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Abstract
Topological photonics provides a powerful framework to describe and understand many
nontrivial wave phenomena in complex electromagnetic platforms. The topological index of a
physical system is an abstract global property that depends on the family of operators that
describes the propagation of Bloch waves. Here, we highlight that there is a profound
geometrical connection between topological physics and the topological theory of mathematical
surfaces. We show that topological band theory can be understood as a generalization of the
topological theory of surfaces and that the genus of a surface can be regarded as a Chern number
of a suitable operator defined over the surface. We point out some nontrivial implications of
topology in the context of radiation problems and discuss why for physical problems the
topological index is often associated with a bulk-edge correspondence.
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(Some figures may appear in colour only in the online journal)

1. Doughnuts and coffee cups

Topology studies the properties of objects that remain invari-
ant under a smooth transformation. When some property of a
mathematical object is unaffected by a deformation it is called
a topological invariant. The concept is particularly simple to
visualize in the case of geometrical surfaces. In such a case,
the number of ‘holes’ in the surface is a topological invariant
as any smooth deformation of the surface preserves the number
of holes, which is thereby a global property fully independent
of any local features of the surface. In the theory of surfaces,
the topological invariant is known as the genus (see figure 1).
In particular, one can say that a ‘doughnut’ is topologically
equivalent to a coffee cup with one handle, but it is topologic-
ally distinct from a soccer ball.

Topological ideas are of central importance in many phys-
ical systems. For example, in the low temperature limit,
the conductivity of magnetically-biased materials with com-
pletely filled electronic bands is determined by a topolo-
gical invariant. This property is the basis of the integer
quantum Hall effect [1–3]. The quantized Hall conductivity
is profoundly related to the emergence of electronic surface
states in the material. A similar effect is observed in generic
wave platforms (either fermionic or bosonic) invariant under

discrete translations of space (e.g. photonic crystals, phononic
crystals, etc) [4–17], and sometimes in platforms with a con-
tinuous translation symmetry [18–20]. In fact, in physical sys-
tems there is a bulk-edge correspondence that relates the bulk
topological invariant with the propagation of edge-states at the
boundary [21–24].

For Chern insulators, the topological invariant can be
expressed in terms of some abstract quantities known as
the Berry connection or Berry curvature [4–6]. It is well
known, and widely discussed in many review articles, that
there is a close parallelism between topological band the-
ory and the topological theory of surfaces [6]. It is how-
ever less well known that topological band theory can be
regarded as a generalization of the topological theory of
surfaces (figure 1). The key objective of this article is to
fill in such a gap in the photonics literature, and present
an explicit elementary and pedagogical connection between
the two frameworks, highlighting that the topological the-
ory of surfaces corresponds to a particular case of topolo-
gical band theory. In addition, we discuss why for physical
systems the topological index is typically associated with a
bulk edge correspondence. Moreover, we highlight some non-
trivial topological constraints on the polarization of a generic
antenna.
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Figure 1. Examples of closed surfaces associated with different topologies. A smooth deformation of any of the surfaces preserves the
number of holes (genus), which is thereby a topological invariant.

2. Topological theory of surfaces

In this section, we present an elementary and pedagogical
introduction to the topological theory of mathematical sur-
faces with the intent to point out its profound connection with
topological photonics.

2.1. Gauss–Bonnet theorem

The genus of a surface embedded in a 3D space is determined
by the number of holes in the surface (figure 1). The genus is
a very intuitive property as it can be geometrically visualized.
Notably, the genus g can be as well expressed in terms of the
local ‘curvature’ of the surface S. The Gauss–Bonnet theorem
establishes that for a closed and connected surface [25, 26]:

1
4π

ˆ

S

Kds= (1− g)

= 1,0,−1,−2, . . . . (1)

Here, K is the so-called Gaussian curvature of the surface
which is related to the principal curvature radii R1,R2 at a
given point as K = 1/(R1R2) [25, 27]. For a spherical surface
the curvature radii coincide with the radius of the sphere. The
Gaussian curvature is positive for convex surfaces and negat-
ive for concave surfaces. It vanishes for planar surfaces.

