
Ill-Defined Topological Phases in Local Dispersive Photonic Crystals

Filipa R. Prudêncio 1,2,* and Mário G. Silveirinha1
1University of Lisbon–Instituto Superior Técnico and Instituto de Telecomunicações,
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In recent years there has been a great interest in topological materials and in their fascinating properties.
Topological band theory was initially developed for condensed matter systems, but it can be readily applied
to arbitrary wave platforms with few modifications. Thus, the topological classification of optical systems
is usually regarded as being mathematically equivalent to that of condensed matter systems. Surprisingly,
here we find that both the particle-hole symmetry and the dispersive nature of nonreciprocal photonic
materials may lead to situations where the usual topological methods break down and the Chern topology
becomes ill defined. It is shown that due to the divergence of the density of photonic states in plasmonic
systems the gap Chern numbers can be noninteger notwithstanding that the relevant parametric space is
compact. In order that the topology of a dispersive photonic crystal is well defined, it is essential to take into
account the nonlocal effects in the bulk materials. We propose two different regularization methods to fix
the encountered problems. Our results highlight that the regularized topologies may depend critically on the
response of the bulk materials for large k.
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Topological concepts have created exciting opportunities
and unveiled hidden connections between different
branches of physics, ranging from condensed matter to
photonics [1–12]. In particular, in the case of optics,
topological ideas have offered a more profound under-
standing of the wave propagation in nonreciprocal plat-
forms, through the link between the topological charge of a
medium and the emergence of edge states at the boundaries
[13–16].
While the topological band theory was initially devel-

oped for condensed matter systems, the theory can be
extended with few modifications to nearly arbitrary wave
platforms, independent of the nature (fermionic or bosonic)
of the system. In fact, the calculation of topological
invariants in physical systems can very often be reduced
to the problem of characterizing the topology of a two-
parameter family of differential (possibly non-Hermitian)
linear operators [17]. Apart from a few technical aspects
related to the material dispersion [6,7,18], the topological
band theory of photonic systems is usually regarded as
being essentially equivalent to its condensed matter
counterpart, with the main differences arising from the
physical manifestations of the topology in fluctuation-
induced phenomena (e.g., [16,19,20]).
The objective of this Letter is to highlight that the

material dispersion and the particle-hole symmetry specific
of bosonic systems may lead to rather peculiar situations
where the standard topological methods break down and
the Chern topology becomes ill defined. We find that in

order to ensure that the topology of a dispersive photonic
crystal is well defined it is absolutely essential to take into
account the spatially dispersive response (i.e., dependence
of the permittivity on the wave vector) of the bulk materials.
In particular, our results demonstrate that rather surpris-
ingly the cutoff associated with the spatial periodicity of
photonic crystals is insufficient to guarantee a well-defined
topology.
In order to illustrate the ideas, we consider a 2D photonic

crystal formed by a hexagonal array of air rods embedded
in an electric gyrotropic host [inset of Fig. 1(b)(i)].
The gyrotropic material is described by a permittivity
tensor of the form ε̄loc ¼ εt1t þ iεg ẑ × 1t þ εaẑ ⊗ ẑ, with
εt¼1− ½ω2

p=ðω2−ω2
cÞ�, εg¼ð1=ωÞ½ω2

pωc=ðω2
c−ω2Þ�, and

εa ¼ 1 − ðω2
p=ω2Þ. Here, ωc ¼ −qB0=m is the cyclotron

frequency, q ¼ −e is the elementary charge, m is the
effective mass, B0 ¼ B0 ẑ is the bias magnetic field, and
ωp is the plasma frequency. The operators × and ⊗
represent the cross and the tensor products, respectively,
and 1t ¼ x̂ ⊗ x̂þ ŷ ⊗ ŷ. The sign of ωc depends on the
orientation of the bias magnetic field B0. The magnetic
response is assumed trivial (μ ¼ μ0). Similar material
responses occur naturally in magnetically biased semi-
conductors, e.g., InSb [21,22].
It is well known that the continuous translational

