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Abstract: Here, we show that isorefractive spacetime crys-

tals with a travelling-wave modulation may mimic rig-

orously the response of moving material systems. Unlike

generic spacetime crystals, which are characterized by a bi-

anisotropic coupling in the co-moving frame, isorefractive

crystals exhibit an observer-independent response, result-

ing in isotropic constitutive relations devoid of any bian-

isotropy. We show how to take advantage of this property in

the calculation of the band diagrams of isorefractive space-

time crystals in the laboratory frame and in the study of the

synthetic Fresnel drag. Furthermore, we discuss the impact

of considering either a Galilean or a Lorentz transforma-

tion in the homogenization of spacetime crystals, showing

that the effective response is independent of the considered

transformation.

Keywords:metamaterials; Minkowskian spacetime crys-

tals; photonic crystals; space-time modulation; synthetic

Fresnel drag; travelling-wave modulation.

1 Introduction

In recent years, time-varying material responses have

opened up many interesting opportunities in metama-

terials and in other light-based platforms [1–22]. Time

modulated materials may be useful to design magnetless

non-reciprocal systems, such as unidirectional guides and
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isolators [4–6, 9]. The wave phenomena in time-modulated

systems can be quite rich and peculiar [1–15].

A particular class of spacetime crystals has attracted

considerable attention due to the relative simplicity of

modeling and system design: the “travelling-wave” space-

time crystals [7, 8, 16–24]. In a travelling-wave crystal the

material parameters, let us say the permittivity, depend on

space and time as 𝜀(r, t) = 𝜀(r− vt), where r =
(
x, y, z

)
is

a generic point of space and v is the modulation speed.

Remarkably, the travelling-wave modulation of the mate-

rial parameters may induce a synthetic Fresnel drag in the

longwavelength regime, such that waves propagating in the

spacetime crystal are dragged towards a preferred direction

of space, either parallel or anti-parallel to v [20]. Interest-

ingly, these effects may be conveniently described using

homogenization theory [19, 21, 23]. Specifically, a travelling-

wave crystal formed by layered dielectrics behaves effec-

tively as a bianisotropic nonreciprocal material in the long

wavelength limit. In the simplest case, where the crystal is

formed by simple isotropic materials, the magneto-electric

coupling tensor is anti-symmetric, corresponding to a stan-

dard “moving-medium” coupling [20, 21, 25]. Curiously, by

controlling the optical axes and the anisotropy of the mate-

rials that form the spacetime crystal, it is possible to engi-

neer nearly arbitrary (Hermitian) nonreciprocal couplings

[23]. For example, it was shown in Ref. [23] that anisotropic

spacetime crystals with a suitable glide-rotation symmetry

may exhibit an isotropic effective Tellegen (axion) response

in the long wavelength limit. Different from the moving

medium coupling, the Tellegen response is determined by

a “scalar”, which is the simplest example of a symmetric

magneto-electric tensor [26, 27]. Tellegen materials are non-

reciprocal and thereby can be potentially useful to realize

unidirectional devices [28, 29] and systems with nontrivial

topological properties [30, 31].

While previous works have shown that crystals with a

travelling-wave modulation can effectively mimic physical

motion [19–23], the analogy is imperfect in many ways and

typically only holds true in the long wavelength limit. For

example, the velocity of the equivalent moving medium vD

typically does not match the modulation speed of the crys-

tal v, and most puzzling the sign of the two velocities can
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be different [20]. In fact, a spacetime modulated dielectric

crystal is not equivalent to a moving dielectric crystal. The

reason will be developed in detail in the following sections,

but essentially boils down to the fact that in the co-moving

frame – where the material response is time-independent

– the response of a dielectric crystal is by definition free

of magneto-electric coupling, while the response of a space-

time crystal is bianisotropic.

Notwithstanding with the constraints discussed in the

previous paragraph, here we show that there is a particular

subclass of spacetime crystals that may replicate exactly

the response of moving material bodies for any frequency

of operation. Specifically, we show that isorefractive space-

time crystals – formed by materials with a constant refrac-

tive index, n = √
𝜀r𝜇r = const. – have an electromagnetic

response identical to that of a moving dielectric crystal in a

suitable “vacuum” background. In particular, our analysis

unveils that isorefractive crystals may be the ideal plat-

forms to mimic physical motion using spacetime modula-

tions. Furthermore, we highlight how by using generalized

Lorentz transformations it is possible to determine in a

rather straightforwardmanner the dispersion properties of

spacetime modulated isorefractive crystals and character-

ize the synthetic Fresnel drag in the long wavelength limit.

Finally, we discuss the impact of using relativistic (Lorentz)

and non-relativistic (Galilean) transformations in the analy-

sis of spacetime crystals. It is demonstrated that while both

types of transformation predict the same physics and the

same effective response in the longwavelength limit, the use

of Lorentz transformations greatly simplifies the analysis in

the case of isorefractive crystals.

2 Isorefractive spacetime crystals

2.1 Coordinate transformations and
constitutive relations of a spacetime
crystal

We are interested in spacetime crystals with a travelling-

wave modulation characterized by isotropic constitutive

relations,

D(r, t) = 𝜀0𝜀(r− vt) E(r, t),

B(r, t) = 𝜇0𝜇(r− vt) H(r, t). (1)

We shall assume without loss of generality that the

modulation speed is along the x-direction, v = 𝑣x̂, so that

𝜀(r− vt) stands for a function of the type 𝜀
(
x − 𝑣t, y, z

)
,

determined by only three independent degrees of freedom.

