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First principles calculation of topological invariants
of non-Hermitian photonic crystals
Filipa R. Prudêncio 1,2✉ & Mário G. Silveirinha1

Topological photonic systems have recently emerged as an exciting new paradigm to guide

light without back-reflections. The Chern topological numbers of a photonic platform are

usually written in terms of the Berry curvature, which depends on the normal modes of the

system. Here, we use a gauge invariant Green’s function method to determine from first

principles the topological invariants of photonic crystals. The proposed formalism does not

require the calculation of the photonic band-structure, and can be easily implemented using

the operators obtained with a standard plane-wave expansion. Furthermore, it is shown that

the theory can be readily applied to the classification of topological phases of non-Hermitian

photonic crystals with lossy or gainy materials, e.g., parity-time symmetric photonic crystals.
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Topological systems have fascinating and intriguing prop-
erties that can lead to unique physical effects and phe-
nomena1–16. Topological methods became part of

mainstream condensed matter physics with the discovery of the
quantum Hall effect1. About one decade ago, the research of
topological systems was extended to photonics6,7,13,14, and to
other fields. Topological systems open a myriad of exciting
opportunities in optics as they may allow for the propagation of
light with suppressed back-scattering8,10. Recently, it was shown
that the photonic Chern number can be understood as the
quantum of the fluctuation-induced light angular-momentum in
a topological material cavity15–17.

The topological properties of a physical system are usually
linked to the spectrum of a two-parameter family of linear
operators Ĥk . Typically, the spectrum is formed by the system
natural modes (in condensed matter systems Ĥk is the Hamil-
tonian of Bloch electronic states). It was recently discovered that
the topological classification remains feasible even when the
operator Ĥk is non-Hermitian18–26; thereby lossy or gainy pho-
tonic systems are characterized by different topological phases. A
nontrivial Chern phase can only occur when the system has a
broken time-reversal symmetry. Hence, in optics, nontrivial
Chern insulators are necessarily nonreciprocal27. Each topological
phase is characterized by an integer number (the Chern number),
which is a topological invariant insensitive to weak perturbations
of the Hamiltonian.

Typically, the topological invariants of photonic systems are
determined using simplified models, e.g., relying on a tight-
binding approximation, which allow for analytical developments.
Even though justified in many cases, one needs to be careful with
approximate methods, as the topological invariant is a global
property of the physical system, while a tight-binding description
does not always capture the global wave dynamics. Indeed, tight-
binding models are often accurate only for a restricted range of
wave vectors, rather than in the entire Brillouin zone. From a
geometrical point of view, the situation can be pictured as follows.
Consider a spherical surface and another object almost coincident
with the spherical surface but with a hole pierced in it, let us say
the same sphere but with a cylindrical hole (with arbitrarily small,
but finite, radius) that connects the north and south poles of the
sphere. Even though locally (away from the two poles) the two
objects are indistinguishable, they are topologically different, as
they have a different number of holes. Thus, the topology of a
physical system can be coincident with the topology of an
approximate model only when the approximate model captures
faithfully the wave dynamics in the entire parametric space, i.e., in
the entire Brillouin zone.

In this article, we tackle the problem of first principles calcu-
lation, i.e., without using tight binding or other approximations,
of the Chern number of non-Hermitian photonic systems. Our
approach is based on refs. 24,28, where it was shown that the gap
Chern numbers of non-Hermitian systems can be written in
terms of the system Green’s function. Different from the standard
topological band theory, the Green’s function approach is gauge
invariant and does not require any detailed knowledge of the
band structure or of the Bloch eigenstates. The method applies to
both fermionic (see also refs. 29–31) and bosonic platforms (even
in case of material dispersion). Different from topological band
theory, it is unnecessary to compute the Chern invariants of the
individual bands to find the gap topological invariant. The gap
Chern number is directly obtained from an integral of the pho-
tonic Green’s function over a contour in the complex-frequency
plane that links −i∞ to +i∞ and is contained in the relevant band
gap. The described theory was applied to electromagnetic con-
tinua in refs. 24,28. Here, we tackle the more challenging and

interesting case of photonic crystals. We show how by using the
operators obtained from the well-known plane wave method32 it
is possible to find in a relatively simple and computationally
inexpensive way the gap Chern number of topological photonic
platforms. Furthermore, we study the impact of material loss and
gain on the topological invariants.

