
PHYSICAL REVIEW B 105, 155133 (2022)
Editors’ Suggestion

Topological pumping and Tamm states in photonic systems
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The topology of typical Chern insulators is rooted in the periodicity of the system along two directions of
real space. In this paper, we depart from this standard concept and demonstrate that a generic non-Hermitian
photonic waveguide periodic along a single direction of real space can be regarded as a subcomponent of an
extended system with a synthetic dimension and with a nontrivial Chern topology. We show that the number
of bands below a bandgap of a generic waveguide determines the gap Chern number of the extended system.
It is theoretically and numerically demonstrated that in real space the gap Chern number gives the number of
gapless Tamm state branches localized at the system boundary, when its geometry is continuously displaced by
one lattice period. In the non-Hermitian case, the Tamm states connect different bands in the complex plane.
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I. INTRODUCTION

Topology has recently emerged as an indispensable tool to
characterize global properties of physical systems, e.g., phys-
ical responses that are robust to perturbations of the system
parameters [1–11]. There are different classes of topological
platforms. Usually, a nontrivial topology is rooted in some
particular symmetry or combination of symmetries of the sys-
tem, e.g., invariance under discrete translations, time-reversal,
or parity. For systems with a Chern-type classification, the
topological analysis relies on the spectrum of some family of
Hermitian operators Ĥq parameterized by a two-component
label q = (q1, q2) [12,13]. The Hermitian property is not es-
sential [13–25]. Provided the two-parameter space is a closed
surface with no boundary and Ĥq varies smoothly with q,
then it is possible to assign a topological number Cgap to the
spectral bandgaps. This result is known as the Chern theorem.
The number Cgap is an integer, and its value is insensitive to
perturbations of Ĥq that do not close a bandgap.

In most studies so far, the topological properties are inher-
ited from the periodicity of the system along two directions of
real space, and q is identified with a Bloch wave vector. The
corresponding two-parameter space is a Brillouin zone, which
is effectively a closed surface with no boundary (a torus) due
to its cyclic nature. Here, we extend the Chern classification to
generic one-dimensional (1D)-type photonic platforms, e.g.,
an arbitrary waveguide that supports propagation along a fixed
direction of space. It is shown that any 1D-type periodic sys-
tem can be regarded as a topological system with a synthetic
dimension, and we theoretically and numerically demonstrate
that the number of photonic bands below the gap is identical
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to the gap Chern number. Furthermore, it is shown that edge
states in the extended system with a synthetic dimension are
mapped into Tamm states in the real space, i.e., to excitations
localized at the end of the 1D photonic guide. In particular,
it is demonstrated that the bulk-edge correspondence implies
that the number of gapless Tamm states created when the ge-
ometry of the 1D periodic system is continuously displaced by
one spatial period is determined by a difference of topological
numbers. Finally, we demonstrate that the outlined ideas can
be extended to non-Hermitian waveguides.

It should be noted that previous works [26–28] pre-
dicted topological light trapping on dislocations but using
mechanisms different from ours. Furthermore, topological
classifications of subclasses of 1D systems have been previ-
ously developed by other authors using Zak phases, winding
numbers, and related concepts [28–32].

II. TOPOLOGICAL BAND COUNT

We consider a generic platform that is formed by a 1D
real-space periodic system, which we shall designate as the
waveguide. The waveguide can be visualized as some periodic
[possibly three-dimensional (3D)] structure that only allows
propagation (waveguiding) along some fixed direction, let us
say the x direction. For example, it can be a hollow metallic
structure, with the metal walls invariant to translations along
the x axis, and with the guide periodically loaded with dielec-
tric inclusions ε(x, y, z) = ε(x + a, y, z); here, a is the lattice
period. For simplicity, in most examples, we shall take the
waveguide as a genuinely 1D photonic crystal formed by a
periodic stack of dielectric slabs [ε(x) = ε(x + a)] and restrict
our attention to propagation along the x axis. However, it is
underlined that it can be fully 3D.

We admit that the wave propagation in the structure is
determined by some operator Ĥ (r,−i∇ ) such that the time
evolution of the system state vector ψ , e.g., the electro-
magnetic field, is described by Schrödinger-type dynamics
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i∂tψ = Ĥψ . The time evolution of any (eventually dispersive)
electromagnetic platform can always be expressed in such a
manner [9,12,33,34]. For convenience, we designate Ĥ as the
Hamiltonian.

Due to the periodicity along the x direction, the eigenstates
are Bloch waves labeled by a Bloch wave number qx. The
corresponding envelopes uqx (defined such that ψqx = uqx e

iqxx)
satisfy Ĥ (x,−i∂x + qx )uqx = ωqx uqx , with ωqx the eigenfre-
quencies. Note that uqx can be a multicomponent vector. The
parameters y, z,−i∂y, and − i∂z are omitted from now on in
the argument of the operator Ĥ , as they are not relevant for
the discussion.