Evidently, the material response is time-independent

in an inertial (co-moving) frame that moves with speed v

with respect to the laboratory frame. In this article, we link

the coordinates of the two frames through a generalized

Lorentz transformation of the type:

x′ = 𝛾(x − 𝑣t), y′ = y, z′ = z (2a)

t′ = 𝛾

(
t − x

𝑣

c2
0

)
, (2b)

with 𝛾 =
(
1− 𝑣2∕c2

0

)−1∕2
the Lorentz factor. Here, c0 is a

free positive parameter with unities of velocity. If c0 is taken

identical to the speed of light in vacuum, c, we recover the

standard Lorentz transformation, whereas if c0 = ∞we get

a simple Galilean coordinate transformation.

The structure of the Maxwell’s equations is preserved

by any generalized Lorentz transformation, provided the

electromagnetic fields are transformed in the usual manner

[25, 32]:

E
′‖ = E‖, B′‖ = B‖, (3a)

E
′
⊥
= 𝛾

(
E⊥ + v × B

)
, B′

⊥
= 𝛾

(
B⊥ − 1

c2
0

v × E

)
, (3b)

and

D
′‖ = D‖, H′‖ = H‖, (4a)

D
′
⊥
= 𝛾

(
D⊥ + 1

c2
0

v × H

)
, H′

⊥
= 𝛾

(
H⊥ − v × D

)
. (4b)

Here || and ⊥ represent the field components parallel

and perpendicular to the velocity. Evidently, the primed

fields have a strong physical meaning when c0 = c, as

in that case they coincide with the physical fields eval-

uated in the relevant inertial frame. When c0 ≠ c, the

primed fields should be simply regarded as auxiliary fields

that are introduced to simplify the mathematical treat-

ment of the wave propagation problem in the spacetime

crystal.

As shown in previous works [21, 23], the generalized

Lorentz transformation leads to the following constitutive

relations for the primed fields (compare with Eq. (1)):

(
D
′

B
′

)
=

⎛⎜⎜⎜⎝
𝜀0𝜀

′ 1

c
𝜉′

1

c
𝜁 ′ 𝜇0𝜇

′

⎞⎟⎟⎟⎠
(
E
′

H
′

)
(5a)

where the transformed permittivity, permeability and

magneto-electric tensors satisfy:

𝜀′ = 𝜀′
t

(
1− x̂⊗ x̂

)
+ 𝜀′x̂⊗ x̂, 𝜀′

t
= 𝜀′

1−
(
𝑣∕c0

)2
1−

(
𝑣∕𝑣d

)2 , (5b)
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𝜇′ = 𝜇′
t

(
1− x̂⊗ x̂

)
+ 𝜇′

x̂⊗ x̂, 𝜇′
t
= 𝜇′ 1−

(
𝑣∕c0

)2
1−

(
𝑣∕𝑣d

)2 ,
(5c)

𝜉′ = −𝜁 ′ = 1−
(
c0∕𝑣d

)2
1−

(
𝑣∕𝑣d

)2 cvc2
0

× 1, (5d)

and 𝑣d = c∕
√
𝜀′𝜇′ is the velocity of the relevant dielectric

in the laboratory frame. In the previous formulas 𝜀′, 𝜇′

stand for 𝜀′ = 𝜀
(
x′∕𝛾, y′, z′

)
and 𝜇′ = 𝜇

(
x′∕𝛾, y′, z′

)
with

the functions in the right-hand side defined as in Eq. (1).

Thereby, the material parameters are independent of time

in the new coordinates. For a finite c0, the 𝛾 -factor is greater

than one, and hence all the lengths along the direction of

motion in the lab frame are shorter than in the co-moving

frame (the “rest” frame), due to the Lorentz–Fitzgerald

length contraction [32]. Due to this reason, for a finite c0 the

geometry of the spacetime crystal in the laboratory frame

is a contracted version of the geometry in the co-moving

frame.

From Eq. (5) one sees that the constitutive rela-

tions in the co-moving frame are characterized by a

bianisotropic coupling, described by the tensors 𝜉′ =
−𝜁 ′. As further discussed in the next subsection, this

property is at odds with the response of moving isotropic

dielectrics. Indeed, a moving dielectric has a response free

of magneto-electric coupling in the rest frame (co-moving

frame) and a bianisotropic response in any other inertial

frame.

2.2 Moving dielectric crystal

It is relevant to contrast the response of a spacetime crystal

with that of the corresponding moving photonic crystal.

To do this, consider a time independent dielectric photonic

crystal at rest in some inertial frame. In this frame (primed

coordinates), the dielectric photonic crystal is characterized

by standard constitutive relations:

D
′(
r
′, t′

)
= 𝜀0𝜀

′(x′, y′, z′)E′(r′, t),
B
′(
r
′, t′

)
= 𝜇0𝜇

′(x′, y′, z′)H′(
r
′, t

)
. (6)

On the other hand, in a (laboratory) inertial frame that

moves with speed −𝑣x̂ with respect to the rest frame the

transformed fields are related as [25] (here we use the stan-

dard Lorentz transformation with c0 = c):

(
D

B

)
=

⎛⎜⎜⎜⎝
𝜀0𝜀

1

c
𝜉

1

c
𝜁 𝜇0𝜇

⎞⎟⎟⎟⎠
(
E

H

)
(7a)

where the relevant tensors are now given by:

𝜀 = 𝜀t
(
1− x̂⊗ x̂

)
+ 𝜀x̂⊗ x̂, 𝜀t = 𝜀

1−
(
𝑣∕c

)2
1−

(
𝑣∕𝑣d

)2 , (7b)

𝜇 = 𝜇t
(
1− x̂⊗ x̂

)
+ 𝜇x̂⊗ x̂, 𝜇t = 𝜇

1−
(
𝑣∕c

)2
1−

(
𝑣∕𝑣d

)2 , (7c)

