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Photon localization and Bloch symmetry breaking in luminal gratings
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In gratings synthetically moving at nearly the velocity of light a symmetry breaking transition is observed
between free-flowing fluidlike Bloch waves observed at lower grating velocities and, at luminal velocities,
condensed, localized states of light captured in each period of the grating and locked to its velocity. We introduce
a technique for calculating in this regime and use it to study the transition in detail shedding light on the critical
exponents and the periodic oscillations in transmitted intensity seen in the pretransition regime.
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I. INTRODUCTION

Spurred on by experimental advances in rapid modulation
at optical [1,2], THz [3–5], and GHz [6] frequencies, in recent
years interest has grown in systems where the parameters vary
with time: in electromagnetic systems, the topic of the present
paper, but also in acoustic systems [7–9]. In fact, many of
the concepts are quite general and apply to any wave motion
whatever the system. One of the simplest static structures is
the Bragg grating whose study has shown the way to photonic
crystals and to a host of other electromagnetic devices. Trans-
lational symmetry permits the analysis of gratings in terms of
Bloch waves and their dispersion is characterized by a Bloch
wave vector which shows band gaps: ranges of frequency
within which the wave vector is complex and where light is
reflected from the structure.

Localization is usually encountered in disordered systems
where electron transport makes a transition from a diffusive
regime, which is well understood, to a localized regime, which
effectively cuts off conductivity. The transition is a complex
one with no complete theoretical understanding of the local-
ized regime and in particular of the critical exponent which
is known from computer simulations [10] to be 1.571 but for
which there is no fundamental derivation. However, there are
other forms of localization, one of which we present here,
that have a much simpler nature and are fully soluble. Their
solution may shed light on the more complex problem.

We shall be concerned for the main part with a simple
generalization of a Bragg grating of the form

ε(x − cgt ) = ε1[1 + 2αε cos (gx − �t )],
(1)

μ(x − cgt ) = μ1[1 + 2αμ cos (gx − �t )],

synthetically moving with velocity cg = �/g. The velocity
of light in the background medium is c1 = c0/

√
ε1μ1. We

stress that material comprising the grating does not move,
rather the local properties are modulated in the synchronized
form given above. This allows the structure to move with any
velocity, unrestricted by the speed of light. This model has
been widely adopted in time dependent studies of “space-time
crystals” [11] and of nonreciprocal systems [12,13]. Closely
related models have been used to study topological aspects

of so-called time crystals [14]. Although the modified grating
lacks the time symmetric properties of the static case, it is
parity-time (PT) symmetric and supports Bloch waves which
have been the basis of previous studies. A sketch is given in
Fig. 1 showing that as cg → c1 the forward traveling waves
tend to degeneracy. Their close proximity inevitably leads to
very strong interaction between the forward waves, which is
responsible for their pathological Bloch symmetry breaking
behavior in the luminal regime.

However, intriguingly, and the motivation of this paper,
there is a range of grating velocities within which the Bloch
wave picture fails and no characterization exists in terms of
ω(k). There is a range of velocities, c− < cg < c+, close to
the speed of light within which light entering the medium is
captured and localized inside each grating period where it is
both amplified and compressed into an ever sharper pulse.
The critical points c−, c+ define the near luminal region. In
previous papers [15–17] we identified this behavior as a phe-
nomenon where amplification is associated with compression
of the lines of force which are conserved.

Here we are concerned with the approach to localization
and the transition from Bloch-wave behavior to formation of
localized pulses. When cg < c− (or cg > c+) light incident
on the grating excites a mixture of Bloch waves leading to
periodic oscillations of intensity within the grating caused by
the grating alternately adding to and subtracting energy from
the waves with a period determined by the difference between
speed of the Bloch waves, ceff , and that of the grating. As
cg → c− the Bloch wave velocity also approaches c− so that
the period tends to infinity and at the same time the amplitude
approaches infinity. In this way the oscillations presage the
transition to localization. In fact, the period of these oscilla-
tions is related to exponential growth of energy density within
the pathological region c− < cg < c+. We calculate the period
of these oscillations and the critical exponent with which it
diverges at the transition. Within the pathological range the
exponentially growing pulse will locate at a specific point
within the grating period dictated by a subtle balance between
its velocity keeping pace with the grating and the source of its
growing energy which is also a function of location within the
grating.
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FIG. 1. (a) Dispersion of waves in a stationary grating before
interaction is taken into account. (b) Dispersion of waves in a grating
synthetically moving in a forward direction. Note the asymmetry
between forward and backward traveling waves in (b) brought about
by the lack of time reversal symmetry and the close proximity of the
forward waves which collapses to a degeneracy when cg = c1.