Let us now add a second label (qs) to the Hamiltonian
related to a translation in space x → x − x0:

Ĥq ≡ Ĥqx,qs = Ĥ
(
x − x0

(
qs

)
,−i∂x + qx

)
. (1)

The coordinate shift x0 is parameterized by qs. In Sec. III,
it will be shown that qs may be understood as a momentum
determined by a synthetic dimension. It is assumed that x0(qs)
is a smooth function and that x0(qs + 2π ) − x0(qs) = Na,
with a as the spatial period of the waveguide and N some in-
teger number. Since Ĥ (x,−i∂x + qx ) = Ĥ (x−a,−i∂x + qx ),
it follows that Ĥqx,qs is a periodic function of qs with period
2π . In a full cycle, as qs varies from qs = −π to qs = π , the
waveguide is displaced by N complete spatial periods toward
the +x direction.

Since the spectrum of Ĥqx,qs is cyclic in both qx and qs, one
can characterize its topological phases. To this end, consider
a generic band of eigenfunctions (ψqx (x)) of the waveg-
uide: Ĥ (x,−i∂x )ψqx (x) = ωqx ψqx (x). Then it is obvious that
Ĥquq = ωquq with ωq = ωqx , q = (qx, qs), and with envelope
given by

uq(x) = ψqx

(
x − x0

(
qs

))
e−iqxx

= uqx

(
x − x0

(
qs

))
e−iqxx0(qs ). (2)

Clearly, the eigenvalues of Ĥq are independent of qs, and
thereby, the bandgaps of Ĥq are the same as the bandgaps of
the waveguide. In other words, a translation in space does not
alter the band structure.

In the following, it is assumed for simplicity that Ĥ
is a Hermitian operator. The generalization of the anal-
ysis to the non-Hermitian case is reported in Appendix
A. The Bloch eigenmodes ψqx of Ĥ can be taken as
smooth periodic functions of qx in the 1D Brillouin
zone −π/a � qx � π/a. The Chern number C associated
with a given band of Ĥq can be found in a standard
way from the Berry potential Aq = i〈uq|∂quq〉 using C =

1
2π

∫ π/a
−π/a dq1

∫ π

−π
dq2

( ∂A2,q

∂q1
− ∂A1,q

∂q2

)
with (q1, q2) ≡ (qx, qs).

The eigenfunctions are normalized as 〈uq|uq〉 = 1, with 〈.|.〉
the canonical inner product. Since the Berry potential is a
smooth function in the interior of the integration domain, from
the Stokes theorem, the Chern number is

C = 1

2π

∫ π/a

−π/a
dqx

(
A1,q|qs=−π

− A1,q|qs=π

)

+ 1

2π

∫ π

−π

dqs
(
A2,q|qx=π/a − A2,q|qx=−π/a

)
. (3)

Using uq(x) = ψqx (x − x0(qs))e−iqxx, one finds that
A2,q = i〈ψq|∂qsψq〉 with ψq ≡ ψqx (x − x0(qs)). Noting that
i〈ψq|∂qsψq〉 is a periodic function of qx, it follows that the
second integral in the right-hand side of Eq. (3) vanishes. On
the other hand, using uq(x) = uqx (x − x0(qs))e−iqxx0(qs ), we
get

A1,q = i
〈
uqx

(
x − x0

(
qs

))∣∣∂qx

[
uqx

(
x − x0

(
qs

))]〉 + x0
(
qs

)
.

(4)
We used 〈uq|uq〉 = 1 and the periodicity of the envelope in x.
The first term in the right-hand side of Eq. (4) is a periodic
function of qs because of the periodicity of the envelope in
x. Thus, it does not contribute to the first integral in Eq. (3).
Considering this, we obtain the key result:

C = 1

2π

∫ π/a

−π/a
dqx

[
x0(−π ) − x0(π )

]

= −1

a

[
x0(π ) − x0(−π )

] = −N. (5)

We used x0(qs + 2π ) − x0(qs) = Na in the last identity. The
above formula proves that each photonic band of Ĥq has a
topological charge of −N , i.e., identical to minus the number
of displaced unit cells toward +x. Note that C is an integer. In
particular, the gap Chern number of a given bandgap is iden-
tical to the number of bands (nbands) below the gap multiplied
by the number of shifted cells (N) in one qs cycle:

Cgap = −nbands × N. (6)

This means that the number of photonic bands below the gap
of a generic 1D-type photonic crystal can be understood as a
(topological) Chern number. The topological charge of each
band is acquired from the translational shift suffered by the
waveguide. In other words, a translation in space effectively
pumps topological charge into the system described by Ĥq.
This property and its consequences are discussed in Sec. III.