𝜉 = −𝜁 = − 1−
(
c∕𝑣d

)2
1−

(
𝑣∕𝑣d

)2 vc × 1, (7d)

where 𝑣d = c∕
√
𝜀′𝜇′. The parameters 𝜀, 𝜇 are linked to

𝜀′, 𝜇′ as 𝜀 = 𝜀′
(
𝛾(x − 𝑣t), y, z

)
and 𝜇 = 𝜇′(𝛾(x − 𝑣t), y, z

)
,

so that the response in the laboratory frame is time depen-

dent and has also a “travelling-wave” structure. Comparing

Eqs. (1) and (7) and Eqs. (5) and (6), the difference between

amoving dielectric crystal and spacetimemodulated dielec-

tric crystal becomes evident: the responses in the co-moving

frame (where the constitutive relations are time indepen-

dent in both problems) and in the laboratory frame (where

the constitutive relations are time dependent) are swapped

in the twoproblems. In particular, amoving photonic crystal

is bianisotropic in the laboratory frame, while the corre-

sponding spacetime crystal has a purely isotropic response

in the laboratory frame. Clearly, the two types of crystals are

generically rather different from an electromagnetic point

of view.

2.3 Isorefractive crystals and Minkowskian
isotropic materials

Let us now consider an isorefractive crystal such that 𝑣d
is independent of space. In other words, the speed of light

is identical in all the materials. This type of crystals was

considered in Ref. [33], where the authors analyzed the

peculiar dispersion properties of light waves near the tran-

sition between the subluminal and superluminal regimes.

Furthermore, time independent isorefractive systems have

been previously discussed in the literature in different con-

texts [34–36].

Consider first the ideal case 𝑣d = c, so that the speed

of light in the materials is identical to the speed of light

in vacuum. It should be noted that in realistic materials

𝑣d < c, as the light–matter interactions slow down thewave

propagation with respect to the vacuum case. We will not

worry with such a constraint for now; the requirement

𝑣d = c will be relaxed below.

Using 𝑣d = c and a standard Lorentz transformation

(c0 = c) in Eqs. (1), (5)–(7), one readily finds that both for

the spacetime crystal problem and for the moving photonic

crystal problem the constitutive relations in the co-moving
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frame are of the type: D′(
r
′, t′

)
= 𝜀0𝜀

′(x′, y′, z′)E′(r′, t)
and B

′(
r
′, t′

)
= 𝜀0𝜇

′(x′, y′, z′)H′(
r
′, t

)
. Furthermore,

when 𝑣d = c = c0 the constitutive relations are preserved

by the Lorentz transformation, i.e., they are frame

independent. In a generic inertial frame, let us say

the laboratory frame, they are of the form: D = 𝜀0𝜀
′
E,

B = 𝜀0𝜇
′
H. Note that in the laboratory frame the

constitutive relations are time-dependent due to the

moving material interfaces.

The enunciated results can be better understood noting

that the standard Lorentz transformation preserves the con-

stitutive relations of the electromagnetic vacuum, i.e., the

vacuum is a “fixed point” of the Lorentz transformation. It

has been previously noted [37] that there is a wider set of

fixed points formed by all the isotropic “materials” with the

same refractive index as the vacuum. Such class ofmaterials

is known as Minkowskian isotropic media.

The above discussion reveals that an arbitrary crys-

tal formed by Minkowskian isotropic media (𝑣d = c) is

described by constitutive relations that are observer inde-

pendent. Furthermore, it proves that a hypothetical moving

photonic crystal formed by Minkowskian isotropic media

has an electromagnetic response strictly equivalent to the

response of the corresponding spacetime modulated crys-

tal. Thereby, Minkowskian isotropic spacetime crystals may

perfectly mimic the physical motion of some material body

at any frequency. This is the first key result of the article.

Evidently, this result holds true only for idealized materi-

als that respond instantaneously to the applied fields. The

bandwidth of practical systems is constrained by material

dispersion. It is relevant to note that frequency dispersive

materials cannot be invariant under a Lorentz transforma-

tion. In fact, due to the Doppler transformation a frequency

dispersive material becomes spatially dispersive in the lab-

oratory frame.

As noted before, it is certainly challenging to implement

Minkowskian spacetime crystals with 𝑣d = c. However, one

may relax the constraint 𝑣d = c so that it becomes 𝑣d = c0

where c0 is now some arbitrary velocity, if desired much

less than the speed of light in vacuum. Even though the

response of such a spacetime crystal with 𝑣d = c0 is not

strictly equivalent to that of a physical moving medium, in

practice the twomathematical structures are rather similar.

In fact, it should be obvious that an isorefractive spacetime

crystal with 𝑣d = c0 effectively emulates a moving physical

body in a fictitious “universe” where the speed of light is c0,

rather than c.

Indeed, from Eq. (5) the isorefractive materials char-

acterized by a given velocity 𝑣d are “fixed points” of the

generalized Lorentz transformation with c0 = 𝑣d. In other

words, the generalized Lorentz transformationwith c0 = 𝑣d
enables one to switch to a set of coordinates where the

constitutive relations of the spacetime crystal remain pre-

cisely the same (i.e., described by a scalar permittivity and

by a scalar permeability as in Eq. (1)), but time invariant.

Thus, the electrodynamics of a generic isorefractive space-

time crystal is strictly determined by the electrodynamics

of a standard time-independent photonic crystal through a

generalized Lorentz transformation. This is the second key

result of the article.

2.4 Dispersion diagrams, generalized
Doppler transformation, and addition
of velocities

From the previous subsection, the electrodynamics of isore-

fractive spacetime crystals can be conveniently studied

in the co-moving frame where the constitutive relations

of the material are isotropic and time-invariant. Note

that this result holds true even for three-dimensional

crystals.

