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The objective of this work is to investigate in which circumstances the scattering of electromagnetic waves
by a thin metamaterial slab can be characterized using known effective parameters of the associated unbounded
periodic bulk medium. It is proved that the classical approach or classical boundary conditions may become
less accurate or incomplete if the size of inclusions is not significantly smaller than the wavelength. To
circumvent this problem we demonstrate that the interaction of waves with metamaterial structures may in
many cases with practical interest be conveniently described using a transverse averaged-field technique, and
that this approach can be very accurate even for wide incident angles, evanescent waves, and for large and
moderately large wavelengths.
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I. INTRODUCTION

The interaction of electromagnetic waves with complex
artificial materials became a topic of great interest in the last
few years �1,2�. The possibility of engineering new materials
with unusual or not readily available in nature electromag-
netic properties, is exciting because it may open new oppor-
tunities for enhanced and more compact devices or
waveguides that may surpass the diffraction limit �3�, and
also because it may enable subwavelength imaging �4–6�.

Typically, a metamaterial is formed by a periodic array of
metallic-dielectric resonant inclusions, properly tailored in
shape and size to provide a desired electromagnetic response.
Since the size of the inclusions is relatively small in terms of
the wavelength, it is possible and convenient to use homog-
enization methods to characterize the interaction of waves
with these materials �7–12�. However, as pointed out in Ref.
�7�, even though in typical metamaterials the size of the in-
clusions is smaller than the wavelength, it is only marginally
so, and thus it is quite possible that the actual granularity of
the inclusions may not be neglected. Nevertheless, it is com-
mon in recent works to describe very thin metamaterial
screens �most of the times with only one layer of inclusions�
as bulk materials characterized by an effective permittivity
and permeability, and to retrieve the effective parameters
from measured or simulated S-parameter data �9,13�. But, is
such a procedure really valid? What are its intrinsic limita-
tions?

Recently, in Ref. �9� this problem was analyzed in detail
and it was found that the effective parameters extracted from
S-parameter data may be nonlocal and consequently may not
satisfy conditions for passivity, causality, and absence of ra-
diation losses. Indeed, as referred to in Ref. �9�, these non-
local parameters depend, in general, on the incident angle
and may be different from the true local material parameters,
particularly when the lattice constant is only marginally
smaller than the wavelength.

Our goal here is twofold. The first objective is to study the
scope of application of the classical homogenization ap-

proach �characterization of the slab using the bulk medium
effective parameters defined for a three-dimensional �3D� pe-
riodic material� and of the classical boundary conditions
�continuity of the tangential components of the macroscopic
electromagnetic field� to the characterization of the scattering
of waves by metamaterial slabs, and confirm that the classic
approach may not be adequate when metamaterial screens
are thin �in the extreme case with only one layer�. The sec-
ond objective is to demonstrate that it is possible, even when
the classical approach fails, to use a modified homogeniza-
tion procedure with modified boundary conditions to accu-
rately characterize the reflection and transmission of waves
by a thin metamaterial slab. It is proved that for some im-
portant geometries, this modified homogenization method
only requires the knowledge of the effective parameters of
the bulk medium, i.e., precisely the same information as the
classical approach, being however, much more accurate and
precise.

To this end, we will extend the theory introduced in our
previous work �14�, where we used the notion of transverse
averaged fields to study the scattering of waves by a thin
metamaterial slab formed by a set of crossed metallic wires.
In Ref. �14�, we found out that the average electromagnetic
fields in the bulk medium may be very different from the
actual fields at the interfaces, and that the identification of
the metamaterial slab with the bulk medium was not pos-
sible. These results confirm that, in general, the extraction of
the effective parameters from the S-parameter data may not
be correct, even though for the geometry studied in Ref. �14�,
this problem may be blamed on the strong spatial dispersion
characteristic of the crossed-wire mesh.

In order to clarify these issues, here we present a system-
atic study of the homogenization of arbitrary metamaterial
slabs using a transverse averaged �TA�-field approach and
theoretically derive the relation between this method and the
classical approach. We will prove that in some circumstances
the two methods are nearly equivalent, but that, in general,
the transverse averaged-field approach is much more accu-
rate because it takes into consideration the actual granularity
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of the metamaterial. In addition, we will examine the bound-
ary conditions at an interface and show that for some
metamaterials an additional boundary condition �ABC�
needs to be considered. The theoretical developments pre-
sented in this paper are extensively validated with full wave
numerical simulations that demonstrate the application of our
method to several canonical problems with practical interest,
such as arrays of connected and nonconnected metallic
wires, arrays of �-negative �ENG� dielectric rods, and arrays
of metallic patches.

It is important to point out that our objective in this work
is not directly related with the extraction or calculation of the
effective parameters of microstructured materials. Our per-
spective is completely different: the aim is to show that the
interaction of waves with thin metamaterial screens may be
characterized using the bulk medium effective parameters
�effective � and � for 3D-periodic materials� using a modi-
fied homogenization approach based on the concept of TA
fields. Or in other words, we prove that provided the effec-
tive parameters for a 3D-periodic lattice are known some-
how, then these parameters may be sufficient to characterize
the scattering of waves by slabs of the metamaterial, even in
the extreme case in which the slab thickness is only one layer
and the classical approach fails.

This paper is organized as follows. In Sec. II we briefly
review the classical homogenization theory and discuss its
scope of application to scattering problems. In Sec. III we
introduce the TA-field approach, examine the problem of
boundary conditions, and explain how the TA-field method
can be applied to solve a scattering problem. In Sec. IV, we
derive an exact relation between the TA fields and the clas-
sical macroscopic fields in a periodic electromagnetic crys-
tal. Then, in Sec. V, it is demonstrated that for very long
wavelengths the new TA-field method is equivalent to the
classical approach. In Sec. VI, the proposed concepts are
used to calculate the reflection characteristic of several
metamaterial screens, and the results are compared with full
wave simulations. Finally, in Sec. VII the conclusions are
drawn.

In this work we assume that the fields are monochromatic
with time variation e+j�t. The microscopic electric and induc-
tion fields are denoted by E and B, respectively. The macro-
scopic electric and induction fields �microscopic fields aver-
aged over the volumetric unit cell� are denoted by Eav and
Bav, and the macroscopic magnetic field and the electric dis-
placement vector are denoted by Hav and Dav. Finally, the
transverse averaged electric and induction fields �micro-
scopic fields averaged over the cross section of the unit cell
parallel to the pertinent interface� are denoted by Eav,T and
Bav,T. More precise definitions of the macroscopic fields and
TA fields are given in Secs. II and III.

II. CLASSICAL METHOD

In this section, we briefly review the fundamentals of the
classical homogenization formalism. We go over the defini-
tion of the effective parameters of bulk media �3D electro-
magnetic crystals�, and discuss the validity of using these
effective parameters to characterize the reflection of waves
by metamaterial slabs.

A. Effective parameters of an electromagnetic crystal

The homogenization theory presented here follows
closely that of our previous works �12,14� and is related with
the classical Ewald-Bloch homogenization approach. We
consider a periodic crystal invariant to translations along
three primitive vectors, a1, a2, and a3 and characterized by
the permittivity �=��r�. The constituent materials are as-
sumed nonmagnetic. The unit cell of the electromagnetic
crystal is denoted by �, and its volume by Vcell. The micro-
scopic fields �E ,B� verify the Maxwell equations

� � E = − j�B , �1�

� �
B

�0
= j���r�E . �2�

Let �E ,B� be a Floquet mode associated with the wave vec-
tor k= �kx ,ky ,kz� and frequency �. As in Refs. �14,15�, we
define the cell averaged �macroscopic� electric field as

Eav =
1

Vcell
�

�

E�r�ejk·rd3r , �3�

and the field Bav is defined similarly. Notice that the electro-
magnetic fields are averaged over the unit cell, i.e., over a
volumetric region.

Multiplying both sides of Eq. �1� by exp�jk ·r�, integrat-
ing over �, and using the Floquet property it can be verified
that

− k � Eav + �Bav = 0 , �4�

��h�Eav +
Pg

�h
� + k �

Bav

�0
= 0 , �5�

where the generalized polarization vector is defined by

Pg =
1

Vcellj�
�

�

Jde+jk·rd3r , �6�

Jd= j���−�h� E is the polarization current, and �h is the per-
mittivity of the host medium. If the unit cell contains per-
fectly electric conducting �PEC� inclusions, they can be
modeled as regions with �=−�. In that case the integrand of
Eq. �6� becomes indeterminate because the electric field van-
ishes in the PEC regions. It is simple to verify that in those
circumstances the generalized polarization vector can be al-
ternatively written as

Pg =
1

Vcellj�
��

Ac

Jce
+jk·rds + �

�−Vc

Jde+jk·rd3r� , �7�

where Vc is the PEC region in the unit cell, Ac is the corre-
sponding boundary surface, 	̂ is the outward unit vector nor-
mal to Ac, and Jc= 	̂�B /�0 is the density of current at the
PEC inclusions.

