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ABSTRACT

In recent years, the confinement of light in open systems with no radiation leakage has raised great interest in the scientific community both
due to its peculiar and intriguing physics and due to its important technological applications. In particular, materials with near-zero permit-
tivity offer a unique opportunity for light localization, as they enable the formation of embedded eigenstates in core-shell systems with sup-
pressed radiation loss. For all the solutions presented thus far in the literature, the exact suppression of the radiation leakage can occur only
when the size of the resonator is delicately tuned. Surprisingly, here, it is shown that the tuning of the resonator radius may be unnecessary,
and nonlocal metal spherical nanospheres of any size may support multiple embedded eigenstates with monopole-type symmetry.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0077123

In the recent decade, bound states with suppressed radiation loss
have received a great attention by the optics community.1–14

Surprisingly, it has been shown that carefully designed open material
resonators may support localized excitations known as “embedded
eigenstates,” which ideal conditions—in the absence of material dissi-
pation—do not decay in time. This result is particularly intriguing
considering the fact that the system is open and the eigenstate “lives”
in the radiation continuum. Similar “embedded eigenstates” can occur
in other types of wave platforms, e.g., in the form of electronic states
with “positive energy” in condensed matter systems.15–18

Conventional optical material structures, e.g., formed by standard
dielectrics, can support embedded eigenstates if and only if they are
infinitely extended in space.19 In truncated dielectric systems, the cou-
pling between the trapped light and the radiation continuum is
unavoidable, and thereby the lifetime of an excitation is necessarily
finite. Remarkably, it was shown in Ref. 19 that materials with near-
zero permittivity offer a unique opportunity to break this very funda-
mental restriction, and in theory, they enable the formation of ideal
“embedded eigenstates” with no radiation loss. Different configura-
tions of this class of embedded eigenstates were studied by several
groups.20–27 Importantly, a recent work demonstrated that the inevita-
ble nonlocality (spatial dispersion) of the e-near-zero response does
not spoil the formation of embedded eigenstates but, on the contrary,

creates additional degrees of freedom and new opportunities for light-
trapping.26 Counterintuitively, it was shown that the nonlocal effects
due to the electron-electron repulsive interactions in a metal may con-
siderably relax the conditions for the observation of embedded eigen-
states in plasmonic nanostructures.26 Nonetheless, similar to the local
case,19 the formation of the embedded eigenstate is due to a pole-zero
cancelation of a Fano-type resonance and thereby requires the delicate
tuning of the resonator dimensions.26

The class of e-near-zero resonators studied previously20–27 consists
of core-shell nanostructures with the core a dielectric and the shell an e-
near-zero material that effectively shields the light trapped in the core
from the outer space (radiation continuum). The trapped energy is
stored both at the shell and at the core. The lowest-order embedded
eigenstate has a dipolar-type symmetry in the core. Higher-order modes
(e.g., quadrupolar, etc.) are also allowed, but modes with global mono-
pole symmetry are strictly forbidden. The size of the resonator depends
on its shape, on the e-near-zero material and also on the order (often
determined by symmetry) of the embedded eigenstate. In particular, for
a given resonator shape, the formation of embedded eigenstates requires
a delicate tuning of the resonator size, and thus, the quality factor of the
resonance may be highly sensitive to fabrication imperfections.

Here, we explore a totally different and simpler class of open
plasmonic resonators without the inner dielectric core. We show that
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a spherical resonator made of a material with a nonlocal plasmonic
response described by the hydrodynamic model28 supports multiple
embedded eigenstates independent of its size. Thus, different from all
the other solutions explored thus far,20–27 the embedded states are
robustly protected against perturbations in the resonator size. The
embedded eigenstates are longitudinal waves, reminiscent of bulk plas-
mons. The oscillation frequency of the embedded eigenstates is on the
order of the plasma frequency of the bulk material.

Figure 1(a) depicts the geometry of a spherical plasmonic nano-
particle with radius R standing in air. The nanoparticle may be a noble
or alkali metal at optical frequencies29,30 or a narrow gap semiconduc-
tor at terahertz frequencies. We model the wave interactions in the
plasmonic material (electron gas) with the hydrodynamic model,
which corresponds to Maxwell’s equations coupled to a transport
equation and to the charge continuity equation26,28–38

r� E ¼ �l0@tH; r�H ¼ jþ e0@tE; (1a)

@tj ¼ e0x
2
pE� xcj� b2rq; (1b)

@tqþr � j ¼ 0: (1c)

Here, q and j are the charge and current density, respectively, associ-
ated with the free-electrons,xp is the plasma frequency, xc is the colli-
sion frequency, and b is a velocity that controls the strength of the
diffusion term�b2rq. The physical origin of the diffusion term is the
repulsive electron–electron interactions in the material that prevent
the localization of charges. The value of b can be estimated from
b2 ¼ 3=5v2F, with vF being the Fermi-velocity of the electron gas.40