Results and discussion
Topological band theory. It is instructive to present a brief
overview of the standard topological band theory in order to
contrast it with the Green’s function theory used by us. In the
topological band theory formalism, the gap Chern number of a
(Hermitian) material system is obtained from the Berry curvature
F k

13,14,33 as

Cgap ¼
1
2π

Z Z

B:Z:

d2kF k: ð1Þ

The integral is over the first Brillouin zone (BZ) and F k ¼P
n2F F nk is the Berry curvature; the summation in n is over all

the “filled” photonic bands (F) below the gap, i.e., modes with
ωnk < ωgap, with ωgap some frequency in the band gap. The Berry
curvature of the nth band (F nk) is written in terms of the system
eigenmodes (Ĥk nkj i ¼ ωnk nkj i) as28,33,34

F nk ¼
X
mk≠nk

i

ωnk � ωmkð Þ2
nkj∂1Ĥkjmk
� �

mkj∂2Ĥkjnk
� �

� 1 $ 2
� �

;

ð2Þ

where ∂i ¼ ∂=∂ki (i= 1, 2) with k1= kx and k2= ky. The term
1↔ 2 is obtained from the first term enclosed in rectangular
brackets by exchanging the indices 1 and 2. Thus, from a com-
putational point of view, the numerical calculation of the Chern
invariants is a rather formidable problem: it generally requires
finding the photonic band structure and all the Bloch states in the
Brillouin zone. Moreover, Eq. (2) is ill-defined due to a 0/0
removable singularity when the Bloch eigenstates are degenerate,
i.e., when there are band crossings. In such case, the scalar pro-
ducts need to be replaced by the determinant of an overlap matrix
which further increases the complexity of the problem. For fur-
ther details a reader is referred to ref. 35.

The situation is even more complex for non-Hermitian
systems, where the Chern number is found from a bi-
orthogonal basis of left and right eigenstates of the non-
Hermitian operator19, i.e., from the eigenstates of Ĥk and of

Ĥk

� �y
. The spectra of Ĥk and of Ĥk

� �y
are not independent; their

calculation requires the diagonalization of a non-Hermitian
matrix which may be computationally demanding. The problem
is especially complex for periodic structures, e.g., lossy non-
reciprocal photonic crystals, where the relevant operator Ĥk is
isomorphic to a non-Hermitian matrix of infinite dimension.

Photonic Green’s function formalism. In this Section, we
describe the general Green’s function formalism introduced in
refs. 24,28 to calculate the Chern invariants of photonic platforms.
The starting point is the generalized eigenvalue problem

L̂k � Qnk ¼ ωnkMg � Qnk n ¼ 1; 2; ¼ð Þ ð3Þ

with L̂k a generic differential operator and Mg a multiplication
(matrix) operator. The operator L̂k is parameterized by the real
wave vector k ¼ kxx̂ þ kyŷ. The operator Mg is independent of k.

Here, Qnk are the generalized eigenstates of L̂k and ωnk are the
generalized eigenvalues. The objective is to determine the
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topological phases of L̂k , or equivalently the topological phases of
Ĥk ¼ M�1

g � L̂k .
To this end, we introduce the system Green’s function Gk ,

defined by

Gk ωð Þ ¼ i L̂k �Mgω
� 	�1

: ð4Þ

The Green’s function has poles at the eigenfrequencies ω= ωnk,
but otherwise is an analytic function of frequency. Let us first
consider that L̂k andMg are Hermitian operators. In that case, the
eigenfrequencies ωnk are real-valued numbers. Hence, the
projection of the system band structure into the complex-
frequency plane ω= ω′+ iξ consists of line segments contained
in the real-frequency axis (see Fig. 1a). The band gaps are the
regions of the complex frequency plane that separate discon-
nected sets of eigenfrequencies. For example, with reference to
Fig. 1a the region ωL < ω′ < ωU is a band gap (vertical strip shaded
in yellow in Fig. 1a), as it separates two sets eigenfrequencies, i.e.,
two bands. It should be noted that two non-touching bands do
not in general yield a gap in the complex plane. The gap
formation requires that the projections of the bands in the
complex-frequency plane are disconnected.

The band-gap definition can be readily extended to non-
Hermitian systems, with the difference that for non-Hermitian
platforms the projected band structure is not restricted to the
real-frequency axis. Hence, in the non-Hermitian case the
projected band-structure can populate parts of the lower-half
(for lossy systems) or upper-half (for gainy systems) complex-
frequency plane24. In general, the band gaps are vertical strips in
the complex plane, i.e., of the form ωL < ω′ < ωU, where the
Green’s function is analytic (the vertical strip does not need to be
rectangular and can have an arbitrary shape provided the initial
and end points have ξ=∓∞, respectively).