The Gauss–Bonnet theorem links the genus with the
Gaussian curvature integrated over the entire surface. In par-
ticular, it implies that the total curvature is precisely quantized
and must be an integer number in units of 4π . For example, a
spherical surface with radius R has curvature K = 1

/
R2, and

thereby
´
S
Kds= 4π in agreement with g= 0. A smooth per-

turbation of a closed surface can drastically change the local
Gaussian curvature, but rather remarkably the total curvature
remains invariant. In the following subsections, we provide
a reasonably detailed explanation why the integral of the
Gaussian curvature is quantized and why it determines the
genus of a surface. The results are especially relevant because

they can be readily extended to topological band theory, as
shown later in section 3.

2.2. Curvature

It is useful to briefly review the concept of Gaussian curvature
of a surface. First, consider a generic planar curve γ (u) with
a generic point parameterized by the coordinate u. Let n̂
be the normal unit vector in the curve plane. The radius of
curvature R is defined by the geometrical construction of
figure 2(a). In order to obtain an explicit formula for the
curvature K = 1/R, consider an infinitesimal displacement dl
along the curve. The corresponding angle dθ can be found
noting that dθ ≈ sin(dθ) = |n̂(u0 + du)× n̂(u0)|. This rela-
tion implies that dθ =

∣∣ dn̂
du

∣∣du. Note that the vectors dn̂
du and n̂

are orthogonal. Since the curvature radius satisfies Rdθ = dl,
it follows that

Kdl=±
∣∣∣∣dn̂du

∣∣∣∣du= dn̂
du

· t̂du, (2)

where t̂= γ ′

|γ ′| is the unit vector tangent to the curve. The lead-
ing sign in the first identity depends if the curve is convex
or concave. We used the fact that for a planar curve dn̂

du and

t̂= γ ′

|γ ′| are parallel. Clearly, the curvature is determined by

the derivative of n̂ along the curve. Noting that dl= |γ ′|du,
one obtains the following explicit formula for the curvature:
K = (dn̂/du)·γ ′

γ ′·γ ′ .
Let us now consider a closed surface S embedded in three-

dimensional space. The surface is parameterized by the map-
ping r= r(u1,u2). The parameters u1,u2 are the coordinates
of a generic surface point. The outward oriented normal unit
vector is denoted by n̂ (figure 2(b)). The vectors ∂r

∂u1
and ∂r

∂u2
are tangent to the surface and generate the tangent plane at
the point r(u1,u2). For convenience, we assume an orthogonal
system of coordinates such that ∂r

∂u1
and ∂r

∂u2
are perpendicu-

lar at every point of the surface. Furthermore, we introduce
the unit tangent vectors t̂i = ∂ir/hi (i = 1, 2) with hi = |∂ir|

2
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Figure 2. (a) The radius of curvature of a smooth planar curve is determined by the derivative of the normal unit vector n̂. (b) Principal
curvatures and principal directions (in green) of a generic surface. In the figure, t̂1 and t̂2 are supposed to be aligned with the principal
directions.

and ∂i ≡ ∂/∂ui. Without loss of generality, it is supposed that
n̂= t̂1 × t̂2.

Since n̂ · n̂= 1, the derivative of the normal vector along ui,
∂n̂/∂ui (i = 1, 2), is a vector of the tangent space: ∂n̂

∂ui
· n̂= 0.

Thus, it is always possible to write:(
∂n̂
∂u1
∂n̂
∂u2

)
=

(
N11 N12

N21 N22

)
︸ ︷︷ ︸

N

(
t̂1
t̂2

)
, Nij =

∂n̂
∂ui

· t̂j.

(3)

Consider now some curve γ (u) contained in the surface S
and passing through the point of interest. Different from the
case of figure 2(a), in general the derivative of n̂ along the
curve ( dn̂du ) does not need to be parallel to the corresponding

tangent vector t̂= γ ′

|γ ′| . A detailed analysis shows that there

are precisely two principal directions in the tangent plane
along which dn̂

du and t̂ are collinear. The principal directions are
always orthogonal and determine the two principal curvatures
K1,K2.

Let us first suppose that the two principal directions at
the point of interest are aligned with t̂1, t̂2, as illustrated in
figure 2(b). In that situation, the matrix N must be diagonal.
Then, in analogy with equation (2), one can writeKidli = ∂n̂

∂ui
·

t̂i dui = Niidui (i = 1, 2). The Gaussian curvature is by defini-
tion the product of the two principal curvaturesK =K1K2, so
that:

Kds= det N du1du2. (4)

In the above, ds= dl1dl2 is the element of area in the sur-
face and it was taken into account that N11N22 coincides with
the determinant of the matrix when N is diagonal.