Typical values for b are on the order of c=450 in alkali metals29 and
c=280 in semiconductors.39

The solutions of the drift-diffusion model of the electron gas
[Eq. (1)] may be classified as transverse waves (r � E ¼ 0, q ¼ 0, and
H 6¼ 0) and longitudinal waves (r � E 6¼ 0, q 6¼ 0, and H ¼ 0). Here,
we look for longitudinal-type embedded eigenstates in spherical reso-
nators. ForH ¼ 0, the curl of the electric field vanishes, and thereby, it
can be written as the gradient of an electric potential: E ¼ �r/. Since
the magnetic field vanishes, it is clear from Eq. (1a) that j ¼ �e0@tE.
Then, considering a time-harmonic variation, E ¼ Exe�ixt ,
j ¼ jxe

�ixt , and / ¼ /xe
�ixt , it is straightforward to check that the

electric potential must satisfy

r2/x þ
1

b2 x2 � x2
p þ ixxc

� �
/x ¼ 0: (2)

For a spherical geometry, the solutions of the above equation can be
constructed using spherical harmonics

/x ¼ /0 jn kLrð ÞYn r̂ð Þ; kL ¼
1
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x2

p þ ixxc

q
: (3)

Here, /0 is an arbitrary normalizing factor, jn is the spherical Bessel
function of order n (n ¼ 0; 1;…), and Ynðr̂Þ is a spherical harmonic
of order n. The electric field can be written as

Ex ¼ �/0 kLj
0
n kLrð ÞYn r̂ð Þr̂ þ jn kLrð Þ 1

r
GradYn r̂ð Þ

� �
: (4)

The electromagnetic fields in the outer free-space region must vanish
for an ideal embedded eigenstate with infinite lifetime.19 Thus, in order
to ensure the continuity of the tangential electromagnetic fields at the
interface r ¼ R, it is necessary that n̂ � Ex ¼ 0 and n̂ �Hx ¼ 0,
with n̂ being the unit normal vector. Furthermore, diffusion effects
prevent the accumulation of charges at the interface, and as a conse-
quence, the normal component of the electric current density in the
electron gas must vanish at the interface jx � n̂ ¼ 0.26,28–38 Since
jx ¼ ixe0Ex, this additional boundary condition is equivalent to state
that n̂ � Ex ¼ 0. Thereby, we conclude that the total electric field must
vanish at the interface with the free-space region (Ex ¼ 0).

From Eq. (4), the constraint Ex ¼ 0 can be satisfied for n � 1
(dipole-type and higher-order spherical harmonics) only if jnðkLrÞ
and j0nðkLrÞ vanish simultaneously. It is well-known that jn; j0n do not
have common zeros different from zero, and thereby there are no solu-
tions with n � 1. On the other hand, since the zero-order (n ¼ 0)
spherical harmonic is a constant [Y0ðr̂Þ ¼ const:], it follows that the
modal equation for an embedded eigenstate with monopole-symmetry
reduces to j00ðkLrÞ ¼ 0, or equivalently j1ðkLRÞ ¼ 0. The function
j1ðuÞ has an infinite number of positive roots u ¼ um (m ¼ 1; 2;…),
being the first few roots u1 ¼ 4:49; u2 ¼ 7:73; …. Solving kLR ¼ um
with respect to the frequency, one finds that the oscillation frequency
of them-th embedded eigenmode is

x ¼ xm �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2m
R2

b2 þ x2
p �

xc

2

� �2
s

� i
xc

2
; m ¼ 1; 2;… : (5)

Remarkably, due to the nonlocal effects, a spherical nanoparticle
supports an infinite number of embedded eigenstates with monopole-
symmetry. The electric field profile for the fundamental (m ¼ 1) state
is represented in Fig. 1(b). As seen, the electric field is radial, and its
intensity is peaked at some finite distance from the center of the
nanosphere.

Importantly, the previous analysis shows that the formation of
eigenstates does not require tuning the size of the nanoparticle, as the
eigenstates can emerge for any radius R, rather different from what
happens in core-shell resonators.20–27 All the monopole embedded
eigenstates have the same lifetime, slife ¼ 1=ð�2x00Þ ¼ 1=xc, with x00

being the imaginary part of the oscillation frequency (x ¼ x0 þ ix00).
In particular, the lifetime of the embedded eigenstates slife is controlled
by the collision (damping) frequency and is exactly identical to the life-
time of the bulk plasmons in the electron gas. Different from the
core–shell resonators considered in previous works, the radiation from

FIG. 1. (a) Geometry of a spherical metal nanoparticle with nonlocal response. The
radius of the resonator is R. (b) Time snapshot (t¼ 0) of the electric field in the
spherical resonator for the embedded eigenstate m¼ 1. Red (green) colors repre-
sent stronger (weaker) field intensities. Note that the electric field is radial.
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the nanoparticle is exactly suppressed even when the system is lossy
(xc 6¼ 0), because the monopole mode is inherently protected against
radiation loss. In the ideal case where the dissipation vanishes, the
oscillations in the nanoparticle do not decay in time and have infinite
lifetime.