symmetry of the bulk medium causes its topology to be
ill defined [18]. It is common understanding that the
creation of a crystalline structure, e.g., with a periodic
array of inclusions in a host medium, effectively regularizes
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the topology of the system because it leads to a compact
parametric space: the first Brillouin zone (BZ). Note that in
the continuous case the parametric space is the Euclidean
plane, which is not compact [18]. It is worth mentioning
that the calculation of topological invariants of photonic
crystals is a rather formidable problem from a computa-
tional point of view, and to our best knowledge the
characterization of the topology of dispersive photonic
crystals was not reported in the literature. Up to now, only a
few works studied the topology of photonic crystals using
first principles methods [8,23,24], but the material
dispersion was always ignored.
Figure 1(a)(i) shows the band structure of a representa-

tive dispersive photonic crystal geometry, showing both
positive and negative frequencies. The band structure is
numerically computed using the plane wave method [25].
To this end, the spectral problemmust be first formulated as
a standard eigenvalue problem of the type L̂k ·Qnk ¼
EnkQnk, with Enk ¼ ωnk=c and L̂k a differential operator
independent of the frequency. Typically, this entails mod-
eling the effects of the material dispersion with additional
variables that represent the internal degrees of freedom of
the medium responsible for the dispersive response
[18,26,27]. Here, the relevant state vector Qnk is formed
not only by the electromagnetic fields but also by the
current density and charge density in the magnetized
plasma [28].
Because of the reality of the electromagnetic field

(bosonic field), the spectrum is constrained by the

particle-hole symmetry ωðkÞ ¼ −ωð−kÞ, which implies
that the positive frequency and negative frequency spectra
are linked by a mirror symmetry, consistent with Fig. 1(a)(i).
As seen, there are two complete gaps with positive fre-
quency, and evidently two complete gaps with negative
frequency. Furthermore, due to the dispersive nature of the
material response, one sees an accumulation of an infinite
number of branches for both very low frequencies and for
frequencies on the order of ωp. This property is rooted in the
plasmonic-gyrotropic material response, which originates
localized resonances that hybridize to form quasiflat bands.
A similar effect has been previously reported in reciprocal
metallic photonic crystals [29,30].
The topology of the photonic crystal is characterized

with the system Green’s function GkðωÞ ¼ iðL̂k − 1ωÞ−1
[17,24,31,32]. The operator L̂k is parametrized by the real
wave vector k ¼ kxx̂þ kyŷ that determines the Bloch-type
boundary conditions in a unit cell. The poles of the Green’s
function coincide with the eigenfrequencies ω ¼ ωnk of
L̂k. The eigenfrequencies are separated in the complex
plane by vertical strips that determine the band gaps
(in the lossless case the eigenfrequencies lie in the real
axis; in the non-Hermitian case they may populate other
parts of the complex plane,ω ¼ ω0 þ iω00) [17,24]. The gap
Chern number of each spectral band gap can be expressed
in terms of the Green’s function through an integral in
the complex plane over a line contained in the band gap
(ω ¼ ωgap þ iω00 with −∞ < ω00 < ∞):

FIG. 1. Top row: photonic band structures of dispersive photonic crystals formed by a hexagonal array of air rods embedded in a
magnetized electric plasma (geometry of the unit cell is sketched in the inset of panel (b)(i). The radius of the rods is R1 ¼ R2 ¼ 0.4a.
The nearest neighbors distance is a ¼ 0.5c=ωp. Each scalar component of the state vector is expanded with 49 plane waves. The green
insets give the numerically calculated gap Chern numbers. The dispersive host material is characterized by (a) local model with
ωc ¼ ωp, (b) hydrodynamic model with ωc ¼ 0.5ωp and β ¼ 0.5c, and (c) full cutoff model with ωc ¼ 0.5ωp and kmax ¼ 2ωp=c.
Bottom row: geometrical illustration of the concepts of ill-defined topology and topology regularization. A torus with a vanishing inner
radius [panel (a)] has an ill-defined topology because the surface is not differentiable at the central point where the adjoining top and
bottom sections touch at a single point (cusp). By either separating the top and bottom sections of the surface [panel (b) showing a
sphere] or by opening a hole in the central region [panel (c) showing a torus] one can regularize the topology of the original object.
Similar to the electric gyrotropic plasma, the topology of the regularized object depends on the regularization procedure.
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Cgap ¼
i