Clearly, the electromagnetic modes in the co-moving

frame coordinates are Bloch waves with a spacetime

variation of the type: e−i𝜔
′t′e+ik

′⋅r′ . The dispersion of the

Bloch waves 𝜔′ versus k
′ in the co-moving frame may

be found with standard numerical methods. By applying

an inverse generalized Lorentz transformation, one can

obtain the modes in the original (unprimed) frame. The

fields in the unprimed frame have a structure of the type

Fp(r− vt)e−i𝜔te+ik⋅r with Fp a periodic function in the three

spatial coordinates. The dispersion in the laboratory frame

is easily determined by a (generalized) Doppler transforma-

tion [32]:

kx = 𝛾

(
k′
x
+ 𝑣

𝜔′

c2
0

)
, ky = k′

y
, kz = k′

z
. (8a)

𝜔 = 𝛾
(
𝜔′ + k′

x
𝑣
)
. (8b)

It is interesting to relate the wave velocities in the co-

moving and laboratory frames. For simplicity, we restrict

our discussion to the case of Bloch modes that propagate

along the x-direction (i.e., along the direction parallel to v) in

the longwavelength limit. Clearly, as in the co-moving frame

the system is a conventional reciprocal photonic crystal, the

velocities of the waves that propagate along the +x and –x
directions differ by aminus sign: 𝑣′+

𝑤
= −𝑣′−

𝑤
. The velocities

are determined by the slopes 𝑣′±
𝑤

= 𝜔′∕k′±
x
evaluated in the

long wavelength limit.

The wave velocities in the laboratory frame (𝑣±
𝑤
=

𝜔∕k±
x
) can be readily determined using the (generalized)
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formula for the relativistic addition of velocities [32]:

𝑣±
𝑤
= 𝑣′±

𝑤
+ 𝑣

1+ 𝑣′±𝑤 𝑣∕c2
0

. (9)

Clearly, ||𝑣+𝑤|| > ||𝑣−𝑤|| in the subluminal regime (|𝑣| < c0

and ||𝑣′𝑤|| < c0) and thereby the synthetic motion always

induces a “positive” Fresnel drag effect, such that the waves

in the laboratory frame propagate faster along the direc-

tion determined by the synthetic motion (+x-direction). It
is underscored that different from previous works [20, 21],

here the Fresnel drag effect is determined by a relativis-

tic velocity-addition formula, due to the rigorous analogy

between the isorefractive spacetime crystal and a moving

crystal. The velocity of the equivalent moving crystal is

identical to the modulation speed.

2.5 Numerical examples

In order to illustrate the ideas of the previous subsec-

tions, next we present two numerical examples. In the first

example, the spacetime crystal in the co-moving frame is

formed by an isorefractive honeycomb array of dielectric

cylinders with radius R′ (Figure 1a). For simplicity, we con-

sider the case of Minkowskian isotropic crystals, so that the

background region is air and the cylinders have permittivity

𝜀′
A
and permeability𝜇′

A
constrained by n′

A
=

√
𝜀′
A
𝜇′
A
= 1 (in

the numerical simulations we take 𝜀′
A
= 5, 𝜇′

A
= 1∕𝜀′

A
). The

distance between nearest neighbors is a′.

We consider waves with transverse electric (TE) polar-

ization (E′ = E′
z
ẑ) and propagation in the xoy plane, so that

E′
z
= E′

z

(
x′, y′

)
. The band structure in the co-moving frame

can be found by solving the secular equation:

− 𝜕x′

(
1

𝜇′
(
x′, y′

)𝜕x′E′z′)− 𝜕y′

(
1

𝜇′
(
x′, y′

)𝜕y′E′z′)

=
(
𝜔′

c

)2

𝜀′
(
x′, y′

)
E′
z′ , (10)

where x′, y′, z′ are the spatial coordinates in the co-moving

frame. The Bloch theorem can be used in the co-moving

frame because of the spatial periodicity of the crystal. The

Bloch modes are calculated using the plane wave method

[38]. The electromagnetic fields in the laboratory frame can

be calculated from the Bloch modes in the co-moving frame

with the help of Eqs. (3) and (4).

The numerically calculated band diagram is plotted in

Figure 2ai for the parameters 𝜀′
A
= 5, 𝜇′

A
= 1∕𝜀′

A
,R′ = 0.4a′

and a modulation speed 𝑣 = 0.2c. It should be noted that

due to the Lorentz–Fitzgerald contraction the cross-section

of the cylinders in the laboratory frame coordinates is ellip-

soidal rather than circular (inset of Figure 1a). Furthermore,

the original honeycomb lattice is slightly contracted for the

same reason. For simplicity, we restrict our attention to the

(a) (b)

A

A






0 0, 

(...)
x

y

z

A A,  

x

y

a

2a
1a

R B

B






   ,  x vt x vtv
   , , ,  x vt y x vt y

v
a

x
y

x
y

a a

Co-moving
frame

Laboratory
frame

Figure 1: Geometry of two isorefractive spacetime crystals with a travelling-wave modulation. The modulation speed is v = 𝑣x̂. The arrow indicates

how the material parameters vary in time in the laboratory frame. (a) Co-moving frame geometry of a honeycomb array of dielectric scatterers with

radius R′ and permittivity and permeability 𝜀′
A
, 𝜇′

A
embedded in air, with n′

A
=

√
𝜀′
A
𝜇′
A
= 1. The direct lattice primitive vectors are a′

1
= a′∕2

(
3,−

√
3
)

and a′
2
= a′∕2

(
3,
√
3
)
, where a′ is the distance between nearest neighbors. The inset illustrates the Lorentz contraction of the unit cell, showing that

the circular cross-section of the scatterers becomes slightly elliptical in the laboratory frame. The nearest neighbors distance is also shortened

according to a = a′∕𝛾 . (b) Stratified isorefractive spacetime crystal formed by two isotropic layers with material parameters 𝜀′
A
, 𝜇′

