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A graphene sheet biased with a drift electric current offers a unique opportunity to attain unidirectional,
backscattering-immune, and subwavelength light propagation, as proposed by T. A. Morgado and M. G.
Silveirinha [ACS Photonics 5, 4253 (2018)]. Here, we investigate in detail the impact of the intrinsic nonlocal
response of graphene in the dispersion characteristics of the current-driven plasmons supported by single-layer
and double-layer graphene systems. It is theoretically shown that even though the nonlocal effects weaken the
spectral asymmetry of the plasmon dispersion, the studied platforms can support unidirectional backscattering-
immune guided modes. Our analysis also confirms that the drift-current bias can effectively pump the graphene
plasmons and enhance the propagation distance. Moreover, it is shown that the nonreciprocity and optical
isolation can be boosted by pairing two drift-current-biased graphene sheets due to the enhanced radiation drag
by the drifting electrons.
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I. INTRODUCTION

Reciprocity is a fundamental feature of conventional pho-
tonic systems stemming from the linearity and invariance
of Maxwell’s equations under time-reversal symmetry [1–4].
Lorentz reciprocity implies that the transmission level be-
tween two points is the same independently of the propagation
direction [2–3].

Nonreciprocal devices are, however, essential building
blocks of many photonic systems. Typical nonreciprocal pho-
tonic devices rely on magneto-optical materials externally
biased by a static magnetic field [5–7]. Curiously, some of
these systems have nontrivial topological properties and sup-
port unidirectional backscattering-immune chiral edge states
[8–13]. As widely discussed in the recent literature, nonre-
ciprocal “magnetic” solutions are not fully satisfactory, as
the associated biasing circuit is bulky and the nonreciprocal
responses of magneto-optical materials are relatively weak
at terahertz and optical frequencies. Due to these reasons,
there has been an increasing demand for magnetic-free non-
reciprocal photonic components that can be straightforwardly
incorporated in highly integrated photonic circuits [14–27].

Recently, a novel route to achieve magnetic-free nonrecip-
rocal subwavelength propagation in graphene that is compat-
ible with modern highly integrated nanophotonic technology
was explored in Refs. [28–33]. In particular, we theoretically
demonstrated in [32] that a graphene sheet biased with a
drift electric current may enable the unidirectional broadband
propagation of surface plasmon polaritons (SPPs). Further-
more, we have also shown that the current-driven graphene
plasmons are protected against backscattering from obstacles
and imperfections, similarly to the “one-way” topologically
protected chiral edge modes supported by nonreciprocal topo-
logical photonic systems [8–13].

*Corresponding author: mario.silveirinha@co.it.pt

The impact of the bare nonlocal graphene response, i.e.,
the dependence of the conductivity on the wave vector, in
the dispersion of the current-driven graphene plasmons was
only superficially analyzed in Ref. [32]. However, nonlocal
effects may critically affect the propagation of the graphene
plasmons, especially for highly confined SPPs with large wave
vectors approaching the Fermi wave number kF = μc/(h̄vF)
(μc is the chemical potential, vF the Fermi velocity, and h̄ is
the reduced Planck constant) [34]. In this article, we study
in detail the impact of the nonlocal effects in the disper-
sion characteristics of the current-driven SPPs not only in
single-layer graphene (SLG) systems, but also in double-layer
graphene (DLG) systems. The motivation to consider a DLG
configuration is to examine whether the nonreciprocal effects
can be enhanced by having an additional drift-current-biased
graphene sheet. It is shown—with the nonlocal effects fully
taken into account—that for sufficiently large drift velocities
the drift current can effectively drag the SPPs, leading to a
“one-way” propagation with enhanced propagation lengths
both in SLG and DLG systems. Moreover, we show that
the nonreciprocity and optical isolation in DLG systems may
be indeed boosted as compared to the SLG configuration.
These results confirm thereby the unique potentials of the
drift-current biased graphene platforms in nanophotonics.

This paper is organized as follows. In Sec. II the nonlocal
conductivity of the drift-current-biased graphene is reviewed
and discussed. In Sec. III, we analyze in detail the influence
of the nonlocal effects on the dispersion of the current-driven
graphene plasmons supported by a SLG system. In Sec. IV,
we investigate the dispersion properties of the current-driven
SPPs in a DLG system. The conclusions are drawn in Sec. V.

II. NONLOCAL CONDUCTIVITY OF THE
DRIFT-CURRENT-BIASED GRAPHENE

The nonlocal response of graphene can be characterized
using the random-phase approximation (RPA) [35–37], which
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yields an analytical expression for the surface conductivity
of graphene in the zero-temperature limit [35,37–38]. For
a positive real-valued frequency ω and a real-valued trans-

verse wave number q =
√

k2
x + k2

y , the collisionless nonlocal

graphene conductivity is given by (the space-time variation
ei(kxx+kyy)e−iωt is implicit, with ω being the oscillation fre-
quency) [37–38]

σg(ω, q) = −iω
e2

4π h̄

[
8kF

q2vF
+ [G(−�−) − iπ ]θ (−�− − 1) + G(�−)θ (�− + 1) − [G(�+) − iπ]√

ω2 − q2v2
F

]
, (1)

with G(z) = z
√

z2 − 1 − ln(z + √
z2 − 1), �± =

(h̄ω ± 2μc)/(h̄vFq), and θ (x) the unit step function.
This formula includes both the intraband and interband
contributions. The effect of collisions can be taken into
account using the phenomenological formula [34,37–38]

σg(ω, q, τ ) = −iω
[1 + i/(ωτ )]χ (ω + i/τ , q)

1 + i/(ωτ )χ (ω + i/τ , q)/χ (0, q)
, (2)

where χ (ω, q) = σg(ω, q)/(−iω) is the susceptibility and τ is
the relaxation time.