The structure of our paper is as follows: first we introduce
a technique for solving the equations of motion based on
the “method of characteristics.” Not only does this enable
efficient calculation of the grating properties, it also allows
us to find analytic expressions for many of the quantities of
interest. These we exploit in the next section to calculate criti-
cal exponents, prelocalization oscillations, and localization of
the pulse within the critical region. Our theory holds in any
scenario where backscattering is not significant.

II. EQUATION OF MOTION

The transition to localization is essentially an interaction
between forward traveling waves which are highly degen-
erate near the transition. Therefore to study the transition
in its purest form we choose a model in which there is no
backscattering so that forward and backward traveling waves,
while still present, are decoupled, leaving us to concentrate
on the forward waves where all the action takes place. This
condition can be achieved exactly if ε and μ are everywhere
proportional,

ε(x − cgt ) = μ(x − cgt ), (2)

but is approximately true if the amplitude of the grating is suf-
ficiently small. In the absence of backscattering the following
relationships hold:

Hy = − 1

Zm
Ez, By = −ZmDz, (3)

where we have assumed a wave with electric fields aligned
with the z axis traveling in the forward direction along the
x axis. Here, Ez, Hy are the electric and magnetic fields, and
Dz, By are the displacement vector and magnetic induction
fields, respectively. We shall exploit this result to reduce
Maxwell’s equations to a partial differential equation (PDE)
of the first order. Defining

cg = �/g = (1 + δ)c1 (4)

and working in a Galilean frame comoving with the grating,
X = x − cgt , we retrieve from Maxwell

∂

∂X
[c� − cg]Dz = − ∂

∂t
Dz, (5)

with c� = c0/
√

εμ the local velocity of light. A fuller descrip-
tion of this derivation is to be found in [16]. Defining

ψ = [c� − cg]Dz (6)

gives the standard form

(c� − cg)
∂ψ (X, t )

∂X
+ ∂ψ (X, t )

∂t
= 0, (7)

which can be solved by the method of characteristics. This
approach seeks a characteristic trajectory X (t ) along which
ψ (X, t ) is constant. Then all that is necessary to solve the
PDE is to trace the trajectory back to t = 0 where the value
of ψ0(X0, t = 0) gives the value of ψ (X, t ) at any subsequent
time along the trajectory. To obtain the electric field we use
(6) to give

Dz[X (t )] = c�[X0(t = 0)] − cg

c�[X (t )] − cg
Dz[X0(t = 0)]. (8)

The equation of motion along the trajectory is

dX

dt
= (c� − cg) = c1

(
1

1 + 2α cos (gX )
− (1 + δ)

)
, (9)

which can be solved for the time at which the trajectory
reaches point X , by integration,∫ X

X0

1

c�[X ′] − cg
dX ′ = t (X ). (10)

For a grating with a cosinusoidal profile, shown in (1), one
finds

θ (X ) = t (X ) − t0 = −gX

c1g(1 + δ)
− 1

c1g(1 + δ)2

2√(
δ

1+δ

)2 − 4α2
tan−1

⎡
⎣(

δ
1+δ

− 2α
)

tan (gX /2)√(
δ

1+δ

)2 − 4α2

⎤
⎦,

∣∣∣∣ δ

1 + δ

∣∣∣∣ > |2α|,

= −gX

c1g(1 + δ)
− 1

c1g(1 + δ)2

2√
4α2 − (

δ
1+δ

)2
ctnh−1

(
2α − δ

1+δ

)
tan (gX /2)√

4α2 − (
δ

1+δ

)2
,

∣∣∣∣ δ

1 + δ

∣∣∣∣ < |2α|,
∣∣∣∣
(

2α − δ

1 + δ

)
tan (gX /2)

∣∣∣∣ >

√
4α2 −

(
δ

1 + δ

)2

. (11)
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FIG. 2. The time trajectories t (X ) as functions of X . (a),(c) Outside the critical velocity range, |δ/1 + δ| > |2α|. (b),(d) Inside the critical
points, |δ/1 + δ| < |2α|. The trajectories start at a generic X0 where the value of ψ is defined. This value, constant along the trajectory, travels
to point X after a time t . Panels (a) and (b) illustrate the construction for tracing time back along a trajectory to the origin: the red lines show
a simple construction for finding X . Panels (c) and (d) show evolution of the trajectories with δ which defines the difference of the grating
velocity of the average velocity of light. Note that the trajectories on the left are continuous and the ones on the right are singular, implying
localization.