Each band-gap is associated with a topological invariant, the
gap Chern number, given by24,28

Cgap ¼
1

ð2πÞ2
Z Z

B:Z:

d2k
Zωgapþi1

ωgap�i1

dωTr ∂1G�1
k � Gk � ∂2G�1

k � ∂ωGk


 �
; ð5Þ

where Tr{…} stands for the trace operator, ∂ω ¼ ∂=∂ω and
∂jG�1

k ¼ ∂G�1
k =∂kj (j= 1, 2) with k1= kx and k2= ky. The integral

in ω is over a contour completely contained in the band gap that
joins the points −i∞ and +i∞. For simplicity, throughout the
article it is assumed that the contour is a straight line of the form
Re{ω}= ωgap with ωgap some (real valued) frequency in the gap
(see Fig. 1a).

The derivatives in frequency and wave vector can be explicitly
evaluated as ∂ωGk ¼ �iGk �Mg � Gk and ∂jG�1

k ¼ �i∂L̂k=∂kj24,28.
Hence, the gap Chern number can be expressed as

Cgap ¼
i

2πð Þ2
Z Z

B:Z:

d2k
Zωgapþi1

ωgap�i1

dωTr ∂1L̂k � Gk � ∂2L̂k � Gk �Mg � Gk

n o
:

ð6Þ
In order to numerically calculate the integral it is convenient to

use the coordinates ω= ωgap+ iξ and k= β1b1+ β2b2, where bj
are the reciprocal lattice primitive vectors of the photonic crystal
and −1/2 ≤ βj ≤ 1/2 (j= 1, 2). With these coordinate transforma-
tions we finally get

Cgap ¼
Z1=2

�1=2

Z1=2

�1=2

dβ1dβ2

Z1

0

dξ g ξ; β1; β2
� �

; ð7Þ

g ξ; β1; β2
� �

¼ �1

2πð Þ2
b1 ´ b2j j:

´ Tr ∂1L̂k � Gk � ∂2L̂k � Gk �Mg � Gk

n o���ω ¼ ωgap þ iξ

k ¼ β1b1 þ β2b2

2
664

þ Tr ∂1L̂k � Gk � ∂2L̂k � Gk �Mg � Gk

n o���ω ¼ ωgap � iξ

k ¼ β1b1 þ β2b2

3
775:

ð8Þ
In practice, the upper-limit of the integral in ξ needs to be

truncated:
R1
0 dξ !

R ξmax
0 dξ, where ξmax should be on the order

of c/a with c being the speed of light and a the lattice constant.
Typically, g decays exponentially fast with ξ and hence the
integration in ξ is quite efficient24,28. The integrals in β1, β2, ξ are
done using a numerical quadrature rule, e.g., using the trapezoidal
or the Simpson rules.

Magnetic-gyrotropic photonic crystal. To illustrate the ideas, we
consider a photonic crystal formed by a hexagonal array of
cylindrical rods with radius R embedded in air as illustrated in
Fig. 1b. The periodic structure contains two rods per unit cell, i.e.,
it is formed by two sub-lattices (honeycomb lattice). The direct
lattice primitive vectors are taken equal to:

a1 ¼
a
2

3x̂ �
ffiffiffi
3

p
ŷ

� 	
; a2 ¼

a
2

3x̂ þ
ffiffiffi
3

p
ŷ

� 	
; ð9Þ

a

Fig. 1 Projected band structure and photonic crystal geometry. a Illustration of the projected band structure of a Hermitian operator in the complex
frequency plane ω=ω′+ iξ. In the Hermitian case, each band is projected into a line segment (continuum set) in the real-frequency axis. A few individual
eigenvalues belonging to each band are represented by cross-symbols. The Green’s function is an analytical function of frequency ω in the band gap
represented by the vertical yellow strip (ωL <ω′ <ωU). The real-valued frequency ωgap is a generic point in the band gap. b Hexagonal array of magnetic-
gyrotropic rods. The distance between nearest neighbors is a and R is the radius of the cylindrical rods. c First Brillouin zone showing the high symmetry
points Γ, M, K, K′ of the 2D lattice.
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where a is the distance between nearest neighbors (circles with
different colors in Fig. 1b). The relative permittivity and perme-
ability tensors of the photonic crystal are of the form:

ε ¼ ε13 ´ 3; �μ ¼
μ iκ 0

�iκ μ 0

0 0 1

0
B@

1
CA; ð10Þ

with ε= ε(x, y), μ11= μ22= μ(x, y), and μ12=−μ21= iκ(x, y).
The nonreciprocity parameter κ vanishes in the air region and is
equal to κi (i= 1, 2) in the ith sub-lattice of the hexagonal array.
Hence, the rods material response is nonreciprocal (�μ≠�μT) and
gyrotropic. This type of material response occurs in natural fer-
rimagnetic materials (e.g., ferrites) biased with a magnetic field
directed along the z-direction36. The parameters ε and μ are
identical to ε= μ= 1 in the air region and to εi and μi in the ith
sub-lattice (i= 1, 2) of the crystal. For simplicity, here we neglect
material dispersion so that μi and κi are frequency independent.
The method can be generalized to include the effects of material
dispersion24,28, but since there are a few nontrivial technicalities
we leave that study for future work.

We consider waves with transverse electric (TE) polarization
(E ¼ Ez ẑ) and propagation in the xoy plane, so that Ez= Ez(x, y).
Here, the nomenclature transverse electric refers to the orientation
of the electric field with respect to the direction of propagation of the
wave (in the xoy plane). From the Maxwell equations, ∇ ´E ¼
iωμ0�μ �H and ∇ ´H ¼ �iωε0εE, it readily follows that

�∂x μ�1
ef ∂xEz � iχ∂yEz

� 	
� ∂y μ�1

ef ∂yEz þ iχ∂xEz
� 	

¼ ω

c

� 	2
εEz

ð11Þ

with μef= (μ2− κ2)/μ and χ= κ/(μ2− κ2). The secular equation can
be written in the form:

L̂ �i∇ð Þ � Ez ¼ E Mg � Ez ð12Þ

with E ¼ ω=cð Þ2 and

Mg � Ez � εEz:

L̂ � Ez � �∂x μ�1
ef ∂xEz � iχ∂yEz

� 	
� ∂y μ�1

ef ∂yEz þ iχ∂xEz
� 	

:

ð13Þ

As seen, Mg is a multiplication operator (multiplication by the
material permittivity) and L̂ ¼ L̂ �i∇ð Þ is a differential operator.

The Bloch modes associated with the wave vector k ¼ kxx̂ þ
kyŷ are of the form Ez ¼ ez x; yð Þeik�r, with the envelope ez(x, y)
being a periodic function that satisfies the generalized eigenvalue
problem:

L̂k � ez ¼ EMg � ez; with L̂k � L̂ �i∇þ kð Þ: ð14Þ

The operator L̂k is obtained from L̂ with the substitutions ∂j !
∂j þ ikj (j= x, y). Evidently, the generalized eigenvalue problem is
of the same type as in Eq. (3), and hence the topological phases of
L̂k can be found using the Green’s function formalism. Note that
here the eigenvalues are E ¼ ω=cð Þ2, i.e., they are the squared
eigenfrequencies of the photonic crystal (apart from a normal-
ization factor). Thus, the gap Chern number can be found using
Eq. (7) with the substitution ω ! E. For example, the Green’s
function is defined as Gk Eð Þ ¼ iðL̂k �MgEÞ

�1 and the integration
in ξ is associated with the contour E ¼ Egap þ iξ, where

Egap ¼ ðωgap=cÞ
2.

The band structure of the photonic crystal can be found with
the plane wave method32. To this end, the electric field envelope
ez is expanded into plane waves as ez ¼

P
J c

E
J e

iG J�r. Here, GJ≡
j1b1+ j2b2 is a generic reciprocal lattice primitive vector, J= (j1,
j2) represents a pair of integer numbers, and bi are the reciprocal
lattice primitive vectors defined by ai � bj ¼ 2πδi;j with i, j= 1, 2
(ref. 32).

In a plane wave basis, the operators Mg and L̂k are represented by
matrices with infinite dimension. Explicit formulas for these matrices
can be found in “Methods” [Eq. (20)]. In practice, the electric field
plane wave expansion is truncated enforcing that J= (j1, j2) with
jij j≤ jmax with i= 1, 2. In these circumstances, Mg and L̂k are given
by matrices with dimension 2jmax þ 1ð Þ2 ´ 2jmax þ 1ð Þ2 and Eq. (14)
is reduced to a generalized matrix eigenvalue problem [Eq. (21)].