It is evident from the previous discussion that the topology
of the operator Ĥq is generically nontrivial (as it depends
solely on the number of bands), independent of the time-
reversal symmetry of the corresponding physical waveguide
described by Ĥ (x,−i∂x ). In fact, Ĥq always has a broken
time-reversal symmetry, even when Ĥ (x,−i∂x ) describes a
time-reversal-invariant system. To demonstrate this explic-
itly, we consider for simplicity a scalar problem so that
the time-reversal operator can be identified with the com-
plex conjugation operator. The waveguide is time-reversal
invariant if Ĥ (x,−i∂x + qx ) = Ĥ∗(x,−i∂x − qx ). Using Ĥq =
Ĥ (x − x0(qs),−i∂x + qx ) [Eq. (1)], one readily finds that the
operator defined in the synthetic space satisfies

Ĥ∗
−q = [

Ĥ
(
x − x0

(−qs
)
,−i∂x − qx

)]∗

= Ĥ
(
x − x0

(−qs
)
,−i∂x + qx

) �= Ĥq. (7)

In the second identity, we used the time-reversal invariance in
real space. As seen, Ĥ∗

−q �= Ĥq, and thereby, the system in the
synthetic space always has a broken time-reversal symmetry,
which can be attributed to the synthetic motion associated
with the continuous translation in space described by x0(qs).
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III. THE SYNTHETIC DIMENSION AND BULK-EDGE
CORRESPONDENCE

A. The synthetic dimension

Next, it is shown that Ĥq can be regarded as the
momentum-space operator of a system that consists of the
original 1D-type waveguide (which, as previously mentioned,
can be embedded in a 3D space) with an additional synthetic
dimension. Systems with synthetic dimensions were recently
discussed in the literature to emulate physical and topological
phenomena in higher dimensions (see, e.g., Refs. [35–37]).

Consider a generic family of operators ĤK(x,−i∂x ) pe-
riodic both in K and x: ĤK = ĤK+2π and ĤK(x,−i∂x ) =
ĤK(x + a,−i∂x ). The operator ĤK(x,−i∂x ) may also de-
pend on other space coordinates (y, z, etc.) and space
derivatives, but since they are not relevant for the analysis,
they are omitted. We introduce a matrix operator (Ĥe) that
acts on a column state vector of the form � = [ψm(x)] =
[ ... ψ−1 ψ0 ψ1 ... ]T , m = 0, ±1, ±2, …, through
a convolution:

� → Ĥe� = [(Ĥe� )n], where

(Ĥe� )n =
∑

m

Ĥn−m
(
x,−i∂x

)
ψm(x), (8)

with n = 0, ±1, ±2, … The matrix elements of Ĥe are de-
fined as

Ĥm
(
x,−i∂x

) = 1

2π

∫ 2π

0
dK ĤK

(
x,−i∂x

)
eiKm,

m = 0, ±1, ±2, . . . (9)

The state vector � = [ψm(x)] has two space-type co-
ordinates: x which corresponds to a continuous real-space
coordinate and m which corresponds to a discrete (lattice)
coordinate. The coordinate m determines the synthetic di-
mension. The Bloch eigenfunctions are characterized by
a state vector of the form � = [ψm(x)], with ψm(x) =
uk,K(x)eikxeimK, and satisfy Ĥe� = ωk,K�, where (k,K) is
the two-dimensional (2D) Bloch wave vector (−π/a � k �
π/a and −π � K � π ). Substituting � = [uk,K(x)eikxeimK]
into Eq. (8) and using the Fourier synthesis relation
ĤK(x,−i∂x ) = ∑

n Ĥn(x,−i∂x )e−inK, it is found that the sec-
ular equation Ĥe� = ωk,K� reduces to

ĤK
(
x,−i∂x + k

)
uk,K = ωk,Kuk,K. (10)

Thus, the operator ĤK(x,−i∂x + k) is the momentum-space
version of Ĥe.

The previous theory can be readily applied to the fam-
ily of operators Ĥq = Ĥ (x − x0(qs),−i∂x + qx ) considered in
Sec. II, with the obvious correspondence (qx, qs) ↔ (k,K).
Here, Ĥq is the momentum-space version of some operator
Ĥe defined on an extended space determined by the contin-
uous coordinate x (which varies in the real space) and by the
discrete coordinate m (which varies along the synthetic lattice-
type dimension). This property is important, as it guarantees
that the gap Chern number can be linked to the number of
edge states through a bulk-edge correspondence [13,38–42].

B. The bulk-edge correspondence

The bulk-edge correspondence establishes a precise re-
lation between the gap Chern numbers of two topological
materials and the net number of unidirectional edge states
[38–44]. Thus, the Chern invariants of the operator Ĥe deter-
mine a bulk-edge correspondence in the extended space with
a synthetic dimension. An obvious question is: What are the
consequences of the bulk-edge correspondence in real space?

To address this point, consider two 1D-type periodic
waveguides, described by the (real-space) Hamiltonians Ĥ1

and Ĥ2, respectively. Suppose that the waveguides have a
common bandgap. Furthermore, let us add a synthetic (dis-
crete) dimension to each waveguide, such that the extended-
space Hamiltonians are Ĥe1 and Ĥe2, with each of them
described by a momentum-space Hamiltonian of the form
Ĥq,i = Ĥi(x−x(i)

0 (qs),−i∂x + qx ), i = 1, 2. For definiteness,
we take x(i)

0 (qs) ≡ Ni�, with Ni an integer and � = qs

2π
a. Then

from Eq. (6), the gap Chern number difference in a common
gap is

δCgap ≡ Cgap,1 − Cgap,2 = nbands,2 × N2 − nbands,1 × N1. (11)

Here, nbands,i is the number of bands below the gap for the
i-th waveguide. In particular, when the number of shifted cells
in both waveguides is N2 = N1 = 1, the gap Chern number
difference is given by the difference of the number of bands
below the gap, which thereby is a topological quantity.