In the general case, the problem of finding the principal
directions can be reduced to an eigenvalue problem (details
are omitted for conciseness) [25]. The Gaussian curvature
is still given by equation (4). Noting that ds= h1h2du1du2,
the Gaussian curvature can be explicitly written as K =
detN/(h1h2).

2.3. The Gaussian curvature as the derivative of a potential

Interestingly, the Gaussian curvature can be expressed as
the derivative of some function. Indeed, using equation (3)

and noting that Nij =−n̂ · ∂ t̂j
∂ui

one can write detN=〈
∂1t̂1|n̂

〉〈
n̂|∂2t̂2

〉
−
〈
∂1t̂2|n̂

〉〈
n̂|∂2t̂1

〉
. The formula Nij =

−n̂ · ∂ t̂j
∂ui

is obtained by differentiating the equation n̂ · t̂j = 0
with respect to ui. For convenience, we introduced the canon-
ical inner product of two vectors defined as ⟨v|w⟩= v∗ ·w.
Next, we note that the normal and tangent vectors satisfy
the completeness relation 1= |n̂⟩⟨n̂|+

∣∣̂t1〉 〈̂t1∣∣+ ∣∣̂t2〉 〈̂t2∣∣.
Hence, using |n̂⟩⟨n̂|= 1−

∣∣̂t1〉 〈̂t1∣∣− ∣∣̂t2〉 〈̂t2∣∣ and taking into
account that

〈
∂îtj |̂tj

〉
= 0 (i, j = 1, 2) one finds that:

detN=
〈
∂1t̂1|∂2t̂2

〉
−
〈
∂1t̂2|∂2t̂1

〉
= ∂1A2 − ∂2A1 (5)

where (A1,A2) are defined in terms of the complex vector field
f= 1√

2

(̂
t1 − ît2

)
as follows:

Aj = ⟨f|i∂j f⟩ , j= 1,2. (6)

This demonstrates that detN is the derivative of some func-
tion. It is underlined that the derivation assumes an orthogonal
system of coordinates. The complex vector field f is normal-
ized as ⟨f|f⟩= 1. Using this property, it is straightforward to
show that Aj is a real-valued function.

The Gaussian curvature K = detN/(h1h2) can be written
in terms of the surface divergence (Div) of a tangent vector
field A as

K = Div(A× n̂) (7)

where n̂ is the outward unit normal vector. The vector A
depends on t̂1 and t̂2, which are unit vectors tangent to the
surface determined by the system of orthogonal coordin-
ates. It is explicitly given byA= ⟨f|iGrad f⟩ ≡ t̂1 1

h1
⟨f|i∂1f⟩+

t̂2 1
h2
⟨f|i∂2f⟩ or equivalently A= A1

h1
t̂1 + A2

h2
t̂2. Here, Div and

Grad stand respectively for the surface divergence and
gradient operators [28]. Note that for a generic tangent vec-
tor field B = B1t̂1 +B2t̂2 one has Div(B) = 1

h1h2
∂
∂u1

(h2B1)+

3
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1
h1h2

∂
∂u2

(h1B2). It will be shown in section 3 that the vector
field A is closely related to the Berry potential of topological
band theory.

2.4. Genus as an obstruction

The fundamental theorem of calculus relates the integral of a
function derivative with the values of the function evaluated
at the boundary. The Stokes theorem generalizes this result to
generic surfaces as [28]:

¨

S

dsDiv(A× n̂) =
˛

∂S

A · dl. (8)

Here,A is a generic tangent vector field, S is the surface of
integration and ∂S is the corresponding boundary curve. The
orientation of ∂S is locked to the orientation of n̂, according to
the usual right-hand rule. Thereby, the Stokes theorem implies
that the total Gaussian curvature of some surface patchM sat-
isfies:

ˆ

M

Kds=
˛

∂M

A · dl. (9)

The total Gaussian curvature of the surface patch M only
depends on the behavior of the ‘potential’ A at the boundary!
When equation (7) holds over the entire surface, i.e. when the
surface can be parameterized with a single globally defined
smooth mapping, it is possible to take M= S. In these cir-
cumstances, because a closed surface has no boundary, the
line integral