The generalized polarization vector Pg describes the effect
of not only the electric dipole moment of the cell, but also of
the higher order multipoles, including the magnetic dipole
moment. For very long wavelengths, the separation of the
effects of mean and eddy microscopic currents yields the
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following decomposition �see Appendix B for more details�:

Pg � P −
k

�
� M , �8�

where P and M are, respectively, the classical polarization
and magnetization vectors �16�,

P =
1

Vcellj�
�

�

Jd�r�d3r , �9�

M =
1

2Vcell
�

�

r � Jd�r�d3r . �10�

Inserting Eq. �8� into Eq. �5� we obtain the well-known result
for plane waves,

�Dav + k � Hav = 0 , �11�

where the �macroscopic� electric displacement Dav=�hEav
+P, and the �macroscopic� magnetic field Hav=Bav/�0−M,
are defined consistently with classical theory. For local me-
dia, it is possible to introduce permittivity and permeability
dyadics such that Dav=����� ·Eav and Bav=����� ·Hav. Then,
using Eqs. �4� and �11� it is feasible to calculate the proper-
ties of plane waves �dispersion characteristic �=��k�, polar-
ization of the fields, etc.� that propagate in the bulk homog-
enized medium. The calculation of the effective parameters
�� and �� is outside the scope of this paper. Our objective
here is to prove that if these parameters are known somehow,
then they may be used to characterize the reflection of waves
by thin metamaterial screens using a new TA-field approach.
This will be the topic of Sec. III.

For future reference, we note that it is also possible to
relate the generalized polarization vector Pg with the average
electric field Eav by introducing a dielectric function ��eff
=��eff�� ,k� such that

��eff · Eav = �hEav + Pg. �12�

For the case in which the homogenized medium is local and
characterized by permittivity and permeability tensors, it is
straightforward to verify that �15�

��eff��,k� = ����� +
k

�
� ���−1��� − I�� �

k

�
, �13�

where I� is the identity dyadic. It is also possible to obtain a
similar formula for the case in which the homogenized me-
dium is bianisotropic �17�. Note that, in general, ��eff is a
function of both frequency and wave vector. Substituting Eq.
�12� into Eq. �5� we obtain that

���eff · Eav + k �
Bav

�0
= 0 . �14�

which can also be used together with Eq. �4� to calculate the
properties of plane wave solutions in the homogenized me-
dium, as an alternative to Eq. �11�. We note that it is always
possible to define a dielectric function, ��eff, consistent with
Eq. �12�, even when the homogenized medium is nonlocal

�spatially dispersive�, and the effective permeability loses its
meaning �18�.

The main motivation for introducing the dielectric func-
tion ��eff, is that it allows one to describe in an unified manner
the case in which the materials are characterized by strong
spatial dispersion, the case in which the effect of higher or-
der multipoles is non-negligible, and also, of course, the tra-
ditional case in which the medium can be described by an
effective permittivity and permeability. For more details
about the electrodynamics of spatially dispersive media the
reader is referred to Refs. �15� and �18�.

B. Scattering problem

Even though from a conceptual point of view it may be
convenient to describe a metamaterial as a 3D periodic struc-
ture �e.g., to extract its effective parameters�, all practical
realizations have a finite number of inclusions. Nevertheless,
since artificial materials are usually fabricated using planar
technology, they can be regarded to a good approximation as
an array of periodic screens. Typical metamaterial prototypes
have, in general, a relatively small number of layers �1–4�, in
part because the fabrication of these complex structures is
still a real challenge.

Here, we want to go over the problem of characterization
of metamaterial screens using the effective parameters de-
fined for the associated 3D-periodic electromagnetic crystal
�bulk medium�. To begin with, consider the geometry de-
picted in Fig. 1�a�. It represents a generic metamaterial slab
illuminated by a plane wave. It is assumed that the metama-
terial slab corresponds to a truncated electromagnetic crystal
�the slab consists of a finite number of layers�. The wave
vector of the incident wave is kinc=k	 + ûzkz

inc, where the
transverse wave vector is given by k	 = �kx ,ky ,0�, and the
wave number along the z direction is kz

inc=−j
k	
2−�2�0�0.

Notice that for a propagating wave, we have that k	

= �
c cos 
, where 
 is the incident angle.
As is well known, the microscopic fields in the metama-

terial slab are the superimposition of Floquet modes of the
infinite lattice, with wave vector of the form kn=k	 +kz,n �i.e.,

FIG. 1. �Color online� Solution of the scattering problem using a
homogenization approach. �a� In the classical approach the fields
inside the slab are a superimposition of the average fields in the
infinite lattice and have plane wavelike properties. �b� In the TA-
field approach the fields inside the metamaterial are taken equal to a
superimposition of the transverse averaged electromagnetic modes
of the infinite lattice.
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the transverse component of the incident wave vector is pre-
served� �14�. In the long wavelength limit, only a few of the
Floquet modes can propagate and thus, to a first approxima-
tion, it may be a good assumption to consider that these
modes are sufficient to obtain an accurate representation of
the fields in the metamaterial.

The classical homogenization theory is based precisely on
such assumptions. In fact, in classical theory all Floquet
modes are neglected, except those that can be described us-
ing the effective parameters of the bulk medium. The classi-
cal homogenization approach is summarized in Fig. 1�a�. The
fields inside the metamaterial slab are the superimposition of
the average modal fields �Eav ,Hav� of the infinite lattice, and
the classical boundary conditions �continuity of the tangen-
tial components of Eav and Hav� are enforced at the inter-
faces. Note that average fields have plane-wave-like spatial
variation inside the slab: e−jk·r. In particular, the variation of
each mode along the z direction is of the form e−jkzz.

As discussed in the Introduction, for thin metamaterial
slabs with thickness smaller than the characteristic transition
layers, the classical approach may not be appropriate to solve
the scattering problem. This problem becomes even more
important if the wavelength of radiation is only moderately
larger than the lattice constant. In fact, unlike natural mate-
rials in which the characteristic dimensions of the cell
��0.1 nm� are several orders of magnitude smaller than the
wavelength, in typical microstructured materials the lattice
constant is only ten times smaller than the wavelength.

In this work, we propose a modified homogenization pro-
cedure that helps solving the identified problems. The main
idea is that the fields �associated with a Floquet mode� may
vary considerably in the unit cell. Thus, at the interfaces
�where the fields in the different regions are matched� the
electromagnetic fields may be very different from the fields
averaged over the unit cell �Eav ,Bav�. It is clear that this may
be a shortcoming. To circumvent these problems, in the next
section we introduce the concept of TA fields and explain
how such a concept can be used to characterize the scattering
of waves by thin metamaterial slabs.

III. TRANSVERSE AVERAGED-FIELD METHOD

In this section, following the idea originally proposed in
Ref. �14�, we present an homogenization approach that is
adequate to study the interaction of electromagnetic waves
with metamaterial slabs. Unlike the classical homogenization
methods, which were developed to characterize structures
with a large number of layers or cells, the formalism intro-
duced here can be applied to study both very thin metama-
terial screens �with only one layer� or thick metamaterial
slabs �with many layers�. Later in the paper, we will discuss
the connection between the two formalisms.

A. Definition and properties of transverse averaged fields

Let us consider a generic structure characterized by the
permittivity �=��r� and invariant to translations �i.e., peri-
odic� along the primitive vectors a1 and a2 �see Fig. 2�. We
suppose that the primitive vectors lie on the xoy plane �the

primitive vectors are not necessarily orthogonal�. Note that
unlike in Sec. II A the structure does not have to be periodic
along the z direction. For each z=const. plane it is conve-
nient to introduce the transverse unit cell �T�z�=��0,0 ,z�
+�1a1+�2a2 : �i  

1
2�.

It is convenient to regard the periodic structure as a stack
�along the z direction� of different metamaterial layers �see
Fig. 3�. Each metamaterial layer is formed by an array of
inclusions embedded in a host medium. Hence, we admit that
permittivity of the host may vary from layer to layer, i.e., that
�h=�h�z�.

As in Sec. II B, we suppose that an incoming plane wave
with wave vector kinc=k	 + ûzkz

inc, illuminates the metamate-
rial screen �Fig. 3�. As is well known, the total microscopic
fields �E ,B� have the Floquet-Bloch property, i.e.,
�E ,B�ejk	·r is periodic in the lattice.

Following Ref. �14�, we define the transverse average
�TA� electric field as

Eav,T�z;k	� =
1

Acell
�

�T

E�r�ejk	·rdxdy , �15�

where Acell= a1�a2 is the area of �T. The field Bav,T is
defined similarly. Note that the electromagnetic fields are

FIG. 2. �Color online� Geometry of the basic cell of a generic
metamaterial. The structure is periodic along a1 and a2, but the
geometry can be arbitrary along the z direction.

FIG. 3. �Color online� Geometry of a representative layered
metamaterial. The structure has four layers, and each layer is asso-
ciated with a different metamaterial slab. The salient elements
�circles, squares, etc.� represent the dielectric inclusions. An inci-
dent wave with wave vector kinc illuminates the structure.
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averaged over the directions of space along which the struc-
ture is periodic, but not along the z direction. In Ref. �8� a
somehow related averaging concept was used to study im-
pedance boundary conditions for thin material layers.