The bulk-edge correspondence implies that an interface
of the two topological platforms supports |δCgap| unidirec-
tional gapless edge states. A generic interface in the extended
space does not have an obvious real-space geometric inter-
pretation. The exceptions are the x = const. interfaces, which
correspond to standard real-space interfaces between the two
waveguides. It is implicit that the waveguide cross-sections
are identical when they are embedded in a 3D space.

Let us investigate the consequences of the bulk-edge cor-
respondence for an interface x = const., let us say x = 0.
By definition, the edge states in the extended space must
be localized near x = 0 and have a variation along the syn-
thetic dimension (coordinate n) of the form einqs , with qs the
wave number of the edge state in the synthetic dimension:
� = [ψn(x)] with ψn(x) = ψ (x)einqs (n = 0, ±1, ±2, …).
Evidently, the edge states projection into real space [ψ0(x) =
ψ (x)] corresponds to a wave trapped at the interface x = 0
of the two waveguides. A fixed qs in extended space cor-
responds to a spatial shift x(i)

0 = Ni
qs

2π
a in real space. Thus,

as qs varies from 0 to 2π , the internal structure of the i-th
waveguide is displaced by Ni cells. For some combinations of
the shifts, the x = 0 interface can support trapped (localized)
states, typically designated as Tamm states [45]. The bulk-
edge correspondence establishes that the number of gapless
Tamm states branches in real space is precisely |δCgap|, which
is another key result of the paper.

C. Numerical examples

To illustrate the developed ideas, we consider the case
where the waveguides are 1D photonic crystals formed by
stacked dielectric slabs [see Fig. 1(a)(i) for the geometry
of a generic binary photonic crystal]. All the materials are
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FIG. 1. (a) (i) Structure of a binary photonic crystal formed by two phases A and B. The left and right Bloch surface impedances calculated
at the generic plane x = x0 are indicated in the figure. The x = 0 plane is placed at the middle of slab A (center of symmetry). (ii) Representation
of a negative displacement of the geometry of the photonic crystal. (iii) Representation of a positive displacement of the geometry. The areas
shaded in gray are cut away from the structure when another photonic crystal is inserted into the region x < 0. (b) Band structure of a photonic
crystal (blue solid curves) with parameters εA = 7, εB = 1, dA = 0.4a, and dB = 0.6a. The gray strips represent the bandgaps. Each bandgap
is numbered with a red label.

nonmagnetic (μ = μ0). The band structure of a 1D photonic
crystal can be calculated with standard methods [46]. We de-
note ZL(x0, ω) and ZR(x0, ω) as the Bloch impedances of the
(unbounded) photonic crystal calculated at the plane x = x0

when looking at the left or right, respectively [Fig. 1(a)(i)].
The band diagram and the Bloch impedances are numerically
evaluated as explained in Appendix B.

Consider the scenario where two photonic crystals are
paired to form an interface at x = 0 [Fig. 2(a)(i)]. The semis-
pace x < 0 is filled with a photonic crystal modeled by
Ĥ1(x−x(1)

0 (qs),−i∂x ), and the semispace x > 0 by a photonic
crystal modeled by Ĥ2(x−x(2)

0 (qs),−i∂x ), with x(i)
0 = Ni�.

The trapped (defect-type) states at x = 0 are the solutions of
the characteristic equation [28]:

Z (1)
L

(−N1�,ω
) + Z (2)

R

(−N2�,ω
) = 0. (12)

Here, Z (i)
L and Z (i)

R are the left and right Bloch impedances of
the i-th photonic crystal. Each value of � = qs

2π
a corresponds

to a specific spatial shift of the inner structure of the photonic
crystals. In one full qs cycle, the parameter � varies from � =
0 to � = a. The effect of shifting the geometry of a generic
photonic crystal is illustrated in Figs. 1(a)(ii) and 1(a)(iii).

In the first example, we suppose that the semispace x < 0
is a perfectly electric conducting (PEC) wall, so that Z (1)

L = 0.
The semispace x > 0 is filled with a binary photonic crystal
with a unit cell formed by two dielectric slabs A and B of
thickness dA and dB and relative dielectric permittivity εA

and εB, respectively [see Fig. 1(a)]. The structural parame-

ters are taken as εA = 7, εB = 1, dA = 0.4a, and dB = 0.6a.
Figure 1(b) shows the numerically calculated band structure
(ω vs k ≡ qx) with the bandgaps shaded in gray. Since for
the PEC semispace Cgap,1 = 0, it follows that the gap Chern
number difference is δCgap = nbands,2 × N2 [Eq. (11)]. Inter-
estingly, the gap Chern number of the dielectric photonic
crystal with the synthetic dimension is nonzero, even though
the structure in real space is reciprocal. In typical systems,
reciprocity (time-reversal symmetry) implies a trivial Chern
topology [4]. In contrast, in our problem, the time-reversal
symmetry in real space does not imply the time-reversal sym-
metry in the extended space, as already discussed in the end of
Sec. II.