¸
∂S

A · dl vanishes and
´
S
Kds= 0, i.e. the total

curvature is zero.
For example, a torus with large radius R and small radius r

can be parameterized as

r(φ,ϕ) = ((R+ rcosϕ)cosφ,(R+ rcosϕ)sinφ,rsinϕ) ,
(10)

with (φ,ϕ) ∈ [0,2π ]2 a system of orthogonal coordinates. The
tangent vectors are t̂1 = h−1

1 ∂r/∂φ and t̂2 = h−1
2 ∂r/∂ϕ with

h1 = |∂r/∂φ | and h2 = |∂r/∂ϕ |. Both t̂1 and t̂2 are globally
defined on the surface of the torus as smooth functions, and
thereby A has the same property. Hence, from the discus-
sion of the previous paragraph, we conclude that the total
curvature of the torus vanishes (g= 1). The trefoil knot is
another example of a surface that can be parameterized with
a single mapping, and which thereby has total curvature equal
to zero.

Clearly, a nontrivial value of the total Gaussian curvature
(g ̸= 1) implies that it is impossible to parameterize the entire
surface with a single smooth mapping. From a different per-
spective, one may say that a genus g ̸= 1 determines an
obstruction to the application of the Stokes theorem (9) with
M= S.

2.5. Cutting and sewing

Consider the eight-shaped surface in the top left of figure 3.
Suppose that a sphere with a suitable radius is inserted into
the central region that connects the two halves of the eight-
shaped surface as illustrated in the middle panel of figure 3.
Each half of the sphere can be sewed to one-half of the ori-
ginal surface to form two torus-shaped surfaces (bottom panel
of figure 3). The total curvature of the eight-shaped surface
plus the total curvature of the sphere (4π ) is then identical to
the total curvature of the two tori (2× 0= 0). Thus, the total
curvature of the original surface is

´
S
Kds=−4π .

The construction can be readily extended to a surface with g
holes. In the general case, by adding g− 1 suitably positioned
‘spheres’ one ends up with g tori, with total curvature equal
to zero. Thus, the total curvature of a surface with g holes
is
´
S
Kds=−4π (g− 1), in agreement with the Gauss–Bonnet

theorem.

3. Link with Hermitian operators

In order to relate the topological theory of surfaces with topo-
logical band theory, next we consider the family of Hermitian
operators defined over a surface S such that

Ĥ(r) = in̂(r)× 1, r ∈ S, (11)

with n̂ the normal to the surface. Thus, each point of the
closed surface r is associated with an operator Ĥ(r). The oper-
ator transforms a generic complex vector v into another com-
plex vector given by Ĥ · v= in̂(r)× v. The operator Ĥ(r) is
Hermitian and (apart from the multiplication by the imagin-
ary unit) determines a rotation of 90◦ about the normal unit
vector n̂.

3.1. Band structure

Let t̂1, t̂2 be vectors tangent to the surface such that t̂1, t̂2, n̂
form a orthogonal systemwith t̂1 × t̂2 = n̂, similar to section 2.
The spectrum of the operator Ĥ is determined by the eigen-
vectors n̂, 1√

2

(̂
t1 + ît2

)
and 1√

2

(̂
t1 − ît2

)
, which are associated

with the eigenvalues Ω= 0,+1,−1, respectively. The eigen-
values are independent of the point on the surface and hence
the associated ‘band structure’ is flat (figure 4).

3.2. Berry potential, Berry curvature and gauge
transformations

Let us focus on the family of eigenvectors f= 1√
2

(̂
t1 − ît2

)
with Ω=−1. Similar to section 2, we introduce the vec-
tor A= ⟨f|iGrad f⟩, which is nothing but the standard Berry
potential of topological band theory for the lowest ‘energy’
band. Since the eigenvectors are normalized as ⟨f|f⟩= 1 the
Berry potential is necessarily real-valued.

4
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Figure 3. An eight-shaped surface with a sphere inserted in the central section may be seen as the juxtaposition of two torus-shaped
surfaces. Thus, the total curvature of the eight-shaped surface is the sum of the curvatures of the two tori minus the curvature of a sphere.

Figure 4. Band structure of the operator Ĥ(r) = in̂(r)× 1. The
spectrum of the operator is formed by three flat bands associated
with the eigenvectors shown in the insets near each band.