Later in the paper, we will explain how the TA fields can
be used to characterize the scattering of waves by metama-
terial slabs, knowing only the bulk medium effective param-
eters. Next, we will derive some completely general proper-
ties of the TA electric and induction fields.

To this end, we multiply both sides of the Maxwell equa-
tions by exp�jk	 ·r� and integrate the resulting expression
over �T�z� to obtain that

�− jk	 +
�

�z
ûz� � Eav,T = − j�Bav,T

�− jk	 +
�

�z
ûz� �

Bav,T

�0
= j��h�z�Eav,T + Jd,av�z� , �16�

where Jd,av is the average polarization current relative to the
host medium,

Jd,av�z� =
1

Acell
�

�T

Jd�r�ejk	·rdxdy , �17�

and Jd= j���−�h�E is the polarization current. Note that if
the permittivity of the structure is such that ��x ,y ,z�=��z�,
we can choose the permittivity of the host medium equal to
�h�z�=��z� and the polarization current vanishes. In these
circumstances, the differential system �16� can be easily
solved, and the TA fields calculated. However, in general,
Jd,av is unknown and its calculation may be as difficult as
solving the original problem. This may suggest that the TA
fields are difficult to obtain in a realistic problem. Ahead, we
will prove that is not the case, and we will explain how the
TA fields can be calculated for several geometries of interest
provided the effective parameters of the associated bulk
metamaterials are known. It is also important to underline
that system �16� is exact and holds for a completely arbitrary
structure periodic in the transverse plane. It is not by any
means restricted to the case of planar grids parallel to the
interfaces.

If the structure under study contains PEC inclusions, Eq.
�17� becomes indeterminate �see the discussion of Sec. II A�.
The indetermination can be removed after straightforward
calculations, but the details are omitted here. The result is

Jd,av�z� =
1

Acell
��

�T−Ac�z�
Jdejk	·rdxdy

+ �
�Ac�z�

Jce
jk	·r

1

	̂ � ûz
dl� , �18�

where Ac is the intersection of the PEC metallic region �if
any� with �T �which depends on the z=const. plane; see Fig.
2�, �Ac is the boundary of Ac, dl is the element of arc in �Ac,
	̂ is the outward unit vector normal to the metallic region,
and Jc= 	̂�B /�0 is the density of current at the PEC inclu-
sions. Note that Jd,av is singular in the case of PEC planar
inclusions normal to the z direction.

B. Boundary conditions for the transverse averaged fields

Next, we discuss the boundary conditions satisfied by the
transverse averaged fields. Consider the geometry depicted
in Fig. 3, which illustrates a representative layered artificial
material structure. The structure is periodic in z=const.
planes. The permittivity of the host medium in the ith layer is
�h,i.

For simplicity, we will focus our attention in the case
where the geometry of the structure is such that the tangen-
tial components of the microscopic fields �E ,B� are continu-
ous at the pertinent z=const. plane �except possibly, over a
set with zero measure�. For most cases with practical interest
this condition is satisfied. For example, for the structure
shown in Fig. 3 the condition is satisfied at every z=const.
plane in case of homogeneous dielectric inclusions. An ex-
ample of a situation in which the transverse averaged fields
are not continuous is the case of an array of PEC planar
inclusions parallel to the interface. For that geometry, the
tangential induction field is obviously discontinuous at the
PEC inclusions plane because of the induced surface current.

When the tangential microscopic fields are continuous at
some z=const. plane, it is obvious that the tangential TA
fields, defined by Eq. �15�, are also continuous at the same
plane.

Let us study the continuity of the normal components
�along z� of the TA fields. From Eq. �16� it is evident that the
z component of the vectors in the left-hand side of both
identities are continuous when the tangential TA fields are
continuous. Therefore, we find that the vectors in the right-
hand side have the same property, i.e.,

ûz · �Bav,T�z�� = 0, �19�

ûz · ��h�z�Eav,T +
Jd,av�z�

j�
� = 0, �20�

where the rectangular brackets represent the jump disconti-
nuity of the vector inside the brackets at the considered
plane, i.e., the vector evaluated at z+ subtracted from the
vector evaluated at z−.

Equation �19� establishes that the normal component of
the induction field is always continuous. This was expected
because we admit from the beginning that the permeability
of all components is �0, i.e., there are no magnetic inclusions
�magnetic effects—if they exist—arise due to the circulation
of electric currents�.

On the other hand, Eq. �20� shows that the normal com-
ponent of Eav,T is, in general, discontinuous. Let us study
with more detail some special cases with practical interest.
First let us consider that the inclusions do not intersect the
z=const. plane of interest �for example, the interface L1-L2
in Fig. 3�. In that case Jd,av necessarily vanishes at that plane,
and consequently,

ûz · ��h�z�Eav,T� = 0. �21�

In particular, if the host medium is the same at both sides of
the interface, Eav,T is a continuous vector.

Let us also analyze another important configuration. Con-
sider the case in which the intersection of the inclusions with
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the pertinent z=const. plane is a contour �a curve�. This can
only be relevant if the inclusions are PEC and hollow �e.g., if
the inclusions are hollow PEC wires normal to the interface;
this could correspond to section L3 in Fig. 3�. If the PEC
inclusions are broken at the plane of interest �e.g., interface
L2-L3 in Fig. 3� the current that flows on their surface along
the z direction must vanish, i.e., ûz ·Jd,av=0 �assuming that
the adjacent material is nonconductive�. But this result im-
plies that at that plane, Eq. �21� also holds �even though the
intersection of the inclusions with the plane is nontrivial�. As
proved in Ref. �19�, in such circumstances, Eq. �21� can be
regarded as an additional boundary condition, because it
does not directly follow from the continuity of the tangential
electromagnetic fields. This will be discussed with more de-
tail later in the paper. Note that even though the enunciated
result is �rigorously� valid only for hollow PEC inclusions,
Eq. �21� also holds to a very good approximation when the
PEC inclusions are not hollow but have a very small cross
section.

Let us summarize our findings. We showed that except on
some very special configurations, the tangential components
of �Eav,T ,Bav,T� are continuous at z=const. planes. We
proved that in these circumstances Bav,T is necessarily a con-
tinuous vector, while the z component of Eav,T is in general,
discontinuous. The derived results are understandable and
intuitively correct, given the definitions of the TA fields
�Eq. �15��.

However, at the same time, it is a bit puzzling that the
boundary conditions satisfied by �Eav,T ,Bav,T� have nothing
to do with the classical boundary conditions in homogenized
media. For example, the classical boundary conditions im-
pose that the tangential component of the magnetic field
Hav=

Bav

�0
−M is continuous, rather than the tangential compo-

nent of the induction field. Note that provided the magneti-
zation vector M is different from zero, the two conditions are
incompatible.

This important remark anticipates that, in general, the
bulk medium fields �microscopic fields averaged over a unit
cell� Eav and Hav are very different for the TA fields Eav,T and
Bav,T �microscopic fields averaged over a cross section of the
unit cell�. In Sec. V, a formal relation between the bulk me-
dium fields and the TA fields will be derived. It will be
clearly explained why these fields satisfy completely differ-
ent boundary conditions, and why these boundary conditions
yield compatible results in the quasistatic limit.

C. Solution of the scattering problem using the transverse
averaged-field approach

At this point it is important to explain how the formalism
developed in the previous sections can be used in practice to
solve a specific problem. The basic idea is illustrated in Fig.
1�b�. As in the classical approach �Sec. II B�, we assume that
the low-frequency electromagnetic modes of the unbounded
electromagnetic crystal are sufficient to characterize the
fields inside the metamaterial slab, i.e., the effect of higher-
order Floquet modes that cannot be modeled using homog-
enization theory is neglected.

The important difference as compared to the classical ap-
proach is that in our method the fields inside the slab are
assumed to be a superimposition of the TA electromagnetic
modes, instead of a superimposition of cell-averaged electro-
magnetic modes. In this way, the important variations of the
fields along the z direction are not lost and are properly taken
into account by the method. From the previous section, we
have learned that the correct boundary conditions at the in-
terfaces are the continuity of the tangential components of
the TA electric and induction fields. Note that even though
the TA fields have the Floquet property �with the same wave
vector as the fields Eav and Hav�, their amplitude is not uni-
form along z. In particular, the polarization properties of the
transverse averaged fields may vary with z.

Thus, the TA-field method proposed in this work can be
summarized as follows. �i� In each metamaterial slab the
fields are written in terms of TA fundamental electromag-
netic modes of the associated unbounded electromagnetic
crystal. �ii� At the interfaces the continuity of the tangential
TA electric and induction fields is enforced.

It is clear that the scattering problem can be easily solved
using the proposed recipe, provided the TA fields for the
infinite lattice are known or can be computed. Quite interest-
ingly, it turns out that for an important class of geometries it
is immediate to relate the TA fields and the fields in the bulk
medium. Or in other words, for some structures if we know
the effective parameters of the unbounded electromagnetic
crystal it is straightforward to compute the corresponding TA
fields. This matter is discussed in the next section.