The calculated band structure is plotted in Fig. 2a, for a
reciprocal photonic crystal (κ= 0, solid lines) and for a
nonreciprocal crystal (κ= 0.9, dashed lines). A sketch of the
Brillouin zone and the definition of the relevant high-symmetry
points can be found in Fig. 1c. The radius of the scattering centers
is R= 0.346a and the gyrotropic material constitutive parameters
are taken equal to ε1= ε2= 12 and μ1= μ2= 1. As seen in Fig. 2a,
for the reciprocal case, the bands touch at the Dirac point (K) due
the symmetry of the hexagonal lattice (ε1= ε2). Indeed, the
reciprocal photonic crystal is a photonic analog of graphene37.
When a static magnetic field is applied to the system, so that κ ≠

Fig. 2 Band structure and topological phase diagram. a Photonic band structure of a lossless gyrotropic photonic crystal; the material parameters of the
cylindrical rods are ε1= ε2= 12 and μ1= μ2= 1. (i) Solid lines: reciprocal system (κ= 0). (ii) Dashed lines: nonreciprocal system (κ= 0.9). b Topological
phase diagram of the first band gap of the photonic crystal showing the topological gap Chern number Cgap for different combinations of the nonreciprocity
parameter (κ) and of the spatial-asymmetry parameter (δ). The material parameters of the rods are ε1= 12+ δ, ε2= 12− δ and μ1= μ2= 1. The different
topological phases are shaded with different colors. The boundaries between the different regions are obtained with an interpolation of the numerically
calculated pairs (κ, δ) for which the band-gap closes (discrete black points).
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0, the degeneracy around the Dirac points is lifted, leading to a
complete photonic band-gap. For κ= 0.9, the band gap is
determined by 1:12=a2 < E < 1:53=a2. The plane wave expansion
was truncated with jij j≤ jmax ¼ 3.

Analogous to the Haldane model2,12,38, a band-gap between the
first and second bands can be opened either by breaking the time-
reversal symmetry (κ ≠ 0, as illustrated in Fig. 2a) or, alternatively, by
introducing some structural asymmetry between the two sub-lattices
of the hexagonal array so that the inversion symmetry is broken. To
model the latter situation, we introduce a spatial-asymmetry
parameter (δ) that controls the permittivity of the cylindrical rods
as ε1= 12+ δ and ε2= 12− δ. For δ ≠ 0 the inversion symmetry of
the system is broken. We numerically checked that for specific
combinations of the parameters (κ, δ) the band-gap between the first
and second bands is closed. These pairs of (κ, δ) are represented by
the continuous black lines in Fig. 2b.

Topological phases. The gap Chern number can be found by
feeding the matrices that representMg and L̂k in the plane wave basis
[Eq. (20)] into the integral (7). Thus, the Chern number is calculated
with the matrices of the standard plane wave method. The matrices
∂iL̂k can be evaluated analytically [see Eq. (22)]. Note that in the
plane wave basis Gk Eð Þ ¼ iðL̂k �MgEÞ

�1 is a matrix. All the

matrices have dimensions 2jmax þ 1ð Þ2 ´ 2jmax þ 1ð Þ2.
In our numerical code, the integral (7) is evaluated using the

trapezoidal quadrature rule. The Brillouin zone is uniformly
sampled with N1 ×N2 points in the (β1, β2) coordinates. The
integral along the imaginary axis (E ¼ Egap þ iξ) is truncated at
ξmax= 5/a2 and the integrand is sampled with Nξ points. The
parameter Egap is taken as the mid-point of the gap and we use
jmax= 3.

The phase diagram of the ferrite photonic crystal is plotted in
Fig. 2b. The diagram shows the gap Chern number for different
combinations of the nonreciprocity and spatial-asymmetry
parameters (κ, δ). The different topological phases are shaded
with different colors and the corresponding gap Chern numbers
are shown in the insets. As previously mentioned, the two black
curves show the combinations of (κ, δ) for which the band gap
closes. As seen, when the inversion symmetry breaking dominates
(large values of |δ|) the photonic crystal is topologically trivial. In
contrast, when the time-reversal symmetry breaking dominates
(large values of |κ|) the system is topologically nontrivial and is
characterized by the gap Chern number Cgap ¼ sgn κð Þ. According
to the bulk-edge correspondence, the gap Chern number gives the
net number of unidirectional edge states at the boundary of the
photonic crystal for opaque-type boundary conditions (e.g., a
perfect electric conducting boundary)16,39–43.