Evidently, the vectors t̂1, t̂2 are not unique: any rotation
of t̂1, t̂2, e.g. t̂ ′1 = cosθt̂1 + sinθt̂2 and t̂ ′2 =−sinθt̂1 + cosθt̂2,
yields another basis of the tangent plane. A generic rotation
transforms the eigenvector f as f→ f ′ = feiθ with θ = θ (r)
the rotation angle, which may depend on the surface point. A
transformation of the form f→ feiθ is a gauge transformation.
A gauge transformation preserves the normalization ⟨f|f⟩= 1.
Note that the condition ⟨f|f⟩= 1 leaves an overall phase factor
undetermined.

Under a gauge transformation, the Berry potential is trans-
formed as,

A→A ′ =A−Gradθ. (12)

Thus, the Berry potential depends on the basis of tangent
vectors. Because of this property, the Berry potential is gauge
dependent.

If t̂1, t̂2 are the vectors obtained directly from a paramet-
erization of the surface in the original system of orthogonal
coordinates (see section 2), the Berry potential determines the
Gaussian curvature through equation (7). Under a gauge trans-
formation, f→ f ′ = feiθ, the right-hand side of (7) is trans-
formed as:

Div(A ′ × n̂) = Div((A−Gradθ)× n̂) = Div(A× n̂) ,
(13)

where we used the property Div(Gradθ× n̂) = 0 [28].
Therefore, the Gaussian curvature K = Div(A× n̂) is gauge
invariant. This result also shows that the Gaussian curvature
can be calculated with an arbitrary basis of tangent vectors
t̂1, t̂2, not necessarily associated with the original coordinate
parameterization.

The quantity K = Div(A× n̂) is known as the Berry
curvature in topological band theory [4, 5]. The previous ana-
lysis shows that the Berry curvature of the low-frequency
band of the operator Ĥ(r) = in̂(r)× 1 coincides with the
Gaussian curvature of the surface. In other words, theGaussian
curvature of a surface can be understood as the Berry curvature
of the operator Ĥ(r). While the connection between the the-
ory of mathematical surfaces and topological physics has been
widely discussed in the literature, it is often presented in a very
cursory manner, as if it were merely an analogy. The preceding
analysis demonstrates that there is far more to this connection
than just a similarity in concept. In fact, it reveals the expli-
cit and intricate correlation between geometry and topological
physics.

5
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3.3. Link between the genus and the Chern number

The Chern index is defined by:

C =
1
2π

ˆ

S

Kds. (14)

Comparing this formula with the equation (1), one sees that
the genus of the closed surface S is related to the Chern number
of the family of operators Ĥ(r) = in̂(r)× 1 as:

C = 2(1− g) . (15)

Thereby, the Chern number of operator Ĥ(r) is strictly
linked to the genus of the surface. This connection between the
Chern number and genus provides another intuitive and power-
ful link between geometry and the abstract ideas of topological
band theory.

The Chern index associated with a closed surface is always
an even number. The topologically trivial surface (C = 0) has
genus g= 1 (torus), as it corresponds to a surface with vanish-
ing total curvature, which can be parameterized with a single
mapping.

3.4. The topology of a spherical surface and the hairy ball
theorem

Let us apply the developed formalism to the case of a spherical
surface with radius R. Using spherical coordinates (θ,φ,r),
it is clear that n̂= r̂. The vectors t̂1, t̂2 may be chosen t̂1 =

θ̂ and t̂2 = φ̂ , and then f= 1√
2

(
θ̂− i φ̂

)
. From here, using

Grad= 1
R θ̂∂θ +

1
R sinθ φ̂ ∂φ , the Berry potential is found to be

A= −cotθ
R φ̂ . The family of eigenfunctions f is smooth, except

at the poles of the sphere, θ = 0,π . Evidently, the Berry poten-
tial has the same property. Using (9) withM the sphere surface
excluding two small patches centered at the poles, it is found
that the total curvature is given by the line integrals of the Berry
potential along circles with infinitesimal radii centered at the
poles. Each circle contributes precisely 2π , so that the total
curvature of the sphere is 4π .