IV. TRANSVERSE AVERAGED FIELDS
IN AN ELECTROMAGNETIC CRYSTAL

Here, we study the problem of calculation of TA fields in
3D-periodic electromagnetic crystals. As explained in Sec.
III C, this matter is of crucial importance because to solve
the scattering problem �Fig. 1� we assume that the fields
inside each metamaterial slab can be written in terms of the
�fundamental� transverse averaged Floquet modes of the in-
finite lattice.

The main result of this section establishes that when the
metallic or dielectric inclusions are nearly planar, it is very
simple to relate the TA fields with the macroscopic fields and
the dielectric function of the metamaterial. In Sec. VI, we
will prove that this result can be generalized for other geom-
etries with nonplanar inclusions.

In what follows, it is assumed that the 3D-unbounded
electromagnetic crystal has the same generic geometry as in
Sec. II A. We suppose that the transverse plane is defined by
the primitive vectors a1 and a2.

A. Integral representation of the transverse averaged fields

Next, we obtain an integral representation for the TA elec-
tric field associated with an arbitrary Floquet mode of the
3D-periodic lattice. For convenience, the wave vector of the
considered Floquet mode is decomposed into a transverse
and a longitudinal component: k=k	 +kzûz.

To keep the readability of the paper, the detailed calcula-
tions have been moved to Appendix A. The results of the
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Appendix A show that the TA electric field can be written
exclusively in terms of the average polarization current Jd,av
associated with the Floquet mode, defined as in Eq. �17�. The
corresponding integral representation is

Eav,T�z� = − j��0Acell�
−a�/2

a�/2

G0,T
��zz�� · Jd,av�z��dz�,

�22�

where we put a�=a3 · ûz �a��0�. The dyadic G0,T
� is defined

by

G0,T
��zz�;k� = �I� +

1

�2�− jk	 +
d

dz
ûz��− jk	 +

d

dz
ûz��

�A0�z − z�;kz� , �23�

where I� is the identity dyadic, �=�
�h�0 is the wave num-
ber in the host medium, and A0 is the pseudoperiodic func-
tion of z �with wave number kz� given by

A0�z;kz� =
1

2Acell�0
�e−�0z + �

±

e±�0z

ea���0±jkz� − 1� . �24�

In the above, �0=
k	 ·k	 −�2, and the sum with index ± rep-
resents the sum of two terms, one with the “+” sign and the
other with the “−” sign. The formula is valid for z  �a�, but
the function can be periodically extended to the whole space
�20�. The field Bav,T is easily obtained from Eav,T using Eq.
�16�.

B. Relation between the transverse averaged fields and the
bulk medium fields for nearly planar inclusions

Now that the necessary theoretical formalism has been
introduced, we are ready to calculate the relation between
�Eav,T ,Bav,T� and �Eav ,Bav� for a particular class of electro-
magnetic crystals. Let us suppose that the dielectric/metallic
inclusions are relatively thin, so that to a first approximation
it is possible to assume that they are contained in z=const.
planes. Notice that this approximation applies to many
metamaterials of interest, since as referred to before, the
most common fabrication methods use planar technology.
Furthermore, suppose that the inclusions in the unit cell are
all contained in the same plane, z=z0. In that case the aver-
age current Jd,av vanishes everywhere in the unit cell except
in the vicinity of the z=z0 plane. Thus, within that approxi-

mation, the dyadic G0,T
� can be moved outside of the integral

in Eq. �22�,

Eav,T�z� = − j��0AcellG0,T
��zz0� · �

−a�/2

a�/2

Jd,av�z��dz�.

�25�

It is simple to verify that the generalized polarization vector
given by Eq. �6� can be rewritten as

Pg =
1

j�a�
�

−a�/2

a�/2

Jd,av�z�e+jkzzdz . �26�

Substituting Eqs. �26� and �12� into Eq. �25�, we readily find
that

Eav,T�z� = Vcell�
2e−jkzz0G0,T

��zz0;k� · ���eff

�h
− I�� · Eav.

�27�

This result establishes the desired relation between the TA
electric field and the corresponding macroscopic electric
field for a generic mode of the infinite lattice. It can be re-
garded as a generalization of the results derived in Ref. �14�.
It shows that Eav,T can be written in terms of Eav, k, and of
the dielectric function ��eff�� ,k� of the bulk medium �see
Sec. II A�. Remember that for local media the dielectric
function is expressed in terms of the permittivity and perme-
ability tensors of the metamaterial, as shown in Eq. �13�. We
point out that Eq. �27� is not restricted to media with wire-
dipole inclusions and can also be applied when the micro-
scopic eddy currents are nontrivial. The TA induction field
Bav,T can be obtained from Eav,T using Eq. �16�.

Equation �27� shows that the TA fields can be readily
computed if the bulk medium fields are known. This impor-
tant result demonstrates that for the important class of nearly
planar geometries we only need to know the dielectric func-
tion of the infinite lattice in order to apply the TA-field
method.

C. Decomposition into transverse-electric
and transverse-magnetic modes

As in the previous section, here we assume that the me-
tallic or dielectric inclusions are nearly planar. In addition we
suppose that the geometry of the inclusions and unit cell of
the infinite crystal is such that the bulk medium average
fields can be decomposed into two sets of modes �TE and
TM�, as explained next.

First, let us suppose that the dielectric function ��eff of the

periodic crystal is such that I�	 ·Eav satisfies

���eff

�h
− I�� · I�	 · Eav = ��r,	 − 1�I�	 · Eav. �28�

In the above, I�	 = ûxûx+ ûyûy and �r,	 is the �transverse� rela-
tive permittivity seen by the electromagnetic mode.

As before, we write the wave vector of the electromag-
netic modes as k=k	 +kzûz. By definition, the set of TE
modes �transverse electric to z� is formed by the electromag-
netic modes with polarization such that

Eav � ûz � k	 �TE modes� . �29�

On the other hand, the set of TM modes �transverse magnetic
to z� is formed by the electromagnetic modes with polariza-
tion such that

ûz � Eav � ûz � k	 �TM modes� . �30�

If the dielectric function of the homogenized crystal is
such that Eq. �28� holds, and if in addition the modes can be
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decomposed into TE and TM modes, it can be easily proved
that the corresponding TA fields given by Eq. �27� have the
properties enunciated next.

First, the TA fields can also be decomposed into TE and
TM modes. More specifically, the polarization of the TA
fields is the same as the polarization of the bulk medium
fields. Consequently, it makes sense to define a transverse

impedance through the formula Z̄=
�0Eav,T,	

Bav,T,	
. It can be readily

verified that the transverse impedance is given by

Z̄TE =
− j��0A0

dA0

dz

, �31�

Z̄TM =
− j��0A0

dA0

dz

�1 −
k	

2

�2� , �32�

where A0 is given by Eq. �24�. Note that the transverse im-
pedances defined above depend not only on frequency ���
and wave vector �k�, but also on the position z. Actually,
since A0 has the Floquet property, it is clear that the imped-

ances Z̄TE and Z̄TM are periodic functions of coordinate z
�with period a��. But this is a very peculiar property. Indeed,
while the impedances seen by the bulk medium modal fields
�Eav ,Bav� are uniform and independent of z, quite differently,
the impedances seen by the TA fields may vary strongly with
z. This is a manifestation of the actual granularity and dis-
creteness of the periodic structure.

Another very peculiar property is that the transverse im-
pedance seen by a wave that propagates along the positive
z direction is, in general, different from the impedance
seen by the mode that propagates in the opposite direction:

Z̄�z ;kz��−Z̄�z ;−kz�. Note that in the bulk medium the trans-
verse impedances are

Z̄TE,b =
��0

kz
, �33�

Z̄TM,b =
��0

kz
�1 −

k	
2

�2� , �34�

and so the relation Z̄b�kz�=−Z̄b�−kz� is valid.
Even though, in general, the impedances seen by waves

are different, there are specific planes of the crystal where

the relation Z̄�kz�=−Z̄�−kz� also holds. In fact, straightfor-
ward calculations show that

Z̄�zn;kz� = − Z̄�zn;− kz� , �35�

where zn=z0+ � 1
2 +n�a� and n is an integer �remember that z0

is the plane of the inclusions in the unit cell�. This means that
two waves that propagate in opposite directions see the same
impedance only at planes spaced a half-lattice constant away
from the inclusions. This result is very important because it
shows that the effective interface between a metamaterial
layer and �for example� free space is a half-lattice constant
away from the inclusions at the boundary.

To conclude this section, we calculate the scattering
parameters when a plane wave illuminates a metamaterial
slab, as illustrated in Fig. 1. We suppose that the metamate-
rial is formed by NL stacked layers, and that the interfaces
with free space are chosen to be at planes of the form
zn=z0+ � 1

2 +n�a�, so that the impedance seen by waves that
propagate in opposite directions is the same. The thickness of
the metamaterial slab is L=NLa�.