Suppose that N2 = −1, so that the photonic crystal is
displaced by a complete period to the negative x axis in a
full � cycle [Fig. 1(a)(ii)]. The dispersion of the interface
states as a function of the spatial shift � is determined from
Z (2)

R (�,ω) = 0. The corresponding solutions in the bandgaps
are plotted in Fig. 2(b) (blue curves). As seen, in agree-
ment with the bulk-edge correspondence, δCgap = −nbands,2,
the number of branches ω = ωn(�) in each gap is exactly co-
incident with the number of bands below the gap. Each branch
ωn(�) completely crosses the bandgap, and all the branches
have a positive slope vs �, indicating that they are unidirec-
tional gapless states in the extended space with the synthetic
dimension. Our formalism enables us to predict in a simple
way how many (defect-type) trapped states occur in real space
for a fixed frequency in the bandgap when the geometry of the
crystal is displaced by one period. The number of Tamm state

155133-4



TOPOLOGICAL PUMPING AND TAMM STATES … PHYSICAL REVIEW B 105, 155133 (2022)

Right crystalLeft crystal

ZRZL

x

y

(1) (2)

0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.0

ω
a

c)

Δ/a

1

2

3

4

6

7

5

8

9

(c)

(a) (b)

Hy [A/m]

P
E

C
P

E
C

(i)

(ii)

AA B B ...

AA B B ...

+1-1 0 +0.5-0.5

...

...

FIG. 2. (a) Representation of the pairing of two different photonic crystals. (b) Interface state solutions for a photonic crystal with the same
parameters as in Fig. 1(b) in the right semispace, and a perfectly electric conducting (PEC) material in the left semispace. The gray horizontal
dashed lines delimit the bandgaps which are numbered by the red labels. (c) Time snapshot of the magnetic field of the interface state in the
fourth gap for (i) the solution marked by the green circle with �/a = 0.3, and (ii) the solution marked by the green star with �/a = 0.38.

branches is exactly the number of bands below the gap, i.e.,
it equals the topological invariant. The operation of a spatial
shift by one period may be regarded as a topological pump that
inserts topological charge into the system, with the topological
charge identical to the number of bands below the gap. The
topological protection of the gapless states implies that any
perturbation of the bulk photonic crystal in real space that does
not close the relevant bandgap will always produce the same
number of Tamm state branches.

The profile of two trapped states in the fourth bandgap
is represented in Fig. 2(c). The field profiles were obtained
using CST Studio Suite [47]. As seen, the trapped states are
confined to the boundary of the photonic crystal and decay
exponentially into the bulk region. As could be expected, the
trapped mode in the center of the bandgap [Fig. 2(c)(ii) for
� = 0.38] is much more confined to the interface than the
one near the bottom edge of the bandgap [Fig. 2(c)(i) for
� = 0.30]. It is underlined that the Tamm states in the real
physical space are bound states attached to the interface and
are not associated with a flow of energy. In contrast, in the
synthetic space, they transport energy and are associated with
the synthetic momentum qs = 2π�/a.

In the second example, the PEC region in the semispace
x < 0 is replaced by a binary photonic crystal with param-
eters εA,l = 2, εB,l = 1, dA,l = 0.4a, and dB,l = 0.6a, with
the photonic crystal in the semispace x > 0 the same as
before. Figure 3(a) shows the band structures of the right
(blue solid curve) and left (green dashed curve) crystals.
There are two common frequency bandgaps highlighted with
the shaded gray strips. Consider first the situation wherein

one of the photonic crystals is held fixed, while the other
crystal is displaced by one cell period to the negative x
direction.

Figure 3(b) depicts the interface states dispersion ω =
ωn(�) in the two common gaps for the two possible displace-
ments: (i) the left crystal is held fixed, and the right crystal
slides to the left [blue solid curves; N1 = 0 and N2 = −1 in
Eq. (12)], (ii) the right crystal is held fixed, and the left crystal
slides to the left [green dashed curves; N1 = −1 and N2 = 0
in Eq. (12)]. For the case (i) [case (ii)], the number of solution
branches is identical to the number of bands of the right (left)
crystal below the gap, consistent with the bulk-edge corre-
spondence [see Eq. (11)]. The slope of the curves ω = ωn(�)
is different in the two cases. This property is explained by the
fact that δCgap has a different sign in each case. Indeed, the
sign of δCgap is linked to the angular momentum of the edge
modes in a closed system [42,48,49]. Thereby, the direction of
the energy flow in the extended space must change when the
gap Chern number sign changes.

