

k2 =
(ω

c

)2
εef (ω). (28)

Remarkably, the effective medium model captures faith-
fully the dispersion of most of the photonic bands, even for
relatively large values of ωa/c and ka, where the homog-
enization is expected to break down. In fact, for relatively
small modulation speeds [Figs. 7(a)–7(c)], i.e., v2/c2 � 1, the
theory can model the dispersion of bands for regions that are
considerably far away from the long-wavelength regime. For
larger velocities [Fig. 7(d)], the effective medium becomes
less accurate, as it predicts precisely only the dispersion of
the first band.

We have also computed the band structure predicted by the
ND homogenization discussed in Sec. III (dash-dotted green
lines). As shown in Fig. 7, typically the ND-homogenization
model describes correctly the dispersion of the first photonic
band in the static limit but misses completely the complex in-
teractions resulting from the space-time modulations at finite
frequencies. Consequently, the ND homogenization is unable
to capture the quasiflat bands that populate the spectrum of the
space-time crystal. For example, the ND-homogenization re-
sults for the examples of Figs. 7(b) and 7(d), which differ only
by the value of the modulation velocity, are almost identical.

The dispersion relation (28) shows that there is a direct
link between the frequencies ω(k = 0) of the band diagram
and the zeros of the effective permittivity. By comparing the
band diagram in Fig. 7(c) with the corresponding effective
permittivity in Fig. 2(bi), it can be checked that the anomalous
dispersion is associated with the second band. Since the ND
homogenization misses this band, it is also unable to predict
this exotic behavior.

The comparison between the band structures of the exact
and the homogenized models is designed to validate the effec-
tive material response to Bloch waves with a real-valued wave
number k. Other methods can be used to evaluate the accuracy
of our source-driven homogenization theory for complex-
valued wave numbers, such as assessing the response to a
localized source distribution. These alternative analyses em-
ploy complex numerical tools and, for this reason, they lie
outside the scope of this work.

The band diagrams of Fig. 7 only depict the part of the
spectrum with ka < 2. It is instructive to show the full band
structure of a generic space-time crystal. This is done in
Fig. 8 for a crystal with the same parameters as in Fig. 7(b).
The imaginary part of ω due to the non-Hermitian effects is
ignored for simplicity. The figure represents both the positive
and negative frequency parts of the spectrum, and depicts the
band structure both in the laboratory frame [panel (a)] and in
the comoving frame [panel (b)] (see Appendix D). To better
illustrate the periodicity of the band structure, we represent
three complete Brillouin zones.

As seen in Fig. 8(a), for large values of k there is an evident
asymmetry in the dispersion relation, so that ω(k) �= ω(−k),
consistent with the nonreciprocity of time-variant systems.
This spectral asymmetry is not captured by the (quasistatic)
homogenization [see Fig. 7(b)] because εef (ω) does not model
the spatial dispersion effects. In contrast, the band diagram
in the comoving frame [Fig. 8(b)] is highly asymmetric
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FIG. 8. Exact band structure (bright curves) of a binary crystal with ωp,1 = 1.0c/a, ωp,2 = 2.0c/a, ω0,1 = 1.0c/a, ω0,2 = 1.5c/a for the
modulation speed v = 0.25c. (a) Laboratory frame. (b) Comoving frame.

due to the synthetic Doppler shift effect (see Appendix D).
Note that in the comoving frame the band structure is pe-
riodic along the k direction. In the lab frame [Fig. 8(a)],
the band structure periodicity is along an oblique direc-
tion of the ω−k plane determined by the synthetic Doppler
shift.

The tilted lines in Fig. 8(b) represent the comoving frame
resonances at ω′ ≈ ±〈ω0〉−kv + m 2π

a v, with m an integer,
which were already discussed in Sec. IV A. When such reso-
nances are brought back to the laboratory frame, they emerge
at ω ≈ ±〈ω0〉 + m 2π

a v, leading to the quasiflat bands. This
creates an elaborate band structure where the modulation
velocity v plays a crucial role in determining the location
of these quasiflat bands. For example, in Fig. 8(a) the first
quasiflat band occurs at ω ≈ 0.3c/a [this quasiflat band is also
represented in Fig. 7(b)]. The same mechanism is responsible
for the quasiflat band near the horizontal axis of Fig. 7(a). It
is underlined that these quasiflat bands are correctly predicted
by the homogenization.