Figure 3a depicts the integrand of Eq. (7) as a function of β1 for
ξ= 0 and β2= 1/3 (solid line) and β2=−1/3 (dashed line). The
photonic crystal parameters are the same as in Fig. 2a with (κ, δ)
= (0.9, 0) and we take Egap ¼ 1:325=a2. As seen, the integrand is
peaked near β1=∓1/3, which correspond to the coordinates of
the K′ and K points, respectively. This reveals that the topological
charge is concentrated near the two Dirac points.

Figure 3b–d shows the numerically calculated gap Chern
number as a function of N≡N1=N2, Nξ and ξmax, respectively.
As seen, for modestly large values of N, Nξ and ξmax, the
numerical result converges to Cgap ¼ 1, consistent with the
topological nature of the Chern number. The computation time
of each Chern number is on the order of minutes in a standard
personal computer with high-level language programming
(Wolfram Mathematica).

The formalism can be applied with no modifications to take
into account the effect of material dissipation in the cylindrical

rods. Non-energy conserving (non-Hermitian) platforms have
recently raised a lot of interest due to the exotic physics of
systems with exceptional points44. For simplicity, here we model
the material loss by considering that μ is complex valued: μ= μ′
+ iμ″. As in the previous subsection, we take μ′= 1.

Figure 4 shows the band structure of the non-Hermitian
photonic crystal projected on the E-plane for two different values
of loss parameter: μ″= 0.1 [Fig. 4a] and μ″= 0.5 [Fig. 4b]. The
projected band structure represents the locus of E ¼ E0 þ iE00 as a
function of the real-valued wave vector of the Bloch modes with
E ¼ ω a=cð Þ2. For a lossy system the projected band structure lies
in the lower-half frequency plane, different from the lossless case
[Fig. 2a] where E is real valued. As seen in Fig. 4, for both
examples there is a vertical strip of the E-plane (shaded light-blue
region) free of natural modes. This vertical strip represents the
band gap. The two projected bands remain disconnected even in
case of relatively strong material dissipation. In other words,
typically the material dissipation does not close the band gap.

Figure 5 reports a study analogous to that of Fig. 3, but for a
lossy photonic crystal with μ1= μ2= 1+ i0.1. As in the lossless
case, the integrand g is peaked at the Dirac points K′ and K (see
Fig. 5a), but now the topological charge is distributed more evenly
through the wave vector space. The convergence rate and the
computational effort to find the gap Chern number of the non-
Hermitian system are similar to the lossless case (see Fig. 5b–d).
Furthermore, the numerical results confirm that the band gap of
the projected band structure [Fig. 4a] is topologically nontrivial.
The topological number is insensitive to the value of μ″ in the
range 0 ≤ μ″ < 0.5, as in this range the band-gap remains open.
Thus, the topological properties of the photonic crystal are
strongly robust to the dissipation effects.

The formalism can also be applied with no modifications to
gainy systems. To illustrate this we consider a parity-time (PT )
symmetric45,46 gyrotropic photonic crystal. PT -symmetric sys-
tems have rather unique features and can be implemented in
optics through a judicious inclusion of gain/loss regions47–50 or
with moving media51,52. The spectrum of PT -symmetric systems
is real valued when the eigenfunctions simultaneously diagonalize
the system Hamiltonian and the PT operator. Otherwise, the
spectrum can be complex valued, which corresponds to a
spontaneously broken PT -symmetry.

In our case, the PT -symmetry can be enforced by imposing
that μ1= 1+ iμ″ and μ2= 1− iμ″ with μ″ > 0, so that the first
sub-lattice of cylinders is formed by dissipative elements and
the second sub-lattice by gainy elements. The rest of the
structural parameters are as in Fig. 2a. The parity operator
is P : x; y; zð Þ ! �x; y; zð Þ. The operator P interchanges the
role of the two sub-lattices and flips the sign of the
nonreciprocity parameter κ. The time-reversal operator also
flips the sign of (the real valued) κ and transforms loss into
gain and vice versa. Thus, the photonic crystal of Fig. 1b is
indeed PT -symmetric.