We also studied the situations where the photonic crys-
tals are simultaneously displaced to the negative x direction
N1 = N2 = −1 [blue solid curves in Fig. 3(c)], or alter-
natively, the right crystal is displaced to the negative x
direction and the left crystal to the positive x direction
(N1 = 1 and N2 = −1) [green dashed curves in Fig. 3(c)].
In both cases, it is observed that the number of trapped
state branches in a common bandgap is identical to |δCgap| ≡
|nbands,2 × N2 − nbands,1 × N1|. For example, for the low-
est frequency gap nbands,2 = 4 and nbands,1 = 3. Consistent
with this property, there is a single gapless trapped state
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FIG. 3. (a) Green dashed curves: band structure of a binary photonic crystal with parameters εA,l = 2, εB,l = 1, dA,l = 0.4a, and dB,l =
0.6a. Blue solid curves: band structure of the same photonic crystal as in Fig. 1. The gray strips indicate the common bandgaps and the red
labels the gap number. (b) Dispersion of the interface states in the common bandgaps for a negative displacement of one of the crystals with
the other held fixed. Blue solid curves: right photonic crystal slides one cell to the left; green dashed curves: left photonic crystal slides one
cell to the left. (c) Similar to (b) but for a situation where both crystals suffer a negative spatial shift (blue solid curves, N1 = N2 = −1),
or alternatively, the left crystal suffers a positive spatial shift and the right crystal a negative spatial shift (green dashed curves, N1 = 1 and
N2 = −1).

branch when N1 = N2 = −1 and seven gapless trapped states
branches when N1 = −N2 = 1.

We verified that the bulk-edge correspondence also holds
true for other more complex 1D photonic crystal geometries.
For example, suppose that the left photonic crystal of the pre-
vious example is replaced by a ternary layered structure with
parameters εA,l = 2, εB,l = 1, εC,l = 3, dA,l = 0.3a, dB,l =
0.6a, and dC,l = 0.1a. Different from the binary crystals con-

sidered in the previous examples, the ternary crystal does not
have inversion (parity) symmetry. Figure 4 reports a study
identical to that of Fig. 3, when the ternary photonic crystal
(region x < 0) is paired with the same binary photonic crystal
as in Fig. 2. The results are qualitatively analogous to those
of Fig. 3 and again confirm that it is possible to predict the
number of Tamm states from the knowledge of the number
of bands below the bandgap. Curiously, in this example, the
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FIG. 4. Analogous to Fig. 3(a) for the case where the photonic crystal in the semispace x < 0 is replaced by a ternary photonic crystal
with parameters εA,l = 2, εB,l = 1, εC,l = 3, dA,l = 0.3a, dB,l = 0.6a, and dC,l = 0.1a. The band structure of the ternary photonic crystal is
represented with green dashed curves in (a).
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FIG. 5. (a) Unit cell of a two-dimensional (2D) photonic crystal with ε1 = 1, ε2 = 6.5, and ε3 = 12. The unit cell period is a. The parameter
d represented in the figure is d = 0.115a. (b) Band diagram of the waveguide with metallic lateral walls constructed from a 2D photonic crystal
with 5 unit cells along the y direction. The shaded gray strip indicates the bandgap of the waveguide. (c) Similar to (b) but for a waveguide
constructed from a 2D photonic crystal with 6 unit cells along the y direction. (d) Dispersion of the interface states in the bandgap for a
waveguide constructed from a 2D photonic crystal with 5 unit cells along the y direction, placed in the semispace x > 0 and terminated with a
metallic plate placed at x = 0. The waveguide geometry is continuously displaced by one lattice period along the x direction. Blue solid curves:
negative displacement (N2 = −1). Green dashed curves: positive displacement (N2 = 1). (e) Similar to (d) but for a waveguide constructed
from a 2D photonic crystal with 6 unit cells along the y direction.

slope of the trapped state dispersion can be discontinuous [see
the low-frequency gap in Fig. 4(b), blue lines]. This feature
is due to the discontinuity of the permittivity profile of the
photonic crystals.

Furthermore, we also studied the emergence of interface
states in 1D-type waveguides embedded in a 2D real space.
Specifically, consider a waveguide with metallic lateral walls
constructed from a 2D photonic crystal with the unit cell
represented in Fig. 5(a). The lateral width of the guide is Nya,
and the electric field is oriented along the z direction. The cor-
responding band diagram for propagation along the x direction
is represented in Figs. 5(b) and 5(c) for the cases Ny = 5 and
6, respectively. The band diagram is numerically calculated
with CST Studio Suite [47]. The bandgaps are shaded in gray.
We terminated this waveguide (positioned in the semispace
x > 0) with a metallic plate placed at x = 0 and numerically
found the edge states for different shifts of the waveguide
geometry. The trapped state dispersion ω = ωn(�) is shown
in Figs. 5(d) and 5(e). We consider displacements along the
negative (N2 = −1, blue curves) and positive (N2 = 1, green
dashed curves) x axis. As seen, also for this more complex sys-
tem, the number of branches agrees with the number of bands
of the waveguide below the gap. Furthermore, as expected, the
slope of the curves ω = ωn(�) depends on the displacement
direction.