In contrast, it may be shown that the quasiflat band at
ω ≈ 1.9c/a in Fig. 7(c) describes a set of Bloch modes that
oscillate very fast in space. Thus, the approximation of con-
stant primed electromagnetic fields [Eq. (16)] is not applicable
and the quasistatic homogenization is unable to predict that
band.

VI. CONCLUSIONS

We introduced a rigorous effective medium description of
generic dispersive space-time crystals. The formalism was
applied to dispersive 1D-type space-time crystals with a
traveling-wave modulation. Interestingly, our theory reveals
that such space-time modulated systems can exhibit rather
peculiar physics and extreme wave phenomena, such as an
anomalous (non-Foster) dispersion with a negative stored
energy density and, depending on the operating frequency,
alternate between gain and loss regimes. All of these exotic
properties are not captured by the homogenization theory
for nondispersive space-time crystals presented in [32]. This
demonstrates the importance of taking into account the dis-
persive behavior of the material response when developing an

effective medium description. Furthermore, it was shown that
the gain regions and the anomalous dispersion regions arise
due to negative frequency resonances of the bulk materials
that are folded into the positive frequency spectrum as a result
of the synthetic Doppler shift and of the periodicity of the
system. The developed theory predicts rather accurately the
photonic band diagram of the space-time crystal, even for fre-
quencies outside the usual scope of homogenization methods.

Our formalism can be readily extended to higher-
dimensional photonic crystals and to arbitrary space-time
modulations. Thus, we expect that it can be a useful tool to
describe the electrodynamics of generic space-time crystals in
the long-wavelength limit.
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APPENDIX A: CONDITIONS UNDER WHICH
εef (ω) IS REAL VALUED

In this Appendix, we investigate the conditions under
which the effective permittivity εef (ω) of the space-time crys-
tal is real valued for a real-valued frequency. To begin with, we
show that if the operator L̂co = L̂co(ω) defined by Eq. (18b) is
Hermitian then εef (ω) is real valued.

To this end, it is useful to introduce the Green’s function
Gω(x′, x′

0) defined as the solution of

L̂coGω(x′, x′
0) = δ(x′ − x′

0). (A1)

Evidently, the function G(x′) introduced in Sec. III B
can be expressed in terms of Gω(x′, x′

0) as G(x′) =∫ a/2
−a/2 Gω(x′, x′

0)dx′
0. Hence, the parameter χ ′

ef (ω) [Eq. (19)]
that controls the effective permittivity [Eq. (20)] can be writ-
ten in terms of the Green’s function as

χ ′
ef (ω) = 1

a

∫ a/2

−a/2
dx′

∫ a/2

−a/2
dx′

0Gω(x′, x′
0). (A2)
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To proceed further, we note that from Eq. (A1)∫ a/2
−a/2 dx′G∗

ω(x′, x′′
0 )L̂coGω(x′, x′

0) = G∗
ω(x′

0, x′′
0 ). If the operator

L̂co = L̂co(ω) is Hermitian, one can also write∫ a/2

−a/2
dx′G∗

ω(x′, x′′
0 )L̂coGω(x′, x′

0)

=
∫ a/2

−a/2
dx′[L̂coGω(x′, x′′

0 )]
∗
Gω(x′, x′

0)

= Gω(x′′
0 , x′

0). (A3)

Thus, it follows that for a Hermitian operator:

Gω(x′, x′
0) = G∗

ω(x′
0, x′) (Hermitian operator). (A4)

Using this result in Eq. (A2), one readily sees that

[χ ′
ef (ω)]∗ = 1

a

∫ a/2

−a/2
dx′

0

∫ a/2

−a/2
dx′Gω(x′

0, x′) = χ ′
ef (ω).

(A5)

In these circumstances, the effective permittivity εef (ω) also
satisfies εef (ω) = [εef (ω)]∗, i.e., it is real valued.