A
and 𝜀′

B
, 𝜇′

B
, such

that
√
𝜀′
A
𝜇′
A
= 1 =

√
𝜀′
B
𝜇′
B
. The lattice period in the co-moving frame is a′.
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Figure 2: Dispersion of the isorefractive spacetime honeycomb crystal (Figure 1a). (a) Exact dispersion diagram for 𝜀′
A
= 5, 𝜇′

A
= 1∕𝜀′

A
for a

modulation speed 𝑣 = 0.2c calculated in the (ai) co-moving frame, and (aii) laboratory frame. (aiii) Long wavelength limit wave velocities in the

laboratory frame 𝑣+
𝑤
, 𝑣−

𝑤
as a function of the modulation speed 𝑣∕c. The horizontal line represents the wave velocity in the co-moving frame||𝑣′𝑤|| = ||𝑣′±𝑤 ||. In the dashed part of the red curve, 𝑣−𝑤 is positive and the propagation is unidirectional.

x′-axis and to the segment of the Brillouin zone−M′ → Γ′ →

M′ (corresponding to the vertical dashed lines in Figure 2ai).

Here, Γ′,M′ are the standard high-symmetry points of the

honeycomb array. In the long wavelength limit, the pho-

tonic crystal dispersion can be approximated by two lines

depicted in Figure 2ai with the dashed black style, whose

slopes determine the wave velocities 𝑣′±
𝑤

= 𝜔′∕k′±
x

along

the ±x′-axis. As already mentioned, due to Lorentz reci-

procity the two slopes are identical in the co-moving frame:||𝑣′+𝑤 || = ||𝑣′−𝑤 || ≡ 𝑣′
𝑤
.

The band diagram in the laboratory frame (Figure 2aii)

is found with the help of the relativistic Doppler transfor-

mation (Eq. (8)). Due to the Doppler shift, the band struc-

ture in the laboratory frame is tilted with respect to the

co-moving frame. The synthetic motion creates an evident

spectral asymmetry,𝜔
(
kx
)
≠ 𝜔

(
−kx

)
. In particular, there is

a synthetic Fresnel drag such that the wave velocities in the

long wavelength limit obey the order relation: ||𝑣−𝑤|| < 𝑣 <||𝑣+𝑤||.
Figure 2aiii depicts the velocities in the laboratory

frame ||𝑣±𝑤|| as a function of themodulation speed. The plot is
obtained using the relativistic addition of velocities (Eq. (9)).

Note that the crystal geometry in the co-moving frame is

assumed independent of the modulation speed. As seen, the

asymmetry between the velocities of counter-propagating

waves becomes more pronounced as the modulation speed

increases. Interestingly, for 𝑣 = 𝑣′
𝑤
≡ ||𝑣′±𝑤 ||, the velocity of

the counter-propagating wave (𝑣−
𝑤
) becomes exactly zero.

Furthermore, for 𝑣 > 𝑣′
𝑤
the signs of the velocities of the

two waves 𝑣±
𝑤
become identical. Thus, the velocity 𝑣 = 𝑣′

𝑤

marks the transition between the usual bi-directional prop-

agation regime (𝑣+
𝑤
and 𝑣−

𝑤
have opposite signs) and a unidi-

rectional propagation regime (𝑣+
𝑤
and 𝑣−

𝑤
have both positive

signs), in agreement with the findings of Ref. [33]. As the

modulation speed approaches the superluminal threshold

(𝑣→ c), both 𝑣±
𝑤
approach +c.

The velocity 𝑣 = 𝑣′
𝑤
may be regarded as the Cherenkov

threshold in the homogenization limit. In fact, a static point

charge in the laboratory frame, behaves effectively as a

moving charge with velocity 𝑣 in the co-moving frame. The

velocity of the charge in the co-moving frame exceeds the

velocity of the wave when 𝑣 > 𝑣′
𝑤
. Thus, for 𝑣 > 𝑣′

𝑤
the

synthetic motion may enable the emission of Cherenkov-

type radiation from the static charge (see also Ref. [39]). The

emitted radiation is coupled to the low frequency electro-

magnetic modes.

As a second example, we consider a 1D-type photonic

crystal formed by a periodic stack of isorefractive dielectric

layers with period a′in the co-moving frame (Figure 1b).

The material parameters are taken as 𝜀′
A
= 2, 𝜇′

A
= 1∕2

and 𝜀′
B
= 1∕4, 𝜇′

B
= 4, such that the refractive indexes,

are n′
A
= n′

B
= 1. The band diagrams calculated in the co-

moving and laboratory frames are shown in Figure 3ai and

aii, respectively, for the modulation velocities 𝑣 = 0.1c and

𝑣 = 0.35c. Similar to the previous example, the spectral sym-

metry is broken in the laboratory frame (𝜔
(
kx
)
≠ 𝜔

(
−kx

)
)

due to the synthetic motion.

It is relevant to discuss the homogenization and long

wavelength limit response of the Minkowskian spacetime

crystal [19, 21, 23]. As is well-known, for stratified structures,

the effective response in the co-moving frame can be found

with simple spatial averaging of the material parameters.