Note that a gauge transformation can make f smooth near
the poles but will necessarily introduce a singularity at some
other point on the sphere surface. Indeed, if f could be made
smooth and globally defined, the corresponding Berry poten-
tial would have the same property, and thereby the total
Gaussian curvature of the sphere would vanish, which is a
false preposition. Thus, it is impossible to find some globally
defined t̂1, t̂2 on the surface of a sphere with f= 1√

2

(̂
t1 − ît2

)
a smooth function.

Furthermore, the same property implies that it is impossible
to find a smooth non-vanishing tangential vector field t̂1
defined on the surface of a sphere. Otherwise, one could intro-
duce t̂2 = n̂× t̂1 such that f= 1√

2

(̂
t1 − ît2

)
would be smooth

and globally defined, which as discussed above is unfeas-
ible. In particular, it follows that it is impossible to comb a
‘hairy ball’ flat with all the hair strands (the analogue of a
vector field) parallel to the surface (figure 5). This result is

Figure 5. Any attempt to comb a hairy ball flat creates at least a
singular point (where the vector field is not continuous) somewhere
on the ball. The figure shows an attempt to comb the ‘hair’ strands
tangent to the ‘meridians’ of the sphere, which creates singularities
at both the North and South poles.

known as the ‘hairy ball theorem’ or ‘hedgehog theorem’,
and was first stated by Henri Poincaré in the end of the 19th
century [26].

3.5. Application of the hairy ball theorem to radiation
problems

The nontrivial topology of the sphere has interesting practical
consequences in the context of radiation problems. As a first
example, consider the radiation pattern of a generic antenna
under a time-harmonic excitation. For every direction of space
r̂ it is possible to assign a complex vector in the tangent plane
of the sphere (generated by θ̂, φ̂ ) given by the electric field E
in the far region (E · r̂= 0). Evidently, the electric field var-
ies smoothly in the far-field region because it is a physical
response. Let us suppose that the far-field does not have any
nulls so that |E| ̸= 0. The handedness of the emitted light can-
not be same for every direction of space, e.g. it is not feas-
ible to design an antenna without nulls in the radiation pat-
tern that emits ‘left’ elliptical (or ‘left’ circular) polarized light
in every direction of space. In fact, if the emitted polariza-
tion is elliptical both Re{E} and Im{E} must be nonzero. If
the handedness is fixed, let us say to the ‘left’ in every direc-
tion of space, then both Re{E} and Im{E} are non-vanishing
tangent vector fields over the entire surface of the ‘sphere’.
Then, Re{E}/ |Re{E}| defines a smooth vector field that is
globally defined on the tangent space of the sphere. However,
according to the hairy ball theorem, such a vector field can-
not exist. Consequently, an antenna with a radiation pattern
without nulls is subject to a topological constraint that pre-
vents the global fixation of its polarization handedness. Thus,
the antenna must have at least one direction in space where its
polarization is linear. To illustrate the discussion consider the
‘cross-dipole’ or turnstile antenna [29]. In its simplest form

6
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it is formed by two perpendicular Hertz-dipoles fed by cur-
rents in quadrature. The radiation pattern of the cross-dipole
has no nulls, but the handedness of the emitted polarization
depends on the direction of observation. The plane of the
dipoles divides the entire space into two hemispheres, North
and South. The handedness of the emitted light (left or right)
is different for the two hemispheres. In the plane of the cross-
dipole, the antenna polarization is linear.

As a second example, consider the problem of radiation of
a stationary point charge q located at the origin of the coordin-
ate system in a time-varying isotropic dielectric material
described by the permittivity ε= ε(t). It was recently demon-
strated in [30] that if the dielectric has an anisotropic response,
the time modulation of the medium may result in radiation
emission by the point charge. However, for an isotropic dielec-
tric, the radiation by the point charge is strictly prohibited. This
was explicitly shown in [30] by solving Maxwell’s equations
in the time-varying medium. Here, we propose a topological
explanation for this constraint.

In the isotropic medium case, the emitted wave must have
(i) an amplitude that is independent of the observation direc-
tion and (ii) polarization that is independent of the observation
direction due to the symmetry of the system. The only polar-
ization state that satisfies the second condition and is consist-
ent with the continuous rotational invariance of the problem is
circular polarization. Therefore, the emitted radiation must be
either circularly polarized to the left for every observation dir-
ection or circularly polarized to the right for every observation
direction.