Evidently there are critical values of 2α = ±δ/(1 + δ)
which in turn through δ define the critical velocities c−, c+.
The trajectories shown in Fig. 2 reveal the localization tran-
sition. When the grating velocity is outside the critical points
[Figs. 2(a) and 2(c)] these trajectories show a pulse of light
advancing continuously through the grating structure, albeit
in the backwards direction if cg > c�. Note also that the light
pauses at certain positions within the grating: at gX = 0 for a
subluminal grating (δ < 0) where the local light velocity is a
minimum, and at gX = π for a superluminal grating (δ > 0)
where the local light velocity is a maximum. In contrast for
near luminal gratings with velocities inside the critical points
[Figs. 2(b) and 2(d)] all trajectories show singularities which
trap the light near that particular position. The singular points
occur where the local velocity of light is the same as that of the
grating and migrate to gX = 0, π at either end of the critical
zone, to coincide with the pause zones of Figs. 2(a) and 2(c).

The curves in Fig. 2(c) show how the extra luminal curves
steepen at the origin for the subluminal case and at gX/π =
1.0 for the superluminal case. In Fig. 2(d) the singularities
migrate across the unit cell with increasing δ.

We make use of (5) to calculate a dispersion relationship
assuming a time dependence of e−iω′t ′

in the grating frame for
the Bloch wave, and arrive at

∂

∂X
ln [c� − cg] + ∂

∂X
ln Dz = iω′

c� − cg
(12)

from which we deduce the change of phase across one unit
cell which we equate to

keff
2π

g
= ω′

∫ X0+2π /g

X0

1

c�(X ) − cg
dX = ω′t (X0 + 2π /g),

(13)

where keff is the Bloch wave vector and t (X0 + 2π/g) can be
found from (11),

keff = −ω + cgkeff

cg

[
1 ± 1√

δ2 − 4α2(1 + δ)2

]
, (14)

where we have substituted the frequency in the stationary
frame. Solving for keff ,

keff = ω

c1

1 ±
√

δ2 − 4α2(1 + δ)2

1 + δ
(15)

to give the effective velocity

ceff = c1
1 + δ

1 ±
√

δ2 − 4α2(1 + δ)2
, (16)

where we choose the “+” sign when δ > 0 and the “−” sign
when δ < 0. At the critical values of α, ceff has a square root
singularity as ceff → cg and the Bloch wave locks onto the
grating. The variation of ceff with δ is shown in Fig. 3. Note
the shaded region within which Bloch waves are not defined,
and the coincidence of ceff and cg at the critical points as
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FIG. 3. The variation of ceff with δ for α = 0.05, also show-
ing the grating velocity cg = 1 + δ and the velocity of light in the
background medium, c1. Shading shows the range of δ within which
Bloch waves are not defined.

the grating captures and localizes the light. Below the lower
cutoff ceff < c1, contrary to the predictions of Fresnel drag in a
medium that is actually moving as observed in [13]. However,
above the upper cutoff ceff > c1. A better predictor of ceff in

our example is that it is attracted to the velocity of the grating,
increasingly so as the cutoff points are approached. Another
interesting aspect is that ceff , which serves as both the phase
and group velocity of the Bloch wave, is superluminal when
cg > c1. This may happen only in systems operating a gain
mechanism.

However, this simple effective medium picture hides a
wealth of structure that we shall now investigate.

III. APPROACH TO CRITICALITY

Using the characteristic trajectories, we can easily find
analytic solutions. There are two boundary conditions that
could be imposed. In the first type the grating is turned on
instantly everywhere; in the second the grating is turned on at
a certain position in space and off at another. The latter is in
fact a transmission calculation.

The boundary condition we have imposed requires the
grating to be switched on at t = t0, but if instead the light is
entering a grating at some fixed point in space, the grating will
be turned on at a time t0 − c−1

g X0 and off at a time t−c−1
g X .

This small change in the boundary conditions means that (2)
is now explicitly soluble.

First consider the case outside the critical region. Using
Eq. (11) we calculate

gX0 = −2 arctan

√(
δ

1+δ

)2 − 4α2

δ
1+δ

− 2α
tan

⎡
⎣θ (X ) − t

2
c1g(1 + δ)2

√(
δ

1 + δ

)2

− 4α2

⎤
⎦, (17)

which is then used to calculate the fields

Dz(X, t ) = c�[X0(t )] − cg

c�(X ) − cg
Dz0

= 1 + 2α cos (gX )
δ

1+δ
+ 2α cos (gX )

δ
1+δ

+ 2α cos [gX0(t )]

1 + 2α cos [gX0(t )]
Dz0,

(18)

where Dz0 is the initial field amplitude at t = 0.
The ratio of numerator to denominator in this equation

neatly expresses the compression of lines of force reported in
an earlier paper [16]: the slower the velocity of waves relative
to the grating the denser the lines of force, just as motorway
traffic increases in density at slower speeds.