A simple inspection of Eq. (18b) shows that for ω real
valued and ωp(x′) = const. the operator L̂co = L̂co(ω) is

Hermitian. Thereby, in these conditions the effective permit-
tivity is real valued for a real-valued frequency. In contrast,
when ωp(x′) is a nontrivial function, the operator is not Her-
mitian, and hence the permittivity may be complex valued.

Interestingly, even when L̂co = L̂co(ω) is non-Hermitian
it is possible to guarantee that εef (ω) is real valued for
real-valued frequencies if the system is parity-time (PT ) sym-
metric [49]. The invariance under PT symmetry corresponds
to the condition L̂co(x′, i∂x′ , ω) = L̂co(−x′,−i∂x′ , ω)∗. For a
PT -symmetric system, the Green’s function satisfies

Gω(x′, x′
0) = G∗

ω(−x′,−x′
0) (PT -symmetric operator).

(A6)

In such case, one can write

[χ ′
ef (ω)]∗ = 1

a

∫ a/2

−a/2
dx′

0

∫ a/2

−a/2
dx′Gω(−x′,−x′

0)=χ ′
ef (ω).

(A7)

This confirms that the PT symmetry of the operator
[L̂co(x′, i∂x′ , ω) = L̂co(−x′,−i∂x′ , ω)∗] guarantees that the ef-
fective permittivity is real valued.

APPENDIX B: SOLUTION OF THE HOMOGENIZATION PROBLEM

For a binary crystal with layers of the same length (a1 = a2 = a/2) the coefficients A1, A2, B1, and B2 in Eq. (21) can be
found imposing the boundary conditions discussed in the main text. This yields

A1 = C1 − C2

D
eiα1

a
4 α2β2

(
eiβ1

a
2 − 1

)(
eiα2

a
2 − eiβ2

a
2
) + C1 − C2

D
eiα1

a
4
[
α2β1

(
ei(α2+β1 ) a

2 − 1
)(

eiβ2
a
2 − 1

)
−β1β2

(
eiα2

a
2 − 1

)(
ei(β1+β2 ) a

2 − 1
)]

, (B1a)

B1 = C2 − C1

D
eiβ1

a
4 α2β2

(
eiα1

a
2 − 1

)(
eiα2

a
2 − eiβ2

a
2
) + C2 − C1

D
eiβ1

a
4
[
α1α2

(
ei(α1+α2 ) a

2 − 1
)(

eiβ2
a
2 − 1

)
−α1β2

(
eiα2

a
2 − 1

)(
ei(α1+β2 ) a

2 − 1
)]

, (B1b)

A2 = C2 − C1

D
eiα2

a
4 α1β1

(
eiβ2

a
2 − 1

)(
eiα1

a
2 − eiβ1

a
2
) + C2 − C1

D
eiα2

a
4
[
α1β2

(
ei(α1+β2 ) a

2 − 1
)(

eiβ1
a
2 − 1

)
−β1β2

(
eiα1

a
2 − 1

)(
ei(β1+β2 ) a

2 − 1
)]

, (B1c)

B2 = C1 − C2

D
eiβ2

a
4 α1β1

(
eiα2

a
2 − 1

)(
eiα1

a
2 − eiβ1

a
2
) + C1 − C2

D
eiβ2

a
4
[
α1α2

(
ei(α1+α2 ) a

2 − 1
)(

eiβ1
a
2 − 1

)
−α2β1

(
eiα1

a
2 − 1

)(
ei(α2+β1 ) a

2 − 1
)]

, (B1d)

where D is defined by

D = (α2β2 + α1β1)
(
eiα1

a
2 − eiβ1

a
2
)(

eiα2
a
2 − eiβ2

a
2
) + (α1α2 + β1β2)

(
ei(α1+α2 ) a

2 − 1
)(

ei(β1+β2 ) a
2 − 1

)
− (α1β2 + α2β1)

(
ei(α2+β1 ) a

2 − 1
)(

ei(α1+β2 ) a
2 − 1

)
. (B1e)