However, as we discussed in the first example, the hairy
ball theorem states that it is impossible to design an emitter
that emits a wave with a fixed handedness. This implies that a
point charge cannot emit radiation when embedded in a time-
varying isotropic dielectric. This conclusion is in agreement
with the results of [30], and emphasizes the topological origin
of the constraint.

3.6. Sketch of a proof that the Chern index is an integer

For completeness, let us present an elementary argument that
illustrates why the Chern index is necessarily an integer. For
simplicity we focus on the topology of the sphere (figure 6),
but the same idea can be readily extended to other more
complex geometries. As previously discussed, in general it is
not possible to have a globally defined mapping of a closed
surface. For example, in order to map the entire surface of
a sphere one needs to consider at least two mappings, for
example a mapping of the North hemisphere (top part) and a
mapping of the South hemisphere (bottom part) (e.g. r(x,y) =(
x,y,±

√
1− x2 − y2

)
).

Consider then two mappings (‘top’ and ‘bottom’) of the
sphere (or of a sphere-type object) and evaluate the total
Gaussian curvature (Chern index) using:

C =
1
2π

ˆ

S

Kds=
1
2π

ˆ

top

Ktopds+
1
2π

ˆ

bot

Kbotds. (16)

Figure 6. A parameterization of a spherical-type surface requires at
least two mappings (e.g. of the top and bottom sections). The
boundary between the bottom and top sections is denoted by ∂D. At
the boundary ∂D, the two orthogonal bases of the tangent space
(associated with the different parameterizations) differ by a rotation
of θ = θ (r). The angle θ = θ (r) varies along ∂D.

Then, taking into account equation (7), Ki = Div(Ai× n̂)
(i = top, bot), it is possible to reduce the two surface integrals
to line integrals over the boundary:

C =
1
2π

˛

∂D

Atop −Abot. (17)

From Section 3.2, the Berry potentials in the two sections
differ by the gradient of a function: Abot =Atop −Gradθ
(equation (12)), where θ = θ (r) is the rotation angle that links
the two bases of unit vectors: t̂ ′1 = cosθt̂1 + sinθt̂2 and t̂ ′2 =
−sinθt̂1 + cosθt̂2 (the primed unit vectors are defined in the
bottom section of the sphere). From this discussion, it follows
that C = 1

2π

¸
∂D

Gradθ = θf−θi
2π , where θf and θi represent the

rotation angles at the initial and final points of the contour ∂D.
As the initial and final points are identical, θf and θi must differ
by an integer multiple of 2π . This demonstrates that the Chern
index must be an integer. Note that the basis transformation
determined by the angle θ (r) is smooth provided the functions
cosθ,sinθ vary smoothly in the contour ∂D. Evidently, the
smoothness (and continuity) of cosθ,sinθ does not imply that
the continuity θ (r). The nontrivial topology is a consequence
of the discontinuity of the angle θ (r) (jump by a multiple of
2π ) in the boundary contour ∂D.

4. Topological photonics

The methods discussed in the previous sections can be readily
extended tomore general Hermitian operators. In fact, the con-
struction of section 3 for the operator family Ĥ(r) = in̂(r)× 1
can be generalized to an arbitrary (smooth) family of operators
Ĥ(r) defined on a closed surface S. While the eigenfunctions
of Ĥ(r) = in̂(r)× 1 have a clear geometrical interpretation,

7
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Figure 7. The integral in equation (20) depends critically on the boundary conditions imposed on the cavity walls. (a) For periodic boundary
conditions the integral yields the usual gap Chern number. (b) For opaque-type boundaries (e.g. for a perfect electric wall) it vanishes. This
qualitative difference implies that in case (b) the system forcibly supports edge states at the boundaries.

for a generic Ĥ(r) the eigenfunctions may be abstract vec-
tors in some abstract vector space (with an arbitrary number
of dimensions).

For a generic Ĥ(r), the Berry potential and Berry curvature
are still defined in terms of the eigenfunctions as A=
⟨f|iGrad f⟩ and K = Div(A× n̂). The Chern index is still
given by equation (14) and remains an integer due to argu-
ments analogous to those of section 3.6. For Ĥ(r) = in̂(r)× 1
(specifically for the lowest frequency ‘band’ of the operator),
the Berry curvature is coincident with the Gaussian curvature,
and the Chern index is determined by the genus of the surface
S (equation (15)).