By examining the argument of tan in (17) we deduce that
the solution is oscillatory with a period given by the difference
between ceff and cg,

�t = 2π

c1g(1 + δ)2
√(

δ
1+δ

)2 − 4α2
. (19)

It has a maximum amplitude when δ < 0 at gX = π , and
when δ > 0 at gX = 0,

Dz,max = 1 + δ
1+δ

− sgn(δ)2α

δ
1+δ

− sgn(δ)2α

δ
1+δ

+ sgn(δ)2α

1 + δ
1+δ

+ sgn(δ)2α
Dz0.

(20)

As the critical point is approached �t diverges with a criti-
cal exponent of υ = −1/2 and Dz,max → ∞ with an exponent
of τ = −1.

These oscillations are displayed in Fig. 4(a) for a value of
cg above the critical velocity. Below in Fig. 4(b) we plot ε

as defined in Eq. (1). The value of ε where cg = c�, shown
notionally in the figure, is not found anywhere within the
grating but c� is closest to cg in the center of Fig. 4(b).
Therefore as the pulse moves to the left being overtaken by
the grating it is first amplified slowing down as it moves
until at gX/π = 1.0 it reaches its minimum velocity relative
to the grating, after which it accelerates away, losing energy
as it goes. In Fig. 4(c) oscillations are shown for cg below
the critical velocity. Here the pulse moves to the right as it
overtakes the grating, gaining energy, and traveling ever more
slowly until it reaches gX/π = 0.0 whereafter it accelerates
away and loses energy. The variation of ε is shown below in
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(a)

(b)

(c)

(d)

FIG. 4. Oscillations shown by (a) super- and (c) subluminal gratings plotted against gX/π . The times are given as fractions of the period
�t , as defined in (19). Below in (b) and (d) we show the variation of ε across the grating and the dashed lines show schematically the values of
ε for which the grating and light velocities would be equal. The full line shows where gain occurs and dashed line shows where there is loss.
Note the change of origin of the X axis between (a),(b) and (c),(d) and that for this figure ε1 = 1.

Fig. 4(d). Our analytic theory has been verified by comparison
with transfer matrix computations.

Next consider the case inside the critical region. Here from
Eq. (11) we find

tan (gX0/2) = +A

B

−e−tc1g(1+δ)2a
[

A
B − tan (gX /2)

][
A
B + tan (gX /2)

]−1 + 1

+e−tc1g(1+δ)2a
[

A
B − tan (gX /2)

][
A
B + tan (gX /2)

]−1 + 1
,

A =
√

4α2 −
(

δ

1 + δ

)2

, B = 2α − δ

1 + δ
(21)

from which, using (18), we calculate the fields shown in Fig. 5
for various values of the grating speed. In this paper we are
interested in the approach to criticality: the upper critical
velocity sees the maximum amplitude migrate to gX = π and
for the lower critical velocity to gX = 2π . Here they meet up
with the peak amplitudes outside the near luminal region.

Next we ask how the amplitude varies as the transition is
approached from the localized side. For example, at the upper
critical limit,

lim
t→∞ Dz max(X, t ) ≈ αe+tc1g(1+δ)2

√
4α2−( δ

1+δ )2

2α − δ
1+δ

Dz0,

δ

1 + δ
→ +2α. (22)

Note that the exponent corresponds to the analytic contin-
uation of the limit of the oscillation period on the other side
of the transition, given in (19).
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FIG. 5. Amplitude of the fields ejected from the latter half of
the grating in the near luminal regime for various values of the
grating speed, cg = c1(1 + δ). The critical values for this example are
δ = +0.111 . . . , and δ = −0.0909 . . . .
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IV. CONCLUSIONS

We have examined in detail the breaking of Bloch symme-
try in a near luminal grating. The method of characteristics
enables exact solution in a situation where forward scattering
dominates. The latter comes about from the near degeneracy
of forward traveling waves as cg → c1. We observed oscil-
lations in the transmission current in the Bloch regime with
a period explained by the difference between cg and the ef-
fective Bloch group velocity ceff , the wave being alternately
compressed and decompressed as it rides over different sec-
tions of the unit cell. The critical exponent of 1/2 with which
the relative velocity of the wave and the grating vanishes at
the transition point is reflected on the luminal side of the
transition in the same critical exponent with which the expo-
nential increase of amplitude growth initiates. In summary, a
detailed understanding has been found of the Bloch symmetry
breaking transition observed in luminal structures.

As to practical realization of these systems, apart from rf,
systems graphene is a promising candidate for THz frequen-
cies. It is known that the conductivity of graphene can be
modulated at rates exceeding 100 GHz via both electro-optic
[4] and all-optical mechanisms [5] and the THz surface plas-

mons of graphene may be the first excitations to be amplified
in this fashion. We have previously suggested double layer
graphene as a possible candidate [15].
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