For layers with identical thickness the effective permittivity

and permeability are:

𝜀′
ef,L

= 𝜀′
A
+ 𝜀′

B

2
, 𝜇′

ef,L
= 𝜇′

A
+ 𝜇′

B

2
. (11)

The effective parameters describe the response of the

crystal to transverse waves that propagate along the direc-

tion of motion. The important point is that even though

the two material layers are isorefractive (n′
A
= n′

B
= 1), the

effective medium has typically a different refractive index:√
𝜀′
ef,L

𝜇′
ef,L

≠ 1. This implies that the effective medium is
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Figure 3: Dispersion and effective parameters of the isorefractive stratified spacetime crystal (Figure 1b). (a) Exact dispersion diagrams of a crystal

formed by two dielectric layers with parameters 𝜀′
A
= 2, 𝜇′

A
= 1∕2 and 𝜀′

B
= 1∕4, 𝜇′

B
= 4, for the modulation speeds 𝑣 = 0.1c and 𝑣 = 0.35c. (ai)

Co-moving frame diagrams, (aii) laboratory frame diagrams. (b) Effective parameters as a function of the modulation speed. (bi) 𝜀′
ef,L
, 𝜇′

ef,L
, 𝜉′

ef,L
in the

co-moving frame. (bii) 𝜀ef , 𝜇ef , 𝜉ef in the laboratory frame. Note that the response in the co-moving frame is free of magneto-electric coupling

(𝜉′
ef,L

= 0). The vertical dashed line marks the transition between the subluminal and superluminal regimes.

not a “fixed point” of the Lorentz transformation, different

from the materials A and B. In fact, the effective material

parameters in the lab frame can be readily found with the

help of Eq. (7) using the substitution 𝑣d → 𝑣d,ef = c√
𝜀′
ef,L

𝜇′
ef,L

.

For waves polarized in the yoz plane the effective response

is determined by:

𝜀ef = 𝜀′
ef,L

1−
(
𝑣∕c0

)2
1−

(
𝑣∕𝑣d,ef

)2 ,
𝜇ef = 𝜇′

ef,L

1−
(
𝑣∕c0

)2
1−

(
𝑣∕𝑣d,ef

)2 ,
𝜉ef =

1−
(
c0∕𝑣d,ef

)2
1−

(
𝑣∕𝑣d,ef

)2 c𝑣c2
0

, (12)

with c0 = 𝑣d. The parameter 𝜉ef determines the effective

magneto-electric tensor 𝜉 = −𝜉efx̂ × 1 in the laboratory

frame. In the previous discussion, it is implicit that c0 = c,

but the above formula remains valid for an arbitrary value

of c0 = 𝑣d.

Figure 3bi and bii depict the effective parameters of

the 1D spacetime crystal in the co-moving and laboratory

frames as a function of the modulation speed. Again, it is

assumed that the geometry of the photonic crystal in the

co-moving frame is independent of v. As seen in Figure 3bii,

the effective parameters in the laboratory frame depend on

the modulation speed v due to
√
𝜀′
ef,L

𝜇′
ef,L

≠ 1. In particular,

the magneto-electric parameter 𝜉ef diverges and switches

sign for 𝑣 = 𝑣d,ef < c, consistent with Eq. (12). The effec-

tive permittivity and permeability 𝜀ef , 𝜇ef exhibit a simi-

lar behavior, so that all the effective parameters are reso-

nant within the subluminal range. This resonance marks

the transition between the bi-directional and the unidirec-

tional propagation regimes, already discussed in the first

example.

It is important to underline that the previous analy-

sis can be readily generalized to the homogenization of

2D and 3D isorefractive spacetime crystals. In fact, for

any effective medium model developed in the co-moving

frame (e.g., relying on standardmixing formulas such as the

Maxwell–Garnett formula, or others), the corresponding

effective parameters in the laboratory frame can be readily

determined with the help of Eq. (12).

3 Comparison of Galilean

and Lorentz transformations

In recent works, the response of spacetime crystals was

studied with a Galilean transformation of coordinates,
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such that r
′ = r− vt and t′ = t, e.g., [21, 23]. The key

property of the Galilean transformation is that it preserves

the structure of the Maxwell’s equations so that in the

co-moving frame coordinates one has ∇′ × E
′ = −𝜕t′B′,

∇′ × H
′ = +𝜕t′D′, similar to the Maxwell’s equations in the

laboratory frame ∇× E = −𝜕tB, ∇× H = +𝜕tD. The fields
in the co-moving frame are linked by bianisotropic con-

stitutive relations that are time-independent (Eq. (5) with

c0 = ∞).

The Galilean transformation is rather convenient from

a computational standpoint as it does not mix the time

and space coordinates. In particular, the geometry of the

problem is identical in the laboratory and co-moving frames

due to the absence of the Lorentz–Fitzgerald length contrac-

tion. Furthermore, the Galilean transformation is particu-

larly useful in the superluminal range, where the Lorentz

transformation breaks down and the 𝛾 -factor becomes

purely imaginary. Evidently, the fields associated with the

Galilean transformation [defined by Eq. (3) with c0 = ∞]

are deprived of having an immediate physical meaning,

and should be simply regarded as auxiliary fields that are

introduced to find the physical fields in the laboratory

frame.

More generally, it is possible to study the electrody-

namics of a travelling-wave spacetime crystal using any

of the Lorentz transformations defined by Eq. (2). While

the fields, the constitutive relations, the band diagrams,

etc., in the co-moving frame typically depend on the con-

sidered c0, the corresponding quantities in the laboratory

frame are independent of c0, if the inverse transformation

is correctly applied. The fields in the co-moving frame coin-

cide with the physical fields in the corresponding inertial

frame only when c0 = c. A relativistic Lorentz transforma-

tion with c0 = 𝑣d is particularly useful in the case of isore-

fractive (Minkowskian) spacetime crystals as it leads to sim-

ple observer-independent isotropic constitutive relations,

different from the Galilean transformation which leads to

a bianisotropic response.