Figure 2 depicts the oscillation frequency (x ¼ xm) of the first
few branches of embedded eigenstates as a function of the radius of
the nanoparticle R (for b ¼ c=300) and as a function of the diffusion
velocity b (for Rxp=c ¼ 1), in panels (a) and (b), respectively. In this
simulation, the effects of material dissipation are neglected (xc ¼ 0).
The frequency of oscillation of the embedded monopole eigenmodes
varies continuously with the structural parameters of the resonator,
guaranteeing that x00 ¼ Im xf g ¼ 0 for any configuration. As seen in
Fig. 2(a), by adjusting the radius of the nanoparticle, it is possible to
control the spectral distance between the different embedded eigenmo-
des and, hence, to store light in the resonator at multiple frequencies.
In particular, as the plasma frequency of semiconductors lies in the
terahertz range, they may be the ideal materials to create ultra-
subwavelength resonators with well separated monopole embedded

eigenstates. A reduction in the size of the resonator causes a blue shift
of the oscillation frequency. Likewise, an increase in the diffusion
velocity b also blue shifts the oscillation frequency. In the local limit,
b! 0, all the branches collapse into a single branch with

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

p � ðxc
2 Þ

2
q

� i xc
2 , which is nothing but the oscillation fre-

quency of the bulk plasmons in a local electron gas.
From Eq. (4), the electric field associated with the monopole

eigenstates is of the form Ex ¼ E0j1ðkLrÞr̂. The electric field lines are
radial [Fig. 1(b)]. In particular, for them-th embedded eigenstate,

E mð Þ
x ¼ E0j1 um

r
R

� �
r̂: (6)

The current density is jðmÞx ¼ ixe0E
ðmÞ
x , and the charge density is

qðmÞx ¼ e0r � EðmÞx ¼ �e0r2/ðmÞx ¼ e0k2L/
ðmÞ
x � j0ðumr=RÞ.

Figure 3(a) shows a time snapshot of the radial electric field pro-
file in the spherical nanoparticle for the first few eigenmodes. As
expected, the radial field vanishes at r ¼ R to ensure that there is no
accumulation of charges at the boundary. The number of extremes

FIG. 2. Real part of the oscillation frequency of the mth embedded monopole eigenstate as a function of the (a) normalized radius of the nanoparticle Rxp=c for a normalized
diffusion velocity b ¼ c=300, (b) normalized diffusion velocity b=b0 (with b0 ¼ c=300) for a normalized radius Rxp=c ¼ 1. In the plots, it is assumed that the collision fre-
quency vanishes xc ¼ 0.

FIG. 3. (a) Snapshot of the normalized electric field in the core (Er ) as a function of the normalized radial distance r=R for the m-th embedded monopole eigenstate. (b)
Snapshot of the normalized charge density in the core (q=q0) as a function of the normalized the radial distance r=R for the m-th embedded monopole eigenstate.
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and nulls of the electric field increases with the orderm of the eigenm-
odes. Likewise, the volumetric charge density qðmÞx also has a standing
wave type structure with the number of nulls being determined by the
order of the mode [Fig. 3(b)]. This property and the radial nature of
the electric field uncover the nature of the monopole eigenstates: they
are charge density oscillations inside the spherical nanoparticle, very
similar to bulk plasmons. Due to the nonlocal effects, eigenstates asso-
ciated with a large value of m can have an oscillation frequency
x0m ¼ Re xmf g that differs substantially from the plasma frequency
xp of the electron gas. As a consequence, the quality factor of the oscil-
lations increases with m: QðmÞ ¼ x0m=ð�2x00mÞ ¼ x0m=xc. Thus, the
nonlocal effects enable excitations with enhanced quality factors. Note
that QðmÞ=ð2pÞ gives the number of oscillation cycles during the lifetime
of the oscillation.19 All the modes have the same lifetime (slife ¼ 1=xc),
but modes with largerm have shorter oscillation periods.