ð2πÞ2
ZZ

BZ

d2k
ZEgapþi∞

Egap−i∞
dETrf∂1L̂k ·Gk · ∂2L̂k ·G2

kg :

ð1Þ

Here, Trf� � �g is the trace operator, ∂j ¼ ∂=∂kj (j ¼ 1, 2)
with k1 ¼ kx and k2 ¼ ky, Egap ¼ ωgap=c is some normal-
ized (real-valued) frequency in the gap [17,24,31], and the
integral in k is over the BZ. The relevant differential
operators and the Green’s function are represented by
matrices in a plane wave basis [28]. The topological
classification with the Green’s function does not require
knowledge of the eigenfunctions (Bloch modes) of the
photonic crystal [18,31].
The Green’s function method determines directly the gap

Chern number, i.e., the sum of all Chern numbers below the
gap. In our understanding, this is only method that can be
applied to compute the topological charge of a dispersive
photonic crystal. In fact, typically there is an infinite
number of bands below the gap and thereby it is imprac-
ticable to apply the standard topological band theory, as
that would require evaluating separately the individual
contributions of all bands below the gap. The situation
is particularly acute in the dispersive case due to the
accumulation of an infinite number of branches at finite
frequencies, as illustrated in Fig. 1(a)(i).
Figure 2(a) reports a convergence study of the low-

frequency gap Chern number. A more complete analysis
can be found in Supplemental Material [28], including the
effect of material dissipation. Puzzlingly, we find that the
low-frequency gap Chern number of the dispersive pho-
tonic crystal is not an integer: the converged numerical
calculations yield C1þ

gap ≈ −0.81. The value of C1þ
gap is

sensitive to perturbations of the structural parameters
[28]. On the other hand, for the positive high-frequency
gap the converged Chern number is C2þ

gap ¼ 1, which as
expected is an integer and is insensitive to perturbations of
the geometry or to dissipation effects that do not close the
gap [28]. The ill-defined topology of the low-frequency gap
seemingly contradicts the Chern theorem, which naively is

expected to apply because the parametric space (BZ) is a
compact set with no boundary. In the following, we argue
that the topology may be ill defined due to two reasons:
(i) the existence of an infinite number of bands below the
gap, and (ii) the accumulation of an infinite number of
branches at a single frequency. The latter reason is the
relevant one for the system under analysis.
As previously noted, photonic systems are constrained by

the particle-hole symmetry. Then, different from electronic
systems which have a well-defined “ground,” in the pho-
tonic case it is possible to have an infinite number of bands
below a band gap. Indeed, the number of bands with
negative frequency is typically infinite. There is a wide-
spread belief that the total topological charge of negative
frequency bands vanishes, and so they do not play any role.
Such an understanding is flawed: for a counterexample in a
system with a continuous translational symmetry, i.e., an
electromagnetic continuum, see Ref. [16]. Below we also
present a counterexample in a photonic crystal. In fact, the
particle-hole symmetry only implies that the total topologi-
cal charge of positive frequency bands has the opposite sign
of the charge of negative frequency bands, nothing more.
The potential problem of having an infinite number of

bands below the gap is illustrated in Fig. 3(a). Consider
the band gap shaded in yellow. As the corresponding
gap Chern number is given by Cgap ¼ δC1 þ δC2 þ � � �,
with δCi the Chern numbers of the bands below the gap,
it follows that Cgap is given by an infinite sum of integers.
In general, such a series is divergent. For example, suppose
that δCi ¼ ð−1Þi. Then, the gap Chern number is given by
Cgap ¼ −1þ 1 − 1þ � � �, which is evidently not conver-
gent in the usual sense. In fact, a series of the type Cgap ¼
δC1 þ δC2 þ � � � with δCi integer can converge only when
the number of nonvanishing terms is finite. Fortunately,
there is a relatively simple way to ensure the series
convergence. Intuitively, provided the response of the
nonreciprocal materials approaches that of the vacuum
(ε̄ → ε01) when ω → ∞, the topological charge of bands
with large frequency is expected to be trivial (i.e., δCi ¼ 0)
for a sufficiently large i. Note that the constraint
ε̄ω→∞ → ε01 is consistent with the Kramers-Kronig