It is less obvious if the spacetime crystal homogeniza-

tion via a Galilean transformation, as presented in Refs. [21,

23], necessarily agrees with the homogenization achieved

through a relativistic transformation. The objective of the

rest of this section is to show that indeed the two types of

transformations yield identical effective parameters in the

laboratory frame. The following analysis is not restricted to

isorefractive materials.

The homogenization methodology follows the same

steps as in Section 2.5 (see Refs. [21, 23] for more details).

First, using a Galilean or a Lorentz transformation we

switch to a co-moving framewhere thematerial parameters

are independent of time. For stratified crystals the effec-

tive parameters in the co-moving frame are determined

by the spatial average of the co-moving frame parame-

ters [21, 23]. Finally, the response in the laboratory frame

is determined using an inverse Galilean or Lorentz trans-

formation. Different from Section 2, in the following the

geometry of the crystal is fixed in the laboratory frame,

rather than in the Lorentz co-moving frame. Thus, the thick-

ness of the material layers is now fixed in the laboratory

frame.

Applying the outlined procedure to a bi-layer crystal

formed by dielectric slabs A and B with the same thickness

(Figure 1b), one finds that with a Lorentz transformation

(Eq. (5) with c0 = c) the effective parameters in the co-

moving frame are:

𝜀′
ef,L

=
(
1− 𝑣2

c2

)
1

2

(
𝜀A

1− n2
A

𝑣2

c2

+ 𝜀B

1− n2
B

𝑣2

c2

)
,

𝜇′
ef,L

=
(
1− 𝑣2

c2

)
1

2

(
𝜇A

1− n2
A

𝑣2

c2

+ 𝜇B

1− n2
B

𝑣2

c2

)
. (13a)

𝜉′
ef,L

= 1

2

𝑣

c

(
n2
A
− 1

1− n2
A

𝑣2

c2

+ n2
B
− 1

1− n2
B

𝑣2

c2

)
, (13b)

where 𝜀′
ef,L

, 𝜇′
ef,L

are the effective permittivity and perme-

ability in the Lorentz co-moving frame, respectively, 𝜉′
ef,L

is the moving medium parameter such that 𝜉′
ef
= −𝜉′

ef,L
x̂ ×

1, ni =
√
𝜀i𝜇i (i = A, B) are the refractive indices of the

layers A and B. Remarkably, the effective parameters in

Eq. (13) do not depend on the Lorentz factor 𝛾 . When nA =
nB = 1 the above formula reduces to Eq. (11) and there

is no magneto-electric coupling in the co-moving frame

(𝜉′
ef,L

= 0).

On the other hand, using a Galilean transformation

(Eq. (5) with c0 = ∞) one finds that the corresponding effec-

tive parameters are:

𝜀′
ef,G

= 1

2

(
𝜀A

1− n2
A

𝑣2

c2

+ 𝜀B

1− n2
B

𝑣2

c2

)
,

𝜇′
ef,G

= 1

2

(
𝜇A

1− n2
A

𝑣2

c2

+ 𝜇B

1− n2
B

𝑣2

c2

)
, (14a)

𝜉′
ef,G

= 1

2

𝑣

c

(
n2
A

1− n2
A

𝑣2

c2

+ n2
B

1− n2
B

𝑣2

c2

)
. (14b)

Clearly, the effective parameters in the two co-moving

frames are different. Curiously, the effective permittiv-

ity and permeability 𝜀′
ef,L

, 𝜇′
ef,L

in the Lorentz co-moving

frame can be written in terms of the parameters in

the Galilean co-moving frame as 𝜀′
ef,L

=
(
1− 𝑣2

c2

)
𝜀′
ef,G

and
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𝜇′
ef,L

=
(
1− 𝑣2

c2

)
𝜇′
ef,G

. It is relevant to note that in the

Galilean framework the magneto-electric coupling param-

eter 𝜉′
ef,G

does not vanish for isorefractive crystals.

Using either Eq. (13) combined with c0 = c or Eq. (14)

combined with c0 = ∞, one can calculate the effective

parameters in laboratory frame with Eqs. (3b) and (4b).

Importantly, it turns out that the effective parameters in the

laboratory frame are independent of c0, i.e., are indepen-

dent if one uses a Lorentz or aGalilean transformation. They

can be written explicitly as:

𝜀ef =
𝜀A + 𝜀B − 𝜀A𝜀B

(
𝜇A + 𝜇B

) 𝑣2
c2

2− 1

2

(
𝜀A + 𝜀B

)(
𝜇A + 𝜇B

) 𝑣2
c2

,

𝜇ef =
𝜇A + 𝜇B − 𝜇A𝜇B

(
𝜀A + 𝜀B

) 𝑣2
c2

2− 1

2

(
𝜀A + 𝜀B

)(
𝜇A + 𝜇B

) 𝑣2
c2

, (15a)

𝜉ef =
𝑣

2c

(
𝜀A − 𝜀B

)(
𝜇A − 𝜇B

)
2− 1

2

(
𝜀A + 𝜀B

)(
𝜇A + 𝜇B

) 𝑣2
c2

. (15b)

For an isorefractive system, 𝑣d = 1∕√𝜀A𝜇A = 1∕√𝜀B𝜇B,

the above formulas reduce to Eq. (12).

To illustrate the discussion, we represent in Figure 4a,

the dispersion diagram of a bi-layer spacetime crystal in the

laboratory frame and in theGalilean and Lorentz co-moving

frames for the modulation speeds 𝑣 = 0.1c and 𝑣 = 0.3c.

The dispersion diagram is calculated using the formalism

of the Appendix. As seen, the dispersion diagrams in the

co-moving Lorentz and Galilean frames do not coincide.