Finally, we present an example of a non-Hermitian pho-
tonic crystal. Topological effects in non-Hermitian systems
have received great attention in recent years [13–25]. For
simplicity, the material dispersion is ignored here. The geom-
etry of the photonic crystals is as in Fig. 1, except that the
permittivity of the material A is taken equal to εA = 7 + 0.1i,
so that the photonic crystal is lossy. We calculated the complex
band structure of the photonic crystal ω(qx ) = ω′ + iω′′ using
the plane-wave method [46]. Figure 6 shows a parametric
plot of ω(qx ) in the complex plane with −π/a < qx < π/a,
i.e., the figure represents the projected band structure. As
seen, the projected band structure is formed by disconnected
regions (blue curves). Each disconnected region corresponds
to a bulk band [13]. We determined the dispersion of the
(complex) Tamm states when the photonic crystal is paired
with a PEC wall. To this end, we solved Z (2)

R (�,ω) = 0 for
� = qs

2π
a real valued (N2 = −1). The green lines in Fig. 6

represent a parametric plot of the dispersion of the Tamm
states ω(qs) in the complex plane. In agreement with the bulk-
edge correspondence, the number of Tamm state branches (in
green) in each gap is identical to the number of bulk bands
(in blue) on the left of the gap. The Tamm states link the
different bulk bands and thereby are gapless. These properties
confirm the topological nature of the Tamm states supported
by non-Hermitian photonic crystals. Both the bulk bands and
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FIG. 6. Projected band structure ω = ω′ + iω′′ of a non-
Hermitian photonic crystal with parameters εA = 7 + 0.1i, εB = 1,
dA = 0.4a, and dB = 0.6a. The blue solid curves represent the differ-
ent bulk bands. The green curves represent the projected dispersion
of the edge states (Tamm states) of the extended synthetic system.
The edge modes are gapless, as they connect different bands. The
number of Tamm states branches in a gap is identical to the gap
number.

the edge state modes have an oscillation frequency such that
ω′′ = Im{ω} < 0 because of loss.

IV. CONCLUSIONS

In summary, it was shown that in 1D periodic systems the
number of bands below a gap can be understood as a Chern
topological number of an extended system with a synthetic
dimension. This topological number determines the number
of edge states in the extended space with the synthetic di-
mension. The real-space projection of the edge states are
modes localized at the boundary of the 1D crystal (Tamm
states) for some shift of the unit cell. The number of Tamm
state branches “pumped” by a full-lattice period displacement
equals the number of bands below the gap. This result is
not rooted in any particular symmetry and is valid for non-
Hermitian operators. Thereby, in this paper, we establish a
rigorous and simple bulk-edge correspondence for 1D systems
and uncover a different topological mechanism to localize
light at an interface of two arbitrary photonic waveguides.
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APPENDIX A: CALCULATION OF THE CHERN NUMBER
FOR A NON-HERMITIAN SYSTEM

In this Appendix, we extend the theory of Sec. II to non-
Hermitian operators Ĥ . In such a case, the Berry connection
must be defined using both the left and right eigenvec-
tors of Ĥ [13,19]. If the operator Ĥ is diagonalizable, it
is possible to pick the left and right eigenvectors such that
〈uL

qx,n|uR
qx,m〉 = δnm, where the indices n and m identify differ-

ent photonic bands. Here, uR
qx,m, uL

qx,n are the envelopes of the
Bloch eigenmodes [ψR

qx,m(x) and ψL
qx,n(x)] of the operators Ĥ

and Ĥ†, respectively [13,19]. Typically, Ĥ describes a system
with material loss, whereas Ĥ† describes the corresponding
time-reversal symmetric system with material gain. In the
following, it is assumed that ψR

qx,m(x) and ψL
qx,n(x) are periodic

functions of qx.
We denote ĤR

q = Ĥq and ĤL
q = Ĥ†

q as the right and left
Hamiltonians of the system with the synthetic dimension ob-
tained from Ĥ and Ĥ† using the same procedure as in the
main text. Let us compute the Chern number associated with a
generic (isolated) photonic band of the extended system. The
Berry connection is defined by Aq = i〈uL

q|∂quR
q〉 (the band

index is dropped here) [13,19], with

ui
q(x) = ψ i

qx

(
x − x0

(
qs

))
e−iqxx

= ui
qx

(
x − x0

(
qs

))
e−iqxx0(qs ), i = L, R, (A1)

and ψR
qx

(x) and ψL
qx

(x) the relevant Bloch eigenmodes of the
1D operators Ĥ and Ĥ†, respectively. Using the same argu-
ments as in the main text, it is readily seen that the Chern
number is still given by Eq. (3). Furthermore, now the sec-
ond component of the Berry potential is A2,q = i〈ψL

q |∂qsψ
R
q 〉,

which is evidently a periodic function of qx. Hence, similar to
the main text, it is found that

C = 1

2π

∫ π/a

−π/a
dqx

(
A1,q|qs=−π

− A1,q|qs=π

)
. (A2)

Using ui
q(x)=ui

qx
(x − x0(qs))e−iqxx0(qs ) [Eq. (A1)]

and 〈uL
qx

|uR
qx

〉 = 1, one readily finds that A1,q =
i〈uL

qx
(x − x0(qs))|∂qx [u

R
qx

(x − x0(qs))]〉+ x0(qs). The first term
of A1,q is a periodic function of the synthetic momentum qs,
and thereby, the result of the main text [Eq. (5)] remains valid
in the non-Hermitian case.

APPENDIX B: DISPERSION EQUATION AND BLOCH
IMPEDANCE OF A 1D PHOTONIC CRYSTAL

Here, we derive the characteristic equation for the Bloch
waves of a 1D layered photonic crystal and the Bloch wave
impedances. The unit cell is formed by an arbitrary number
(N) of layers (see Fig. 7 for the case N = 3).