Let us suppose that the incoming plane wave is TE polar-
ized, and that the incident wave vector is k=k	 +kz

incûz,
where k	 =� /c cos 
 depends on the angle of incidence and
kz

inc=−j
k	
2−�2�0�0, as explained in Sec. II B. The incident

wave will excite only the TE mode inside the metamaterial
slab. By ensuring the continuity of the tangential TA fields at
the interface we easily find that the reflection coefficient
�ratio between the reflected and incident electric fields� is

�TE =
�Z̄TE

2 − Z̄0
2�j tan�kzL�

2Z̄TEZ̄0 + �Z̄TE
2 + Z̄0

2�j tan�kzL�
, �36�

where Z̄0=��0 /kz
inc is the transverse impedance seen by the

incoming wave. Incidentally, the reflection coefficient pre-
dicted by classical theory is also given by the above formula,

except that Z̄TE must be replaced by Z̄TE,b. Also, we note that
in Eq. �36� kz is the propagation constant of the TE mode
excited inside the metamaterial slab, which can be easily
calculated if the effective parameters of the associated infi-
nite lattice are known, i.e., kz is a function of frequency of
the angle of incidence, and of the effective parameters of the
bulk medium. In Sec. VI several specific examples will be
given.

Using duality, it can be readily shown that the reflection
coefficient for TM polarization �the ratio between the
reflected and incident magnetic fields� is

�TM =
�ȲTM

2 − Ȳ0
2�j tan�kzL�

2ȲTMȲ0 + �ȲTM
2 + Ȳ0

2�j tan�kzL�
, �37�

where ȲTM=1/ Z̄TM, Ȳ0=��0 /kz
inc, and kz is now the longitu-

dinal propagation constant for TM modes. Similar formulas
can be derived for the transmission coefficients.

V. RELATION BETWEEN THE TRANSVERSE
AVERAGED FIELDS AND THE MACROSCOPIC

FIELDS FOR VERY LONG WAVELENGTHS

It is conceptually clear that the TA fields �Eav,T ,Bav,T�
may be more effective than the bulk medium fields �Eav ,Bav�
in the characterization of an artificial material slab. However,
in classical works, and, in particular, in the study of the
propagation of radiation in matter, the bulk medium fields
are invariably used. It is thus important to understand why
and when such a theory may, in fact, be so successful. In this
section, we make the connection between the two
approaches.

We investigate the properties of the transverse averaged
modal fields in the long wavelength limit regime: �0a� 
�� and kza�  ��. The details of the calculations are pre-
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sented in Appendix B. It is proved that if the induced micro-
scopic currents can only excite electric and/or magnetic di-
pole moments, the following formulas hold at z=const.
planes that do not intersect the inclusions:

Eav,T � Eav + ûzûz ·
P

�h
, �38�

Bav,T

�0
�

Bav

�0
+ ûz � �ûz � M� , �39�

where P and M are the polarization and magnetization vec-
tors, respectively �see Eqs. �9� and �10��. The above formulas
clearly explain why the boundary conditions verified by the
TA fields are compatible with the classical boundary condi-
tions, and, consequently, prove that for very long wave-
lengths the TA-field approach is equivalent to the classical
approach.

Indeed, as discussed in Sec. III B, the tangential compo-
nents of both the TA electric and induction fields are continu-
ous at an interface. But, this property together with Eqs. �38�
and �39� imply that the tangential components of Eav and
Hav=

Bav

�0
−M are continuous. But these are precisely the clas-

sical boundary conditions.
Similarly, consistently with classical theory, Eqs. �19� and

�39� demonstrate that the normal component of Bav is con-
tinuous at an interface, and Eqs. �21� and �38� confirm that
the normal component of the electric displacement vector
Dav=�hEav+P is continuous as well.

VI. APPLICATION OF THE METHOD AND DISCUSSION

Here, we will apply the TA-field method to several rel-
evant metamaterial geometries, and compare the obtained re-
sults with classical reflection theory and with full wave nu-
merical simulations obtained with an electromagnetic
simulator based on the method of moments �MoM� �21�.

A. �-Negative dielectric rods

In the first example, we investigate the reflection of waves
by a screen of ENG rods. This artificial material recently
aroused a great interest because it may play a very important
role in subwavelength imaging applications at infrared and
optical frequencies �6,22,23�, using the canalization mecha-
nism proposed in Ref. �24�. The ENG rod medium is formed
by a square lattice of infinitely long metallic rods with radius
R �23�. At the infrared and optical frequencies all metallic
materials lose their conducting properties, and to a good ap-
proximation their permittivity follows the Drude model. In
particular, the real part of the permittivity is negative.

We will suppose that the rods are oriented along the y
direction, as illustrated in the inset of Fig. 4. The relative
permittivity of the rods is �rod and the volume fraction of the
rods is fV=��R /a�2. In Ref. �23� we proved that the ENG-
rod medium can be modeled by an effective permittivity
such that �xx=�zz�1, and

�yy = 1 +
1

1

��rod − 1� fV
−

�2 − ky
2

�p
2

, �40�

where �p is the plasma wave number, which depends on the
radius of the wires and lattice constant. Because of the spa-
tial dispersion effects, the effective permittivity of the rods is
a function of both frequency �=� /c and wave vector ky. For
further details the reader is referred to our previous
publication.

Here, the objective is to study the reflection from a �qua-
siplanar� screen of ENG rods �the slab with one layer�. We
suppose that the rods are embedded in air and are positioned
at �na ,0 ,0�, with n integer. Based on the results of Sec. IV,
we consider that the interfaces of the equivalent metamaterial
slab are �0,0 ,−a /2� and �0,0 ,a /2�. The incident plane wave
is TM-z polarized �the magnetic field is along the x direc-
tion�. The transverse component of the wave vector is k	

= �0,ky ,0�. The angle of incidence satisfies sin 
=ky /�. Us-
ing the permittivity model �40�, it can be verified that for this
specific configuration the incident wave only excites one
electromagnetic mode in the ENG-rod medium. The longitu-
dinal propagation constant kz satisfies

kz
2 = − kx

2 + ��2 − ky
2��yy . �41�

Even though in the general case the waves in the metamate-
rial cannot be decomposed into TE and TM waves relative to
the z direction, such decomposition is possible for the kx=0
case, and so we can use the very convenient closed-form
formula �37� to obtain the reflection coefficient at the inter-
face. As explained in Sec. IV, the formula is valid for both
the TA-field approach and classical theory, with the differ-
ence that the transverse impedances are different.

FIG. 4. �Color online� Amplitude of the reflection coefficient as
a function of k	 for different permittivities of the ENG dielectric
rods. The incident wave is TM-z polarized. The normalized fre-
quency is �a=1.0. Solid �black� line: full wave results; Dashed
�black� line: TA-field method; Short-dashed �red - light gray in
grayscale� line: classical theory. The inset shows the geometry of
the ENG rods.
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In Fig. 4 we plot the amplitude of the reflection coeffi-
cient as a function of k	a �i.e., as a function of the angle of
incidence� at the fixed normalized frequency �a=1.0. Two
cases are plotted: �i� �=−30 and R=0.05a �which corre-
sponds to �pa=1.88� and �ii� �=−2000 and R=0.01a �which
corresponds to �pa=1.37�. The solid line corresponds to the
full wave results, the dashed black line to the TA-field
method, and the short-dashed red �light gray in grayscale�
line to classical theory. We point out that the full wave re-
sults can be regarded as the exact solution of the problem,
apart from small unavoidable numerical errors intrinsic to
the method of moments. We also note that for k	 �� the
incident wave is an evanescent decaying mode, and conse-
quently, the reflection coefficient can be greater than unity
without violating energy conservation. It is seen that for
propagating waves the results of our method are practically
coincident with full wave simulations; the results of classical
theory—even though not so accurate—also follow reason-
ably well the full wave results.

From Fig. 4 it is seen that for �rod=−2000 the reflection
coefficient has a pole around kya=1.8 �evanescent wave
spectrum�. This means the ENG rod screen supports a sur-
face wave mode that propagates tightly attached to the rods
and decays exponentially away from the rods. It is seen in
Fig. 4 that our approach nicely predicts this effect �apart
from some ripple at the resonance�, while the classical
method fails to predict the result. The observed ripple at the
resonance is also characteristic of other examples studied
ahead. Apparently, the reason is that the homogenization
model fails to some extent near resonance, which is under-
standable from a physical point of view. This surface wave
mode can be used to guide a wave along the rods and even-
tually achieve subdiffraction propagation, but such a discus-
sion is outside the scope of this paper. A similar agreement is
obtained for the phase of the reflection coefficient and for the
transmission coefficient.

B. Connected perfectly electric conducting wires
parallel to the interface

Next, we will study the reflection properties of slabs
formed by layers of connected PEC wires parallel to the
interface �the 2D mesh of connected wires, also known as
2D-wire medium�. This problem is relevant on its own be-
cause metal meshes, perforated plates, and wire grids are
widely used as elements of quasioptical devices such as po-
larizing filters, quasioptical gratings, and semitransparent
mirrors. Also these meshes can be used to fabricate artificial
ENG media, and may play an important role in different
problems �1�.