In physical systems, S is typically a surface in the spec-
tral k-space, most often a two-dimensional Brillouin zone
(BZ) or in case of some Floquet topological systems a closed
surface contained in a three-dimensional BZ (e.g. an isofre-
quency contour [31]). Thus, the family of operators is para-
meterized by k: Ĥ= Ĥk. Typically, Ĥk is the operator that
describes the propagation of the Bloch waves in a 2D periodic
physical structure, for example a periodic (parallel-plate type)
photonic crystal waveguide with the allowed propagation dir-
ections parallel to the xoy plane. Note that the two-dimensional
BZ is isomorphous to a torus, i.e. to a surface with a trivial
topology.

The most remarkable physical consequence of a non-
trivial topology in photonics is the bulk edge correspondence
[21–24]. The bulk edge correspondence links the Chern
indices of the operators that describe the wave propagation in
two photonic crystals with the net number of unidirectional
edge states at a boundary of the two materials. Next, we high-
light that the ‘bulk-edge correspondence’ arises in physical
systems as a consequence of the particular structure of the
operator family Ĥk that determines the propagation of Bloch
waves.

In fact, for a photonic crystal the Bloch-mode operators Ĥk

are constructed from the system ‘Hamiltonian’ Ĥ(−i∇,r) as:

Ĥk = Ĥ(−i∇+k,r) . (18)

Due to this very specific structure, it turns out that it is pos-
sible to express the topological invariant in terms of the real-
space system Green’s function G defined as:(

Ĥ(r,−i∇)− 1ω
)
· G (r,r ′,ω) = i1δ (r− r ′) . (19)

Specifically, the gap Chern number can be written as [24,
32, 33]:

Cgap = lim
Atot→∞

1
Atot

ωgap+i∞ˆ

ωgap−i∞

dω
¨

dVdV ′
[
tr
{[

∂2Ĥ · G (r,r ′,ω)
]

·
[
∂1Ĥ · ∂ωG (r ′,r,ω)

]}]
. (20)

Here, Atot is the area of a ‘cavity’ that includes many cells
of the photonic crystal, as illustrated in figure 7(a). The gap
Chern number Cgap is obtained after integration of the Green’s
function over the cavity volume and over a vertical line con-
tained in a strip of the complex plane that determines the band
gap (integration in ω). For further details, the reader is referred
to [24].

The Green’s function in equation (20) must satisfy periodic
boundary conditions at the cavity walls. The Green’s function
in real-space decays exponentially with the distance |r− r ′|
between the source (r ′) and observation (r) points, because in
the relevant frequency range (i.e. the vertical strip of the com-
plex frequency plane corresponding to the gap) the bulk region
does not support photonic states [24]. The interesting point is
that when equation (20) is evaluated using a Green’s function

8
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that satisfies opaque-type boundary conditions (e.g. an electric
wall, which is impenetrable by light) the result of the integ-
ration is exactly zero (figure 7(b)) [24]. Thus, the integral in
equation (20) depends critically on the type of boundary con-
ditions, even though the Green’s function in the interior region
of the cavity is for all purposes independent of the boundary
conditions. These two features can be compatible only if the
opaque-type boundaries create singularity in the Green’s func-
tion, i.e. only if they create edge states at the cavity walls [24].
This property is the essence of the bulk-edge correspondence.

In summary, the bulk-edge correspondence is a con-
sequence of the specific structure of the operator family Ĥk

(equation (18)) and of the system periodicity in space, which
allows the topological invariant to be expressed in terms of the
real-space Green’s function.

5. Conclusion

In this article, we revisited the link between topological band
theory and the topological theory of mathematical surfaces,
showing explicitly that the former can be regarded as a gen-
eralization of the latter. It particular, it was proven that the
genus of a surface can be related to the Chern index of a fam-
ily of Hermitian operators that rotate the vectors in the tangent
space of the surface by 90◦. Furthermore, we discussed how
the ‘hairy ball theorem’ constrains the polarization of the wave
emitted by an arbitrary antenna, showing that handedness of
the polarization state of the radiated wave cannot be direction
independent. Finally, we highlighted that the bulk-edge cor-
respondence in physical systems follows from the particular
structure of the Bloch Hamiltonian operators, which enables
expressing the Chern number in terms of the real-space sys-
tem Green’s function.
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