(a) (b) (c)

FIG. 2. Convergence study of the numerically calculated (positive low-frequency, 1þ) gap Chern number Cgap for a photonic crystal
described by (a) the local model (b) the hydrodynamic model and (c) the full cutoff model. The photonic crystal parameters are as in
Fig. 1. The integral in the complex frequency plane is evaluated with Nω sampling points, shown in the horizontal axis of the plots. In all
the simulations, each scalar component of the state vector is expanded with 49 plane waves (nmax ¼ 3) and each direction of the BZ is
sampled with N ¼ 20 points.
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formulas [33], and is satisfied by the dispersive model
considered here.
Importantly, another convergence issue may arise even

when the physical constraint ε̄ω→∞ → ε01 is satisfied. In
fact, suppose that a certain band is formed by an infinite
number of “branches,” i.e., that there is an accumulation of
eigenvalues at a finite frequency [see Fig. 3(b), top panel].
Intuitively, the Chern number δC of the band is a sum of an
infinite number of integer contributions, resulting in an ill-
defined topology for the same reasons as before. A more
rigorous argument is developed in Supplemental Material
[28]. The described situation is precisely what happens in
Fig. 1(a)(i): the topological charge of the band in between
gaps 1þ and 2þ is given by δC ¼ C2þ

gap − C1þ
gap ¼ 1.81. In

contrast, the topological charge of all the bands above gap
2þ is δC ¼ 0 − C2þ

gap ¼ −1; the topology of these bands is
well defined because above gap 2þ there are no plasmonic-
type localized resonances, and thereby there is no accu-
mulation of eigenvalues at a finite frequency.
The problem identified in the previous paragraph can be

fixed in two ways. The first solution is to guarantee that
there is no accumulation of branches at a finite frequency.
For the particular system under study, this can be done
taking into account the effects of charge diffusion in the
electron gas using the so-called “hydrodynamic” model

[22,34–37]. The strength of the diffusion term is deter-
mined by the velocity β, which typically corresponds to the
velocity of electrons at the Fermi level. The physical origin
of the diffusion term is the electron-electron repulsive
interactions. Figure 1(b)(i) shows the photonic band struc-
ture of a dispersive photonic crystal, with the diffusion
effects modeled by β ¼ 0.5c (this unrealistically large
value of β is chosen to have larger gaps and speed up
the numerical calculations; the topology of the gap 1þ is
independent of the value of β > 0). As seen, a nonzero
value of β may change considerably the band structure as
compared to the local model of Fig. 1(a)(i). Now, there is a
single positive-frequency band gap determined by
0.01 < ω c=a < 0.29. This band gap remains open if β
is decreased continuously down to zero (see Ref. [28]), and
hence it can be identified with the gap 1þ of the local
model. As seen in Fig. 1(b)(i), the diffusion effects prevent
the accumulation of bands at a single frequency. In agree-
ment with this property, we find that the gap Chern number
is now an integer, C1þ

gap ¼ 0, and thereby the dispersive
photonic crystal has a trivial topology. The convergence
analysis is reported in Fig. 2(b) and in [28].
Next, we discuss a second and more general solution to