It is interesting to analyze the transport of energy in the nanopar-
ticle in a single oscillation cycle. It is simple to check from (1) that in
the absence of external sources, the energy balance is expressed by the
following conservation law (generalized Poynting theorem)
r � Sþ @tW ¼ 0. (For simplicity, the material dissipation is ignored
in the following discussion, xc ¼ 0.) The Poynting vector and the
energy density are given by

S ¼ E�Hþ b2

e0x2
p
qj; (7a)

W ¼ 1
2
e0E � Eþ

1
2
l0H �Hþ

1
2e0x2

p
j � jþ b2

2e0x2
p
q2; (7b)

respectively. Due to the spatial dispersion effects,41,42 the instantaneous
Poynting vector S and the instantaneous energy density W depend
explicitly on the charge and current density of the electron gas, respec-
tively. The term 1

2e0x2
p
j � jþ b2

2e0x2
p
q2 represents the kinetic energy per

unit of volume of the electron gas and a potential energy related to the
effects of diffusion. Note that when b 6¼ 0, the Poynting vector differs
from the standard formula S0 ¼ E�H, because the diffusion effects
enable the transport of energy in a nonradiative way.

For an embedded monopole eigenstate, the magnetic field

vanishes, and thereby, S ¼ b2

e0x2
p
qj and W ¼ 1

2 e0E � Eþ 1
2e0x2

p
j � j

þ b2

2e0x2
p
q2. As q and j are in quadrature, the time-averaged Poynting

vector in one cycle vanishes, as it should be. However, the instanta-
neous Poynting vector is nonzero, because there is a transport of
energy associated with the oscillations of the bulk plasmons. Figure 4
shows several time snapshots of the Poynting vector of the fundamen-
tal monopole mode (m ¼ 1), confirming that indeed there is a bidirec-
tional flow of energy inside the nanoparticle, despite the nonradiative
character of the oscillation.

The embedded monopole eigenstates cannot be excited with
external currents in the free-space region. The reason is that the field
created by an arbitrary external current can always be decomposed
into transverse electric (TE) and transverse magnetic (TM) radial Mie
harmonics associated with spherical harmonics with n � 1. Thus, the
longitudinal monopole mode is totally decoupled from the radiation
fields outside the resonator. Due to this reason, the ideal monopole
embedded eigenstates cannot be detected as resonances under plane
wave illumination. In principle, the monopole mode can be excited by
a source placed inside the resonator or alternatively by an energetic

electron beam that travels through the material (Cherenkov-type radi-
ation due to transformation of the kinetic energy of the beam into
bulk plasmon oscillations).43

As previously discussed, a spherical nanoresonator supports mul-
tiple embedded monopole eigenstates independent of its size. In prin-
ciple, this remarkable property is specific of the spherical geometry. In
fact, consider an arbitrary shaped resonator with boundary R and a
possible longitudinal embedded eigenmode with E ¼ �r/. The elec-
tric potential must satisfy Eq. (2), subject to the boundary condition
/xjR ¼ const: to ensure that n̂ � Ex ¼ 0. In addition, to ensure that
there are no currents flowing through the boundary (jx � n̂ ¼ 0), it is
necessary that @/x=@njR ¼ 0, i.e., the normal derivative of the poten-
tial must vanish at each and every point of the surface. For a generic
geometry, the two boundary conditions (/xjR ¼ const: and
@/x=@njR ¼ 0) cannot be satisfied simultaneously: typically only
either /xjR or @/x=@njR can be fixed independently. In contrast, the
spherical symmetry greatly relaxes the constraint @/x=@njR ¼ 0,
because for a monopole distribution, the condition @/x=@njR ¼ 0 is
effectively equivalent to a single scalar constraint

Ð
@/x=@n ds ¼ 0,

which can be satisfied for some set of discrete frequencies, as shown
previously. Thus, when the geometry of the resonator is detuned from
the spherical case, the monopole state is not any longer protected
against radiation loss, and in principle, it can be detected as a scatter-
ing resonance.

In summary, in this Letter, we studied a new class of nanoresona-
tors formed by a nonlocal plasmonic material. It was shown that any
spherical resonator, independent of its size, supports simultaneously
multiple embedded monopole eigenstates associated with charge den-
sity oscillations in the nanoparticle. Different from solutions based on
core-shell particles, the proposed system does not require the delicate
tuning of the resonator radius. Furthermore, the radiation leakage is
exactly suppressed even when the material is lossy. In principle, these
remarkable properties are specific of the spherical geometry. The life-
time of the embedded eigenstates is controlled by the collision fre-
quency. Due to the monopole nature of the electric field, for an ideally

FIG. 4. Time snapshots of the normalized radial Poynting vector component
(Sr=S0) for the fundamental embedded monopole eigenstate (m¼ 1). The sam-
pling time (t) is determined by the value of / ¼ xt. The time-average of the
Poynting vector vanishes, but the instantaneous Poynting vector is nontrivial due to
the charge density oscillations in the nanoparticle.
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spherical geometry, the embedded eigenstates are totally decoupled
from external excitations and can only be pumped either with an inter-
nal source or with an electron beam.
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