Figure 6 shows the band structure of the PT -symmetric
gyrotropic photonic crystal projected on the E-plane for four
different cases: μ″= 0.1 [Fig. 6a], μ″= 2 [Fig. 6b], μ″= 2.1
[Fig. 6c], and μ″= 2.2 [Fig. 6d]. As seen in Fig. 6, for a lossy-gainy
system the projected band structure lies both in the lower and
upper-half frequency planes, different from the lossy case [Fig. 4]
where E00 is always negative. Because of the PT -symmetry the
projected band structure exhibits a mirror-symmetry with respect
to the real-frequency axis. Analogous to Fig. 4, the bands are
projected onto the regions filled in dark-blue color. Figure 6 was
obtained under the simplifying hypothesis that the boundary of
the projected band structure is determined by the path Γ−M−K
−Γ−M−K′−Γ. We numerically checked that such approximation
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leads to results almost coincident with the exact projected band
structure. For small values of μ″ [Fig. 6a], the first two projected
bands are disconnected. The gap topological number is
numerically calculated in the same manner as in the previous
examples and is equal to Cgap ¼ sgn κð Þ, consistent with Figs. 3
and 5. Therefore, as could be expected, moderate values of μ″ do
not affect the topological properties of the system. For larger
values of the loss–gain parameter μ″ [Fig. 6b], the band gap
between the first two projected bands becomes very narrow. The
band-gap closes approximately for μ″= 2.1, when the two bands
touch at two distinct points [Fig. 6c]. For larger values of μ″
[Fig. 6d], the two bands remain connected and the topological
classification is not feasible.

Conclusion
We used a Green’s function method to calculate from first
principles the topological invariants of Hermitian and non-

Hermitian photonic crystals with a broken time-reversal
symmetry. The main advantage of our formalism is that it
does not require any detailed knowledge of the photonic
band structure or of the Bloch modes. In particular, different
from the topological band theory, the Green’s function
approach can be applied with no modifications when the dif-
ferent photonic bands cross at one or more points of the
Brillouin zone. The computational effort for the non-
Hermitian case is essentially the same as for the Hermitian
case. The Green’s function is numerically calculated using
the standard plane wave method. We applied the formalism to
magnetic-gyrotropic photonic crystals. It was shown that
the topological phases of a photonic crystal are strongly robust
to non-Hermitian perturbations (dissipation and/or gain).
We expect that our work will find widespread application in
the characterization of emergent topological photonic
platforms.

Fig. 3 Convergence analysis of the Chern number. a Integrand of Chern number integral g [Eq. (7)] (in arbitrary units) as a function of β1 for β2= 1/3
(solid line) and β2=−1/3 (dashed line). b–d The numerically calculated gap Chern number Cgap as a function of b N,. c Nξ. and d ξmax. The material
parameters are ε1= ε2= 12, μ1= μ2= 1, and κ= 0.9. The values of N, Nξ, and ξmax are 10, 50, and 5/a2, respectively, except for the parameter shown in the
horizontal axis of a plot.
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Fig. 4 Projected band structures of lossy gyrotropic photonic crystals. The band structures are projected onto the regions filled in dark-blue color of the
complex E ¼ E0 þ iE00 plane. The photonic crystal parameters are ε1= ε2= 12, μ1= μ2= 1+ iμ″, and κ= 0.9. The loss parameter is a μ″= 0.1 and b
μ″= 0.5.
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Fig. 5 Convergence analysis of the Chern number of a non-Hermitian photonic crystal. The photonic crystal is formed by inclusions of a lossy gyrotropic
material with ε1= ε2= 12, κ= 0.9 and μ1= μ2= 1+ iμ″ with μ″= 0.1. a Integrand of Chern number integral g [Eq. (7)] (in arbitrary units) as a function of β1
for β2= 1/3 (solid line) and β2=−1/3 (dashed line). b–d The numerically calculated gap Chern number Cgap as a function of b N, c Nξ, and d ξmax. The
values of N, Nξ, and ξmax are 10, 50, and 5/a2, respectively, except for the parameter shown in the horizontal axis of a plot.
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Fig. 6 Projected band structures of PT -symmetric gyrotropic photonic crystals. The band structures are projected onto the regions filled in dark-blue
color of the complex E ¼ E0 þ iE00 plane. The photonic crystal parameters are ε1= ε2= 12, μ1 = 1+ iμ″, μ2 = 1− iμ″, and κ= 0.9. The loss–gain parameter
μ″ is a μ″= 0.1, b μ″= 2, c μ″= 2.1, and d μ″= 2.2.
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Methods
Plane wave representation of the operators Mg and L̂k . Here, we obtain the
representations of the operators Mg and L̂k [see Eqs. (13) and (14)] in a plane wave
basis32.