regularize the topology of the dispersive photonic crystal.
To begin with, we note that the accumulation of branches at
a single frequency can be regarded as a consequence of the
band folding of the dispersion of the bulk-host material
[Fig. 3(b)]. From this point of view, the ill-defined topology
of the photonic crystal is inherited from the ill-defined
topology of the host material [18]. This suggests that a
regularization of the topology of the host material may also
fix the topology of the photonic crystal. Reference [18]
introduced a general solution to regularize the topology of
an electromagnetic continuum; the procedure is based on
the introduction of a full spatial cutoff kmax that guarantees
that ε̄k→∞ → ε01. In other words, the material response is
suppressed for large wave vectors so that it becomes
identical to that of free space. This can be implemented
by modifying the original local response (ε̄loc) in such a
way that ε̄nonloc ¼ ε01þ ½1=ð1þ k2=k2maxÞ�ðε̄loc − ε01Þ
[18]. Note that for values of k ≪ kmax the cutoff leaves
the original response almost unchanged. It is relevant to
underline that the constraint ε̄k→∞ → ε01 is rather physical,
as it is a necessary consequence of the Kramers-Kronig
relations for media with spatial dispersion and of the
Riemann-Lebesgue lemma [33,38]. Figure 1(c)(i) reports
the band structure of a dispersive photonic crystal with the
spatial cutoff kmax ¼ 2ωp=c. The relevant formalism and
the details of the numerical implementation are given in
[28]. Different from the hydrodynamic model, the two
original band gaps are now preserved as they remain open
when the cutoff is introduced [28]. Moreover, different
from the hydrodynamic model, there is still an accumu-
lation of branches at a single frequency. However, the
numerical calculations reveal that the topology of the

(a) (b)

FIG. 3. (a) Illustration of the band structure of a generic
photonic crystal. Because of the particle-hole symmetry the
gap Chern number is generally given by an infinite sum of
integers, corresponding to the sum of the Chern numbers of all
the bands below the gap. (b) The accumulation of branches at a
single frequency in a gyrotropic photonic crystal (top panel, with
the wave vector restricted to the BZ) may be regarded as a
consequence of the band folding of the dispersion of the bulk
material (bottom panel, with the wave vector range uncon-
strained).
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two band gaps is well defined, yielding C2þ
gap ¼ 1 and

C1þ
gap ¼ −1 [see Fig. 2(c) and [28] for the convergence

analysis and for the explanation why the cutoff kmax
regularizes the topology]. In particular, this example nicely
illustrates that the total topological charge of the negative
frequency bands can be nontrivial as C1−

gap ≠ 0.
Remarkably, even though both the hydrodynamic and

the full cutoff models regularize the topology of the gap 1þ

of the original problem, they lead to a different gap Chern
number. This property can be explained in a geometrical
way (see the bottom row of Fig. 1). The original (local)
dispersive photonic crystal may be regarded as the counter-
part of a nondifferentiable geometric surface, e.g., a torus
with vanishing inner radius as shown in Fig. 1(a)(ii). As the
topology of a geometric surface is determined by the
number of holes (genus), the topology of a torus with
vanishing radius is ill defined because the top and bottom
sections touch at exactly one point. The surface topology
can be regularized with a negligibly weak perturbation of
the original shape. One option is to separate the top and
bottom sections to obtain an object topologically equivalent
to a sphere [Fig. 1(b)(ii)]. Another option is to insert a hole
in the middle region to create a torus with a nonzero inner
radius [Fig. 1(c)(ii)]. Evidently, the topology of the two
regularized objects (the genus) is different. In fact, it
depends on the regularization procedure, in the same
manner as the topology of the regularized photonic crystal
depends if one adopts the hydrodynamic model or the full
cutoff model. For a physical system the regularization is not
arbitrary: it depends on the microscopic processes that
determine the nonlocality.
In summary, it was shown that surprisingly the perio-

dicity of a dispersive (and possibly lossy) photonic crystal
does not guarantee a well-defined topology. It was high-
lighted that both the particle-hole symmetry and the
accumulation of resonances at a single frequency (e.g.,
divergence of the density of photonic states due to
plasmonic resonances and band folding) can lead to ill-
defined topologies, where the gap Chern number is not an
integer. We proposed two solutions to fix the encountered
problem. The first solution exploits charge diffusion to
prevent the accumulation of bands at a single frequency; the
second solution, which is applicable in any scenario,
ensures that the contribution of most branches is trivial
by suppressing the material response for large wave
vectors. An important corollary of our findings is that
the topology of any dispersive photonic crystal generally
depends critically on the high-spatial frequency response of
the involved bulk materials. Thus, the number of topo-
logical edge states may be predicted only with a detailed
knowledge of the microscopic mechanisms that determine
the nonlocal response of the bulk materials. To conclude,
we observe that nonreciprocal systems with ill-defined
topologies are interesting on their own [39–43], as they

may enable the emergence of topological energy sinks that
can be useful for energy harvesting [39].
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