APPENDIX C: ENERGY TRANSFERRED TO AN ACTIVE
DISPERSIVE MEDIUM

Let us consider a dispersive effective medium character-
ized by the permittivity ε(ω). For the problem of interest
ε(ω) = εef (ω) represents the effective permittivity of the
space-time crystal. Note that within the effective medium

description the material response is homogeneous and time
invariant. However, since the space-time crystal is active, the
permittivity ε(ω) is not bound by the usual constraints that
arise from the Kramers-Kronig relations. In this Appendix,
it is supposed that ε(ω) is analytic in the upper-half fre-
quency plane (UHP) (so that the material response is stable
and causal), but it does not need to satisfy the constraint
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Im{ε(ω)} � 0 in the UHP. Due to this reason, it is possible
to have regimes with anomalous permittivity dispersion (see
Fig. 2). Furthermore, it is assumed that ε(ω) is real valued for
real-valued frequencies, which is the case for homogenized
space-time crystals characterized by an operator L̂co that is
Hermitian.

Let us find the energy E transferred to the active material by
some external excitation (e.g., an antenna) during the transient
period that leads to a stationary state. In the stationary state the
electric field is of the form E(r, t ) = Re{Eω(r)e−iωt } with ω

real valued. The external excitation is modeled by an electric
current density jext. For simplicity, we imagine that the system
is surrounded by closed boundaries (e.g., metallic walls).

From the Poynting theorem, it is known that ∇ · S = −p −
pext where S(r, t ) = E×H is the Poynting vector, p(r, t ) =
E · ∂D

∂t + H · ∂B
∂t , and pext (r, t ) = E · jext. The quantity pext

represents the instantaneous power per unit of volume sup-
plied by the excitation to the system. It is supposed that at
initial time t = −∞ the fields vanish. We wish to find the
energy E (t ) = − ∫

V dV
∫ t
−∞ dt pext (r, t ) transferred from the

generator to the material during the transient period. Note
that as the material is active it may also be internally ex-
cited by other internal mechanisms that determine the gain
response.

Integrating ∇ · S = −p − pext over the volume of the ma-
terial and taking into account that the boundaries are closed
one finds that

E (t ) =
∫ t

−∞
dt

∫
V

p(r, t )dV. (C1)

The external excitation drives the fields, and thereby con-
trols how the fields change in time. It is supposed that the
time-harmonic excitation is turned on slowly, which cor-
responds to a time variation of the type e−iωt = e−iω′t eω′′t

with ω = ω′ + iω′′ and ω′′ > 0 very small. Notice that
limt→−∞e−iωt = 0. We suppose that the field time variation
is inherited from the time variation of the excitation, which
is certainly valid if the material sample is small enough
so that retardation effects are of secondary importance.
In the outlined conditions one can assume that E(r, t ) =
Re{Eω(r)e−iωt } and D(r, t ) = Re{Dω(r)e−iωt }, etc., so that

E (t ) =
∫

V
dV

∫ t

−∞
dt

e2ω′′t

2
Re{−iωEω(r) · Dω(r)e−i2ω′t − iωE∗

ω(r) · Dω(r)}

=
∫

V
dV

∫ t

−∞
dt

e2ω′′t

2
Re{−iωHω(r) · Bω(r)e−i2ω′t − iωH∗

ω(r) · Bω(r)}. (C2)

Integrating explicitly in time,

E (t ) = e2ω′′t

4

∫
V

dV Re

{ −iω

ω′′ − iω′ Eω(r) · Dω(r)e−i2ω′t − iω

ω′′ E
∗
ω(r) · Dω(r)

}

+ e2ω′′t

4

∫
V

dV Re

{ −iω

ω′′ − iω′ Hω(r) · Bω(r)e−i2ω′t − iω

ω′′ H
∗
ω(r) · Bω(r)

}
. (C3)

In the next step we use Dω = ε0ε(ω)Eω and Bω = μ0Hω. In order to reach a steady state we let ω′′ → 0+. The terms
proportional to e−i2ω′t have no singularities in the limit ω′′ → 0+. They are oscillatory terms with frequency 2ω′ and on average
(in a cycle with time period T = 2π

ω′ ) vanish. Hence, they are dropped:

Eav = lim
ω′′→0+

1

4

∫
V

dV

[
Re

{−iωε(ω)

ω′′

}
ε0E∗

ω(r) · Eω(r) + Re

{−iω

ω′′

}
μ0H∗

ω(r) · Hω(r)

]
. (C4)

The outstanding terms are seemingly singular due to the factor 1/ω′′. The singularity can be handled using ω = ω′ + iω′′ and
the Taylor expansion ωε(ω) ≈ ω′ε(ω′) + iω′′ ∂

∂ω
[ωε(ω)]ω=ω′ . Taking into account that ω′ε(ω′) is real valued, one finds that the

energy transferred from the excitation to the material during the transient period is

Eav = 1

4

∫
V

dV

(
ε0

∂

∂ω
[ωε(ω)]ω=ω′E∗

ω(r) · Eω(r) + μ0H∗
ω(r) · Hω(r)

)
. (C5)

Note that due to the reality of ε(ω′) there is no net transfer of energy between the material and the excitation after the steady
state is reached.

APPENDIX D: DISPERSION OF THE BLOCH WAVES

In this Appendix, we present the formalism used to find the dispersion of the Bloch waves of the dispersive space-time crystal.
In a first step, we calculate the spectrum of the crystal in the comoving frame. To this end, we solve Eq. (15) without any

excitation ( je,0 = 0) and with ∂/∂t ′ = −iω′. It is convenient to introduce the auxiliary variable J = ∂
∂t P = ( ∂

∂t ′ − v ∂
∂x′ )P to

reduce the problem to a system of first-order differential equations in x′:

−i
∂E ′

∂x′ = μ0ω
′H, −i

∂H ′

∂x′ = ω′(ε0E + P), (D1a)
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(
−iω′ − v

∂

∂x′

)
J + ω2

0(x′)P = ε0ω
2
p(x′)E , (D1b)

J =
(

−iω′ − v
∂

∂x′

)
P. (D1c)

The primed fields are defined as in Eq. (16). In matrix notation, this system of equations can be rewritten as

−i
∂

∂x′

⎛
⎜⎜⎝

E ′
H ′
P
J

⎞
⎟⎟⎠

︸ ︷︷ ︸
ψ (x′ )

=

⎛
⎜⎜⎜⎜⎝

ω′μ0ε0v

1−v2/c2
ω′μ0

1−v2/c2
ω′μ0v

1−v2/c2 0
ω′ε0

1−v2/c2
ω′ε0μ0v

1−v2/c2 ω′(1 + ε0μ0v
2

1−v2/c2

)
0

0 0 −ω′
v

i
v

1
v

iε0ω
2
p (x′ )

1−v2/c2

iε0μ0ω
2
p (x′ )

1−v2/c2 − iω2
0 (x′ )
v

+ iε0μ0ω
2
p (x′ )v

1−v2/c2 −ω′
v

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
M(x′,ω′ )

⎛
⎜⎜⎝

E ′
H ′
P
J

⎞
⎟⎟⎠, (D2)

where we used Eq. (17) to express the unprimed fields in terms
of the primed fields. The general solution of the problem can
be written in terms of a propagator that links the state vector
ψ = [E ′ H ′ P J]T evaluated at different points of the
crystal:

ψ(x′) = Uω′ (x′) · ψ(0). (D3)

For a space-time binary crystal, the propagator for points sep-
arated by a lattice period is Uω′ (a1 + a2) = eiM2(ω′ )a2 eiM1(ω′ )a1 ,
with Mn(ω′) the value of the matrix M(x′, ω′) at the nth

homogeneous layer (n = 1, 2). As the Bloch modes in the
comoving frame must satisfy ψ (a) = eik′aψ (0) it follows that
the dispersion characteristic is given by

det[eik′a1 − Uω′ (a)] = 0. (D4)

In particular, one sees that for a given ω′ the propaga-
tion constants k′ of the Bloch waves are such that eik′a

are the eigenvalues of the propagator U . Finally, to trans-
form the band structure ω′(k′) in the comoving frame to the
lab frame, we use the synthetic Doppler shift formula, i.e.,
ω(k) = ω′(k) + vk.
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