The geometry of the wire mesh is illustrated in the inset
of Fig. 5. The wires are oriented along the x and y directions.
The spacing between parallel wires is a. Notice that the wires
are connected at the intersection points. The infinite lattice
�periodic crystal� consists of an array of screens similar to
the one depicted in the inset of Fig. 5. The spacing between
the screens is also a. Recently �12�, it was proved that this
electromagnetic crystal can be characterized by the following
permittivity model:

�� = I� −
�p

2

�2�I�	 −
k	k	

k	
2 − l0�2�, l0 =

2

1 +
�p

2

�1
2

. �42�

In the above formula, the symbols k	 = �kx ,ky ,0� and I�	

= ûxûx+ ûyûy are defined consistently with our previous nota-
tions, and �p is the plasma wave number of the effective
medium. The constant �1 only depends on the lattice con-
stant a and on the radius of the wires R, and can be calcu-
lated as explained in Ref. �12�. In all the examples we as-
sume that the radius of the wires is R=0.01a, and so �pa
=1.37 and �1a=3.55. Notice also that as in the previous
section the effective permittivity of the electromagnetic crys-
tal depends on the wave vector as a manifestation of spatial
dispersion �this phenomenon is characteristic of all wire-
based metamaterials �12��.

Using Eq. �42�, it can be easily verified that the modal
solutions of the infinite lattice can be decomposed into TE
and TM modes relative to the z direction. The dispersion
characteristic of the TM and TE modes is given by

kz,TM
2 = ��2 − k	

2��TM, �43�

kz,TE
2 = �2�TE − k	

2, �44�

where �TE=1−�p
2 /�2 and �TM=1−

�p
2

�2�1−
k	

2

k	
2−l0�2� are the

transverse permittivities seen by the TE and TM modes, re-
spectively. Since the fields can be decomposed into TE and
TM modes we can apply the results of Sec. IV, and in par-
ticular we can use Eqs. �36� and �37� to calculate the reflec-
tion characteristic. As in the previous section, the equivalent
interfaces of the metamaterial slab are placed a half-lattice
constant away from the wire mesh.

In the first example, we study the reflection properties as
a function of normalized frequency and for different incident
angles �Figs. 5 and 6�. The angle of incidence is defined by

FIG. 5. �Color online� Amplitude of the reflection coefficient as
a function of normalized frequency. The incident wave is TM po-
larized and propagates along the direction ��=45,
� �deg�. Solid
�black� line: full wave results; dashed �black� line: TA-field method;
short-dashed �red—light gray in grayscale� line: classical theory.
The inset shows the geometry of the 2D-wire mesh.

MÁRIO G. SILVEIRINHA AND CARLOS A. FERNANDES PHYSICAL REVIEW E 75, 036613 �2007�

036613-10



angle � �measured relative to the x axis in the xoy plane� and
angle 
 �measured relative to the z axis�. Thus, the transverse
wave vector is k	 =��cos 
 cos � , cos 
 sin � ,0�. It is seen
from the figures that our method agrees very well with full
wave simulations for normalized frequencies as large as �a
=2.0. Quite differently, the classical approach is only accu-
rate for normalized frequencies such that �a�1.0 �the error
is noticeable mainly for paraxial incidence�.

In the second example, we investigate the effect of in-
creasing the number of screens. In Fig. 7 the reflection coef-
ficient is shown for TM polarization �the magnetic field is
parallel to the screen� and 
=45 �deg� and NL=1, 2, and 3
layers. It is seen that the agreement between the classical
approach and full wave simulations improves when the num-
ber of layers increases. On the other hand, the results pre-
dicted by our method are excellent, independent of the num-
ber of layers.

In the last example, we examine if the homogenization
method can predict the reflection characteristic of evanescent

modes. In Figs. 8 and 9 the amplitude of the reflection coef-
ficient is shown as a function of k	 for the normalized fre-
quencies �a=0.5 and �a=1.5, and propagation along �=0
�deg�. The metamaterial slab has only one layer. It is verified
that even though both homogenization methods follow rea-
sonably well the full wave simulations, the TA-field tech-
nique is clearly more accurate. In Fig. 8 it is seen that for TM
polarization the wire mesh supports a surface wave mode
that propagates attached to the wires. Quite differently, for
TE polarization �electric field is parallel to the screen� such a
mode does not exist. We also point out that the classical
permittivity model for the 2D-wire mesh �with no spatial
dispersion and �TM=1−�p

2 /�2�, completely fails to predict
the dispersion characteristic of the evanescent modes �not
shown here�. This demonstrates that the permittivity model
�42� is better than the classical model.

C. Crossed perfectly electric conducting wire mesh
parallel to the interface

Now, we examine the properties of a configuration closely
related to the screen of connected wires studied before: the

FIG. 6. �Color online� Amplitude of the reflection coefficient as
a function of the normalized frequency. The incident wave is TE
polarized and propagates along the direction ��=45,
� �deg�. The
line styles are as in Fig. 5.

FIG. 7. �Color online� Amplitude of the reflection coefficient as
a function of the normalized frequency for different slab thick-
nesses. The incident wave is TM polarized and propagates along the
direction ��=45,
=45� �deg�. The line styles are as in Fig. 5.

FIG. 8. �Color online� Amplitude of the reflection coefficient as
a function of k	. The incoming wave is TM polarized. The line
styles are as in Fig. 5.

FIG. 9. �Color online� Amplitude of the reflection coefficient as
a function of k	. The incoming wave is TE polarized. The line styles
are as in Fig. 5.
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metamaterial is formed by a crossed wire mesh of noncon-
nected wires. This problem was already investigated in our
previous publication �14�. Here, we will look at the reflection
characteristic of evanescent modes, which was not studied in
Ref. �14�.

As in the previous section, the PEC wires are oriented
along the x and y directions, but now the wires are noncon-
nected: orthogonal wires are spaced by half-lattice constant,
a /2. The geometry of the metamaterial slab �one layer� is
depicted in the inset of Fig. 10. The periodic crystal is
formed by juxtaposing metamaterial slabs with thickness a.

Note that for this periodic structure the inclusions in the
unit cell are not contained in the same z=const. plane: in fact
the wire along the x direction is near the plane
z=zy �−a /4 and the wire along the y direction is near the
plane z=zx� +a /4. Thus, Eq. �27�, and in particular, the
results of Sec. IV, are not valid. However, it was proved in
Ref. �14� that the TA-electric field can still be related with
the average field in the bulk crystal. The pertinent formula is
�in our present notations�

Eav,T�z� = Vcell�
2 �

i=x,y
e−jkzziG�0,T�zzi;k� · ûiûi · ��ii − 1�Eav,

�45�

where �ii is the relative permittivity of the infinite lattice
along the wires �12,14,25�,

�ii = 1 −
�p

2

�2 − ki
2 , i = x,y . �46�

Equation �45� can be easily derived using the same argu-
ments as in Sec. IV C, noting that the average current Jd,av
vanishes everywhere in the unit cell except in the vicinity of
the z=zx and z=zy planes, and that only the wires directed
along the i direction �i=x ,y� contribute to the effective per-
mittivity along the same direction. The scattering problem is

solved as delineated in Sec. III C. For further details the
reader is referred to Ref. �14�.

In Figs. 10 and 11 we depict the reflection characteristic
of the wire mesh at the normalized frequency �a=2.0, and
for TM- and TE-polarized incident waves propagating along
�=45 �deg�, respectively �the angle � is defined as in the
previous section; the radius of the rods is R=0.01a�. It is
seen that our method �dashed black line� compares well with
the full wave results �solid line� apart from the ripple at the
resonances. It is also observed that unlike in the case of
connected wires, both polarizations can excite a surface
wave mode that propagates tightly bounded to the metama-
terial slab. Indeed, this is not really surprising because, as
reported in Ref. �14�, the cross-polarization level can be very
high due to the fact of the wires not being connected. This is
illustrated in Fig. 12. Notice that classical theory predicts
that the cross-polarization level is zero in total disagreement
with the full wave simulations �indeed for �=45 �deg�, it is
clear that �xx=�yy and so the waves in the bulk medium can

FIG. 10. �Color online� Amplitude of the reflection coefficient
as a function of k	. The incident wave is TM polarized and propa-
gates along �=45 �deg�. The normalized frequency is �a=2.0.
Solid �black� line: full wave results; dashed �black� line: TA-field
method; short-dashed �red—light gray in grayscale� line: classical
theory. The inset shows the geometry of the metamaterial slab
�one layer�.

FIG. 11. �Color online� Amplitude of the reflection coefficient as
a function of k	. The incident wave is TE polarized and propagates
along �=45 �deg�. The normalized frequency is �a=2.0. The
line styles are as in Fig. 10.