To begin with, we expand the periodic functions μ�1
ef , χ, and ε into a Fourier

series:

μ�1
ef ¼

X
J

pμ�1
ef ;J

eiGJ �r; χ ¼
X
J

pχ;Je
iGJ �r; and ε ¼

X
J

pε;Je
iGJ �r: ð15Þ

The Fourier coefficients are pμ�1
ef ;J

, pχ,J, and pε,J, respectively. For a generic function

g the Fourier coefficients are pg;I ¼ 1
Acell

R
cell g rð Þe�iGI �rd2r. For the geometry of

Fig. 1b, the function g (where g can stand either for μ�1
ef , χ or ε) is sectionally

constant. Let us suppose that g= gb in the air (background) region and g= g1 and
g= g2 in the first and second sub-lattices of the hexagonal array, respectively. A
straightforward calculation shows that32

pg;I ¼ gbδI;0 þ
X
i¼1;2

fV ;i gi � gbð Þe�iGI �r0;i 2J1 GIj jRið Þ
GIj jRi

; ð16Þ

where δI,0 is Kronecker’s symbol, J1 is the cylindrical Bessel function of first kind
and first order, Ri is the radius of the rods of the ith array, r0,i gives the position of
the ith rod in the unit cell, and fV;i ¼ πR2

i =Acell with Acell ¼ b1 ´ b2j j the area of the
unit cell. Note that pg;0 ¼ gb þ

P
i fV;i gi � gbð Þ.

Consider now the operators defined in Eq. (13) with the electric field envelope
(ez ¼ Eze

�ik�r) expanded in terms of plane waves as ez ¼
P

J c
E
J e

iGJ �r. Then, it is
simple to check that

μ�1
ef ∂xEz ¼

X
I;J

ei kþG Ið Þ�rix̂ � k þ G J

� �
pμ�1

ef ;I�Jc
E
J : ð17Þ

From here, it follows that:

�∂x μ�1
ef ∂xEz

� �
¼

X
I;J

ei kþGIð Þ�rx̂ � k þ G J

� �
x̂ � k þ G Ið Þpμ�1

ef ;I�Jc
E
J : ð18Þ

Proceeding in the same way to calculate the other terms in Eq. (13), it is found that:

L̂ � Ez ¼
X
I;J

ei kþGIð Þ�r x̂ � k þ G Ið Þ x̂ � k þ G J

� �
þ ŷ � k þ G Ið Þ ŷ � k þ G J

� �� �
pμ�1

ef ;I�Jc
E
J

þ
X
I;J

ei kþG Ið Þ�ri ŷ � k þ G Ið Þ x̂ � k þ G J

� �
� x̂ � k þ G Ið Þ ŷ � k þ G J

� �� �
pχ;I�Jc

E
J :

ð19Þ
Furthermore, it is clear that Mg � Ez ¼

P
I;J e

i kþGIð Þ�rpε;I�Jc
E
J . Since

L̂k � ez ¼ e�ik�rL̂ � Ez , the operators L̂k and Mg are represented by the matrices
Mg→ [MI,J] and L̂k ! ½LI;J� with

MI;J

h i
¼ pε;I�J

h i

LI;J
h i

¼ k þ G Ið Þ � k þ G J

� �
pμ�1

ef ;I�J þ i k þ G J

� �
´ k þ G Ið Þ

� �
� ẑ pχ;I�J

h i
:

ð20Þ
Note that [LI,J] ([MI,J]) stands for a matrix with element LI,J (MI,J) in line I and
column J. The generalized eigensystem (14) is equivalent to

LI;J
h i

� cEJ

h i
¼ E MI;J

h i
� cEJ

h i
: ð21Þ

Finally, the operators ∂i L̂k are represented by

∂i L̂k ! ûi � 2k þ G I þ G J

� �
pμ�1

ef ;I�J þ i ûi ´ G I � G J

� �� �
� ẑ pχ;I�J

h i
ð22Þ

in the plane wave basis, where û1 ¼ x̂ and û2 ¼ ŷ are unit vectors along the
coordinates axes.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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