As is well known, the wave propagation in a 1D photonic
crystal is formally equivalent to the propagation in a periodic
transmission line (Fig. 7). Thus, the characteristic equation for
the Bloch waves can be easily found using the ABCD matrix
formalism [50]. To this end, one needs to find the ABCD
matrix for a unit cell, which links the input and output voltages
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FIG. 7. Equivalence between a multilayered photonic crystal and
a periodic transmission line.

and currents as (
V1

I1

)
=

(
A B
C D

)
global

(
V2

I2

)
. (B1)

From the theory of microwave networks, the global ABCD
matrix is given by the product of the ABCD matrices of the
uniform line sections:

M ≡
(

A B
C D

)
global

=
(

A B
C D

)
1

. . .

(
A B
C D

)
N

. (B2)

In the above,(
A B
C D

)
i

=
[

cosh
(
γidi

)
Zc,i sinh

(
γidi

)
Z−1

c,i sinh
(
γidi

)
cosh

(
γidi

) ]
,

i = 1, 2, ..., N, (B3)

is the ABCD matrix of the ith section, Zc,i = η0
√

μi/εi is
the wave impedance, and γi = −i ω

c

√
μiεi is the propagation

constant. Here, η0 is the free-space impedance, and c is the
speed of light in vacuum. The permittivity and permeability
εi, μi are normalized to the free-space values.

For Bloch waves, the input and output voltages are linked

by
(

V2

I2

)
= e−γ a

(
V1

I1

)
, with γ = α−ik as the (complex) prop-

agation constant of the Bloch mode. Thus, using Eq. (B1),
one finds that the output voltages and currents satisfy the
homogeneous equation:

(
M − 1e+γ a

) ·
(

V2

I2

)
= 0, (B4)

with M as the global ABCD matrix, as defined in Eq. (B2).
This result implies that det(M − 1λ) = 0, or equivalently,
λ2 − λ tr(M) + det(M) = 0, with λ = e+γ a. Since the system
under analysis is reciprocal, one has det(M) = 1 [50]. The
solutions of the second-degree equation are λ1,2 = tr(M)

2 ±√[ tr(M)
2

]2 − 1. Because of λ1,2 = e±γ a, one has e+γ a +
e−γ a = λ1 + λ2 = tr(M). This implies that the characteristic
equation for the Bloch waves is

cosh (γ a) = tr
(
M

)
2

. (B5)

The photonic band structure of a Hermitian crystal is found
by looking for solutions of the above equation with γ = −ik
as a purely imaginary number.

Next, we derive the formulas of the Bloch impedances
ZL(x0, ω) and ZR(x0, ω). Let us suppose without loss of

d1' d2 d3

1 2 3 1

d1''

x0+a
x

x0

V1 V2

I1 I2

FIG. 8. Geometry used in the calculation of the Bloch impedance.

generality that x = x0 lies in the first line section, as illustrated
in Fig. 8.

It is useful to obtain the global ABCD matrix [M(x0)] for
one period, with the input and output voltages and currents
referred to the planes x = x0 and x = x0 + a, respectively
(Fig. 8). This is done as before by multiplying the ABCD
matrices of the uniform line sections. For the example, for the
geometry shown in Fig. 8, one has

M(x0)=
(

A B
C D

)
1,d ′

1

(
A B
C D

)
2,d2

(
A B
C D

)
3,d3

(
A B
C D

)
1,d ′′

1

.

(B6)

Note that d ′
1 and d ′′

1 depend on x0. Similar to Eq. (B4), for
Bloch waves associated with a propagation factor e−(±γ )x, the
output voltage and current satisfy

(
M(x0) − 1e±γ a

) ·
(

V2

I2

)
= 0. (B7)

Note that γ = γ (ω) depends exclusively on the frequency and
can be found from Eq. (B5). In the bandgaps, γ is complex
valued, and it is implicit that Re{γ } > 0. Denoting M(x0) =(

A B
C D

)
it follows from Eq. (B7) that(

V2

I2

)
∼

( −B
A − e±γ a

)
∼

(
D − e±γ a

−C

)
. (B8)

Hence, the Bloch impedance for a wave that propagates to-
ward the positive x direction is

ZR(x0) = V2

I2
= −B

A − eγ a
= D − eγ a

−C
, (B9a)

whereas the Bloch impedance for a wave that propagates
toward the negative x direction is

ZL(x0) = V2

−I2
= B

A − e−γ a
= D − e−γ a

C
. (B9b)

We used the fact that the Bloch impedances are periodic:
ZR(x0) = ZR(x0 + a), etc.

The trapped states at an interface (x = 0) between two
semi-infinite photonic crystals are forcibly decaying in space
Bloch modes of the infinite photonic crystals in the regions
x > 0 and x < 0. Thereby, since the current and voltage are
continuous at the interface x = 0, the localized trapped states
must satisfy Z (1)

L (x = 0, ω) + Z (2)
R (x = 0, ω) = 0, consistent

with the main text.
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