FIG. 12. Cross-polarization level as a function of k	. The inci-
dent wave propagates along �=45 �deg�. The normalized frequency
is �a=2.0. The line styles are as in Fig. 10. Notice that classical
theory predicts that the x-pol level is zero.
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be decomposed into TE and TM modes relative to z�. To
conclude, we also refer that unlike in the case of connected
wires, the full wave simulations show that the nonconnected
wires support two different surface wave modes.

D. Perfectly electric conducting wires normal to the interfaces

In all the examples studied so far, the inclusions in the
unit cell were nearly contained in z=const. planes. Neverthe-
less, our approach can also be readily applied to some con-
figurations in which the inclusions are not quasiplanar. To
demonstrate this, we will briefly discuss the scattering of
waves by an array of PEC wires normal to the interface �i.e.,
the wires are directed along the z direction�. The distance
between the wires is a. It is worth noting that besides being
theoretically interesting, this metamaterial setup has very im-
portant applications. In Ref. �6� and �22� it was demonstrated
that at microwaves such a wire medium lens is able to trans-
port the subwavelength details of an image to nearly unlim-
ited distances. Moreover, the metamaterial can also be used
to fabricate nearly ideal �for a specific polarization� artificial
impedance surfaces, and in particular, artificial magnetic
conductors �8� �Fakir’s bed of nails configuration�.

Since the wire inclusions are not contained in a z
=const. plane, the results of Sec. IV do not apply. However,
it is still simple to relate the TA field with the bulk medium
field. To this end, we remember that the unbounded electro-
magnetic crystal is formed by infinitely long metallic wires
oriented along the z direction. Thus, the electromagnetic
modes in the PEC wire medium are such that E�x ,y ,z�
=E�x ,y�e−jkzz, and in particular, the average current is such
that Jd,av�z�=Jd,ave

−jkzz. Substituting this result in Eq. �22�,
and using Eq. �6� and the formula

�
−a�/2

a�/2

G�0,T�zz�;k�e−jkzz�dz� =
1

Acell�
2

�2I� − kk

k2 − �2 e−jkzz,

�47�

we find that

Eav,T�z� =
�2I� − kk

k2 − �2 ·
Pg

�h
e−jkzz. �48�

Finally, using Eqs. �4� and �5� to simplify the right-hand side
of the equation, we obtain that

Eav,T�z� = Eave
−jkzz. �49�

Thus, we found that in an electromagnetic crystal of infi-
nitely long PEC wires the TA electric field �relative to the z
direction� is coincident with the bulk medium field. A similar
relation holds for the magnetic field. At first sight this result
may seem surprisingly simple, but indeed it is a trivial con-
sequence of the fact that the dependence of the electromag-
netic modes with z is of the form e−jkzz.

Thus, the previous result suggests that for this configura-
tion the classical approach yields the same results as the
transverse averaged-field method. In fact, things are not re-
ally so simple. The problem is that the wire medium is
strongly spatially dispersive for long wavelengths, and as a

consequence it supports three electromagnetic modes for low
frequencies, instead of two electromagnetic modes as com-
mon materials. Due to this reason, the classical boundary
conditions �continuity of the tangential components of the
fields� are insufficient to solve the scattering problem. Re-
cently, we proved that an additional boundary condition
�ABC� is necessary to properly solve this problem �19�. Con-
sistently, with the discussion of Sec. III B, the new ABC
imposes that Eq. �21� holds, i.e., the normal component of
the average electric field multiplied by the permittivity of the
host medium is continuous at the interface. For more details
the interested reader is referred to Refs. �19,22�, where the
homogenization of the metamaterial slab under study was
extensively validated.

E. Crossed perfectly electric conducting wire mesh
normal to the interface

The results of the previous section can be readily gener-
alized to other metamaterial configurations with wires nor-
mal to the interface. To illustrate this, we consider �as in Sec.
VI C� that the infinite lattice consists of a crossed wire mesh
of nonconnected infinitely long wires. However, here we
suppose that the wires are oriented along the y and z direc-
tions, so that the geometry of a metamaterial slab �one layer�
is as shown in the inset of Fig. 13. The spacing between
parallel wires is a, and the spacing between orthogonal wires
is a /2.

To calculate the TA-modal fields in the infinite lattice we
proceed as explained next. First of all, it is noted that the
averaged current Jd,av�z� only has components along y and z.
The component along the y direction vanishes everywhere in
the unit cell, except at the plane z=zy that contains the wires
along the y direction. On the other hand, the component of
Jd,av�z� along z is different from zero for every z. Within the
thin wire approximation, it is legitimate to suppose that the
current along the z-directed wires is a traveling wave with
propagation factor e−jkzz �12�. Hence, we can assume that

FIG. 13. �Color online� Amplitude of the reflection coefficient
as a function of normalized frequency for different angles of inci-
dence. The incident wave is TM polarized. Solid line: full wave
results; dashed line: TA-field method. The inset shows the geometry
of the crossed wire mesh �one-layer�.
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ûz ·Jd,av�z�� ûz ·Jd,ave
−jkzz �note that this relation is the analog

of the result used in Sec. VI D; here, unlike in Sec. VI D, the
formula is only an approximation�. Based on these consider-
ations, and proceeding as in Secs. IV and VI D, it can be
readily proved that the transverse averaged field of the elec-
tromagnetic modes is given by

Eav,T�z� = �2VcellG�0,T�zzy ;k�e−jkzzy · ûyûy · ��yy − 1�Eav

+
�2I� − kk

k2 − �2 e−jkzz · ûzûz · ��zz − 1�Eav, �50�

where Eav is the average modal field in the infinite lattice and

�ii=1−
�p

2

�2−ki
2 �i=y ,z� are the components of the effective

permittivity.
To solve the scattering problem, we still need to charac-

terize the electromagnetic modes of the infinite lattice. For
simplicity, we will assume propagation in the yoz plane, i.e.,
that kx=0. In that case, the waves in the bulk medium can be
decomposed into TM and TE modes relative to the z direc-
tion. Using the effective permittivity model of the crossed
wire mesh �12,14,25� it can be easily verified that the disper-
sion characteristic of the TM modes �magnetic field is di-
rected along x� is

kz
2 =

1

2
�Q ± 
Q2 + 4�2�yy��p

2 − �2 + ky
2�� ,

Q = �2 − �p
2 + �yy��2 − ky

2� . �51�

The polarization of the TM modes �assuming always that
kx=0� is such that

Eav � �0,kykz,kz
2 − �2�yy� . �52�

As mentioned above, the average magnetic field is oriented
along the x direction.

The reflection problem can now be solved by matching
the TA fields �calculated using Eqs. �50� and �16�� at the
interfaces, as explained in Sec. III C. We assume that the
incident wave is TM-z polarized and propagates in the yoz
plane; thus, only TM-z modes can be excited in the metama-
terial slab �the dispersion characteristic of these modes is
given by Eq. �51��. However, there is still an additional dif-
ficulty. The problem is that Eq. �51� shows that the metama-
terial slab supports two different TM modes �two different
solutions for kz

2� while the free-space region only supports
one TM mode. Thus, it is clear that as in the previous section
an ABC is necessary �19�. It was demonstrated in Sec. III B
that because the current along the z-directed wires must van-
ish at the interfaces, this boundary condition is still given by
�21�. Hence to solve the scattering problem we need to im-
pose not only the continuity of the tangential TA-
electromagnetic fields, but also the ABC �21�. It is important
to refer that for long wavelengths the two TM modes sup-
ported by the metamaterial slab �given by Eq. �51�� have a
longitudinal propagation constant of the form jkz=�z± j�z,
where �z and �z are some constants that depend on the fre-
quency and on the transverse wave vector. Hence, both

modes are evanescent and have the same attenuation con-
stant. Thus, it is not possible to neglect one of the modes and
avoid the ABC.

In order to illustrate the application of the results we have
computed the reflection characteristic of the metamaterial
slab �one layer� as a function of normalized frequency and
for different angles of incidence. The results are shown in
Fig. 13, revealing a good agreement between our method and
full wave simulations. We do not present results for classical
theory since as discussed before, the ABC condition cannot
be ignored �in fact, if the ABC condition was discarded and
classical theory was applied, the results would be nonphysi-
cal with the amplitude of the reflection coefficient greater
than unity�. In Fig. 14 we plot the reflection characteristic for
propagating and evanescent modes at the normalized fre-
quency �a=1.5. We assume that the wires are either embed-
ded in air ��h=1� or in a material with permittivity �h=2.2.
In both cases the agreement is good, and consistently with
the full wave simulations, our theory predicts that the
metamaterial slab supports a surface wave mode.

F. Metallic patches parallel to the interfaces

In this section, we will study the reflection of waves by a
screen formed by metallic PEC patches parallel to the inter-
faces. The objective of the analysis is twofold. The first ob-
jective is to explain how the TA-field method can be applied
when an analytical model for the effective permittivity of the
infinite lattice is not readily available. Note that in all the
examples studied before the effective parameters of the elec-
tromagnetic crystal were known in closed-analytical form.
The second objective is to demonstrate that our method can
also be applied when the infinite lattice has a nontrivial ef-
fective permeability.