However, when the inverse Doppler shift is applied to the

diagrams one obtains a consistent result, so that the disper-

sion in the laboratory frame is independent of the transfor-

mation, as it should be.

Figure 4b represents the effective parameters of the

same spacetime crystal calculated using Eqs. (13) and (14) as

a function of the modulation speed. For large modulation

speeds, there is an evident difference between the effective

parameters in the Galilean and Lorentz co-moving frames

(see Figure 4bi and bii). In both co-moving frames, the

effective parameters diverge at the luminal transitions 𝑣 =
c∕nA and 𝑣 = c∕nB. In contrast, in the laboratory frame the
effective parameters diverge inside the transluminal region

(c∕nA < 𝑣 < c∕nB).

Figure 4: Comparison between the dispersion diagrams and effective parameters in the Lorentz and Galilean co-moving frames. (a) Dispersion

diagrams of a spacetime crystal (Figure 1b) formed by two isotropic dielectric layers with parameters 𝜀A = 4, 𝜇A = 1.5 and 𝜀B = 2, 𝜇B = 1.2. The

dispersion diagrams are calculated for the modulation speeds 𝑣 = 0.1c (blue lines) and 𝑣 = 0.3c (black lines) in the (ai) Galilean co-moving frame, (aii)

Lorentz co-moving frame, and (aiii) in the laboratory frame. (b) Effective parameters of the spacetime crystal as a function of the modulation speed.

(bi) Permittivity and permeability in the Galilean and Lorentz co-moving frames, (bii) magneto-electric coupling parameter in the Galilean and Lorentz

co-moving frames, (biii) effective parameters in the laboratory frame. The shaded region in the plots represents the transluminal region

(c∕nA < 𝑣 < c∕nB) that separates the subluminal and superluminal regimes.
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4 Conclusions

In summary, we introduced the concept of Minkowskian

isorefractive spacetime crystals, as time-variant systems

described by constitutive relations that are observer inde-

pendent. It was shown that ideal Minkowskian spacetime

crystals with an instantaneous response and 𝑣d = c can

replicate exactly the response of a moving dielectric pho-

tonic crystal for any frequency of operation. The velocity of

the equivalent moving crystal is identical to the modulation

speed. In particular, the band diagram of a Minkowskian

crystal may be calculated with standard numerical meth-

ods and a relativistic Doppler transformation. In addi-

tion, the synthetic Fresnel drag can be rigorously charac-

terized with the relativistic velocity-addition addition for-

mula. More generally, it was shown that the more practical

class of isorefractive spacetime crystals with 𝑣d = c0 < c

has a mathematical structure rather similar to that of

Minkowskian crystals, albeit they are not exact analogues of

physical moving systems. Thereby, such crystals can be ana-

lyzed and studied using essentially the same mathematical

tools. We applied the theory to one-dimensional and two-

dimensional isorefractive crystals, showing that it greatly

simplifies the analysis and the understanding of the phys-

ical response of such systems. Furthermore, we discussed

the impact of using relativistic and non-relativistic trans-

formation of coordinates in the analysis of travelling-wave

spacetime crystals. It was highlighted that relativistic and

non-relativistic transformations predict exactly the same

results for the band diagrams and effective response in the

laboratory frame. We believe that isorefractive spacetime

crystals provide an ideal platform tomimic physical motion

across a wide frequency range.
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Appendix: Band structure

in the Lorentz and Galilean

co-moving frames

In this Appendix, we briefly explain how to calculate the

band structure of a generic stratified spacetime crystal in

the Galilean and Lorentz co-moving frames. We consider

transverse electromagnetic waves propagating along the x′-

direction. Following Ref. [23], theMaxwell’s equations in the

Galilean or Lorentz co-moving frames can be rewritten in a

4 × 4 matrix form as:

d

dx′

(
E
′
⊥

H
′
⊥

)
= −i𝜔′𝛔 ⋅M′

⊥
⋅

(
E
′
⊥

H
′
⊥

)
(A1)

with

𝛔 =
(
02×2 J

−J 02×2

)
, and J =

(
0 −1
1 0

)
. (A2)

Here, E′
⊥
=

(
E′
y

E′
z

)T
and H

′
⊥
=

(
H′
y

H′
z

)T
are the

transverse fields in the relevant co-moving frame. The

primed material matrix in the co-moving frame M
′
⊥
is

defined by [23]

M
′
⊥
=

[
1

c2
0

𝑣𝛔+M⊥

]
⋅
[
14×4 + 𝑣𝛔 ⋅M⊥

]−1
, (A3a)

where c0 = c or c0 = ∞ for the Lorentz and Galilean cases,

respectively. In the above, M⊥ is the transverse material

matrix in the laboratory frame, defined in terms of the

permittivity and permeability [23]:

M⊥ =
(
𝜀0𝜀12×2 02×2

02×2 𝜇0𝜇12×2

)
. (A3b)

Following Ref. [23], for a two-phase crystal with layers

A and B of identical thickness (half-lattice constant, a′∕2)
the dispersion𝜔′ versus k′

x
in the co-moving frame is deter-

mined by

det

(
exp

(
−i𝜔

′a′

2
𝛔 ⋅M′

⊥,B

)
⋅ exp

(
−i𝜔

′a′

2
𝛔 ⋅M′

⊥,A

)
− eik

′
x
a′
14×4

)
= 0, (A4)

where M
′
⊥,i

is the (transverse) material matrix for layer

i = A, B and exp(…) stands for the exponential of a

matrix. Note that the lattice constant in the co-moving

frame is related to the lattice constant in the laboratory

frame as a′ = 𝛾a. The dispersion 𝜔 versus kx in the labora-

tory frame can be found using the Doppler transformation

(8).
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