The periodic medium is formed by a cubic array of me-
tallic patches with lattice constant a. The structure can be
seen as an array of aligned screens spaced by the distance a.
The inset of Fig. 15 illustrates the geometry of one layer of
the periodic material. The patches are planar and square

FIG. 14. �Color online� Amplitude of the reflection coefficient
as a function of k	 for different permittivities of the host material.
The incident wave is TM polarized. The normalized frequency is
�a=1.5. The line styles are the same as in Fig. 13.
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shaped with length l=0.8a. This periodic structure is typi-
cally modeled as an uniaxial material characterized by an
effective permittivity and an effective permeability �21�. The
nontrivial components of the effective medium �relative� pa-
rameters are �	 ��xx=�yy and �zz. It is well known that the
modal solutions can be classified into TE and TM modes
relative to the z direction. The dispersion characteristic of the
TE and TM modes is given by

kz,TM
2 = ��2 − k	

2��	 , �53�

kz,TE
2 = �2�	 −

k	
2

�zz
. �54�

Even though the magnetization vector M in the periodic me-
dium is nontrivial, the scattering of waves by a metamaterial
slab can still be calculated using Eqs. �36� and �37�, as ex-
plained in Sec. IV A.

To use Eqs. �36� and �37� we need to know the parameters
�	 and �zz. Unfortunately, there is no simple analytical model
that allows the calculation of these parameters as a function
of frequency. To circumvent this problem, we computed �	

and �zz directly from the band structure of the infinite lattice,
using the numerical method introduced in Ref. �26�. We
found out that �	 increases from 1.7 �static limit� to 2.1 at
�a=1.8, and that �zz decreases from 0.76 down to 0.70 in
the same frequency range. At �a=1.9 the infinite lattice has
a band gap �for propagation along the z direction�, and con-
sequently, we do not have data to compute the effective pa-
rameters for frequencies above that value.

In Fig. 15 we show the computed reflection coefficient for
incidence along 
=45 and �=0 �deg�. It is seen that the
TA-field method �dashed black line� agrees well with the full
wave results. On the contrary, the classical approach �short
dashed red line� starts to fail for relatively small frequencies.
This again demonstrates that the new approach proposed in
this paper is more accurate and general.

VII. CONCLUSION

The results of this work demonstrate that the classical
homogenization approach has important limitations, and in
some cases may not be suitable to characterize thin metama-
terial slabs for moderately small frequencies. For some con-
figurations the classical approach also fails to predict the
cross-polarization level and the reflection properties of the
evanescent modes. To circumvent these problems, we gener-
alized the homogenization technique introduced in our pre-
vious publication �14�. It was shown that the TA-field
method can predict with excellent accuracy the reflection
properties of both thin and thick metamaterial slabs in com-
plex setups, even for wide incident angles and evanescent
modes. It was explained that in many relevant configurations
the TA-fields can be easily related with the bulk medium
fields, and consequently, the complexity of the new method
is comparable to that of the classic approach. It was demon-
strated that for an important class of problems, an additional
boundary condition is necessary to properly homogenize the
metamaterial slab, and it was also proved that in the long
wavelength limit the new method is equivalent to the classic
approach. We hope that the theoretical developments pre-
sented here shed some light over some important fundamen-
tal concepts used in the homogenization of artificial materi-
als, and contribute to a more complete and profound
understanding of the phenomenology and electrodynamics of
these structures.
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APPENDIX A: CALCULATION OF THE TRANSVERSE
AVERAGED FIELDS IN A PERIODIC CRYSTAL

We consider the geometry described in Sec. IV. To calcu-
late the transverse averaged fields it is convenient to write
the electromagnetic fields in terms of the polarization cur-
rents. Using standard Green function methods �21�, it can be
proved that the electric field has the following integral rep-
resentation:

E�r� = �
�

���r��
�h

− 1��2G�p�rr�� · E�r��d3r�, �A1�

where the primed and unprimed coordinates represent the
source and observation points, respectively, �=�
�h�0 is
the wave number in the host medium, and the Green function
dyadic is defined by

G�p = �I� +
1

�2����p. �A2�

In the above, �p=�p�r r�� is the dynamic potential created
by a phase-shifted array of point sources,

�2�p + �2�p = − �
I

��r − r� − rI�e−jk·�r−r��, �A3�

where � is the Dirac function, I= �i1 , i2 , i3� is a multi-index of
integers, and rI= i1a1+ i2a2+ i3a3 is a lattice point.

FIG. 15. �Color online� Amplitude of the reflection coefficient
as a function of normalized frequency. The incident wave propa-
gates along 
=45 �deg�. Solid �black� line: full wave results; dashed
�black� line: TA field method; short-dashed �red—light gray in gray-
scale� line: classical theory. The inset shows the geometry of the
metamaterial slab �one layer�.
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In order to calculate Eav,T, given by Eq. �15�, we multiply
both sides of Eq. �A1� by ejk	·r and integrate over �T. In this
way, we obtain that

Eav,T�z� = − j��0�
�

G0,T
��zz�� · Jd�r��ejk	·r�d3r�, �A4�

where we defined,

G0,T
��zz�� =

1

Acell
�

�T

Gp
��rr��ejk	·�r−r��dxdy . �A5�

Quite interestingly, the dyadic G0,T
� can be calculated in

closed analytical form. In fact, using the spectral-like repre-

sentation of Gp
� derived in Ref. �20� �see also Ref. �14�� it is

straightforward to obtain Eq. �23�. Finally, we can use Eq.
�17� in Eq. �A4� to obtain Eq. �22�.

APPENDIX B: CALCULATION OF THE TRANSVERSE
AVERAGED FIELDS FOR VERY LONG

WAVELENGTHS

In this appendix we derive Eqs. �38� and �39�. Consider
an electromagnetic mode in a periodic crystal, and suppose
that the inclusions in the unit cell are electrically small so
that, with the exception of the electric and magnetic dipole
moments, all the other induced multipole moments can be
neglected. Then, to a first approximation, and for generic
vector u, we have that

1

Vcellj�
�

�

Jdeju·rd3r � P −
u

�
� M , �B1�

where P and M are the polarization and magnetization vec-
tors, respectively �see Eqs. �9� and �10��. To obtain Eq. �B1�
we used the approximation eju·r�1+ ju ·r and the fact that

1
Vcell

��u ·rJd�r�d3r�−u�M when the electric quadrupole
moment is negligible �16�. In particular, Eq. �B1� shows that
the generalized polarization vector given by Eq. �6� satisfies
Eq. �8�.

Let k= �kx ,ky ,kz� be the wave vector of the pertinent elec-
tromagnetic mode in the artificial material. The longitudinal
component of the wave vector is, of course, kz. Note that if
the dielectric inclusions were removed, the longitudinal com-
ponent of the wave vector would be ±j�0= ± j
k	 ·k	 −�2.
Let us consider the regime in which �0a�  �� and kza� 
��. In this regime, A0 given by Eq. �24� is to a first approxi-
mation equal to �since the denominators of the quotients are
close to zero�

A0�z;kz� �
1

2Acell�0
�
±

e±�0z

a���0 ± jkz�
. �B2�

The formula is valid for z  �a�. Hence, using Eq. �B1� we
obtain the result

�
�

A0�z − z�;kz�Jd�r��ejk	·r�d3r�

�
1

2�0
�
±

e±�0z

�0 ± jkz
�j�P − j�k	 ± j�0ûz� � M� . �B3�

Both sides can be differentiated with respect to z at the z
=const. planes that do not intersect the inclusions, and the
approximate identity remains valid for the derivatives at
these planes. Hence, using Eq. �A4�, we find that at these
planes �in the unit cell� we have that

Eav,T�z� �
�0�

2�0
�
±
�I� +

1

�2�− jk	 +
d

dz
ûz��− jk	 +

d

dz
ûz��

· ��P − �k	 ± j�0ûz� � M�
e±�0z

�0 ± jkz
. �B4�

Since we consider that �0a�  ��, we can replace the factors
e±�0z by unity after the derivatives in z are evaluated. Using
also Eq. �16�, we obtain that

Eav,T�z� �
�0�

2�0
�
±

1

�0 ± jkz
�I� −

1

�2k±k±� · ��P − k± � M� ,

�B5�

Bav,T�z�
�0

�
1

2�0
�
±

1

�0 ± jkz
k± · ��P − k± � M� , �B6�

where we defined k±=k	 ± j�0ûz. After laborious but straight-
forward calculations these formulas can be considerably sim-
plified. We obtain that

Eav,T�z� =
��2I� − kk�

k2 − �2 · � P

�h
−

k

��h
� M� + ûzûz ·

P

�h
,

�B7�

Bav,T�z�
�0

=
1

k2 − �2k � ��P − k � M� + ûz � �ûz � M� .

�B8�

Finally, one can relate the polarization and the magnetization
vectors with the bulk medium average fields. Using Eqs. �4�,
�5�, and �8�, it is straightforward to demonstrate that the pre-
vious formulas simplify to the remarkably simple results
Eqs. �38� and �39�.
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