According to the Galilean Doppler shift model developed
in [39–40], when the graphene sheet is biased by a drift
current the conductivity should be modified as

σ drift
g (ω, kx ) ≈ (ω/ω̃)σg(ω̃, q)|

q=
√

k2
x
. (3)

The drifting electrons travel along the x direction with drift
velocity v0 (see Fig. 1), and it is implicit that the in-plane
electric field is along x (longitudinal excitation). In the above,
ω̃ = ω − kxv0 is the Doppler-shifted frequency, kx is the wave
number along the x direction (we only consider plasmons
with ky = 0), and σg(ω, q) is the nonlocal zero-temperature
graphene conductivity given by Eqs. (1) and (2).

Due to the dissipative response of graphene [41], the
graphene plasmons are excitations with complex-valued wave
number kx = k′

x + ik′′
x . In order to numerically calculate σ drift

g
it is necessary to evaluate the bare graphene conductivity σg

for ω̃ and kx complex-valued. Crucially, this requires that
Eq. (1) be surgically modified to become an analytic function
of kx. In particular, it is necessary to adjust the branch cuts

FIG. 1. A graphene sheet embedded in a dielectric with permit-
tivity εr,s. A static voltage generator induces an electron drift in the
graphene sheet.

of the square root and logarithm functions so that they be-
come continuous for complex-valued kx. In Appendix A, we
provide an explicit formula for σg valid for moderately small
deviations of kx from the real axis (|k′′

x /k′
x| � 1). In addition,

we also show how one can modify Eq. (1) so that it becomes
valid for complex frequencies and a real-valued kx.

Throughout the paper, it is assumed that kBT � μc, so that
the zero-temperature (T = 0K) approximation can be used to
determine the graphene surface conductivity. The chemical
potential of the graphene sheet is taken equal to μc = 0.1 eV,
the collision time τ = 170 fs [31], and it is supposed that
the graphene sheet is surrounded by a dielectric with relative
permittivity εr,s = 4 (e.g., SiO2 or h-BN).

Figure 2 illustrates the variation of the nonlocal graphene
conductivity with either ω or kx complex-valued, calculated
using Eqs. (A1) and (A2) (solid curves in Fig. 2). All the
curves are analytical continuations of the no-drift collisionless
graphene conductivity result [given by Eq. (1)] represented
with orange dashed curves in Fig. 2. In general, when v0 =
0 the graphene conductivity exhibits a resonant behavior at
ω′ ≈ kxvF [e.g., see the blue solid and orange dashed curves
of Fig. 2(a)], which is the well-known square-root singularity
of the graphene conductivity at the threshold of single-particle
excitations or Landau damping [35,42–43]. Crucially, the
drift-current-biased graphene is an active medium, as one can
have Re{σ drift

g } < 0 in the upper-half frequency plane (ω′′ >

0) for kx real-valued [39] [see thicker green and purple curves
in Fig. 2(a), panel (i)]. This regime, which is fully compatible
with the square root singularity of the bare-graphene response,
corresponds to a “negative Landau damping.” The optical gain
is due to the conversion of kinetic energy of the moving
charges into electromagnetic radiation.

The drift current (v0 �= 0) shifts the position of the square-
root singularity due to the frequency Doppler shift. Further-
more, the drift current leads to an evident symmetry breaking
(nonreciprocity) of the graphene response [see Fig. 2(b)] such
that σ drift

g (ω, k′
x ) �= σ drift

g (ω,−k′
x ), in accordance with Eq. (3).

Figure 3 compares the conductivity dispersion ob-
tained with Eq. (3) (solid curves), with the result
predicted by a local (long wavelength) approximation
σ drift

g (ω, kx ) ≈ (ω/ω̃)σg(ω̃, q = 0+) (dashed curves). Note
that σg(ω, q = 0+) is the (bare) graphene conductivity de-
termined by the standard local Kubo formula [34,37]. For
simplicity, the effect of collisions is ignored so that τ → ∞.
The conductivity is evaluated for ω and kx real-valued. As
seen in Fig. 3(a) (dashed curves), the local model yields
Re{σ drift

g (ω)} = 0 for frequencies below the interband tran-
sition threshold ω = 2μc/h̄, even in presence of the drift
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FIG. 2. (a) Real (i) and imaginary (ii) parts of the graphene conductivity in the upper-half frequency plane as a function of the normalized
frequency h̄ω′/μc (ω = ω′ + iω′′) for different drift velocities, kx = 0.8kF, ω′′/(2π ) = 0.1 THz, and calculated using Eq. (A2). The thicker
green and purple curves in (i) correspond to the negative Landau damping regions. (b) Real (i) and imaginary (ii) parts of the graphene
conductivity as a function of k′

x/kF (kx = k′
x + i k′′

x ) for different drift velocities, ω/(2π ) = 30 THz, k′′
x = 0.05k′

x , and calculated using
Eq. (A1). The orange dashed curves in (a) and (b) correspond to the collisionless (τ → ∞) nonlocal graphene conductivity with real-valued ω

and kx , calculated using Eq. (1). The conductivity normalization factor in the plots is σ0 = e2/(4h̄).

current. In contrast, the nonlocal model predicts the negative
Landau damping region with Re{σ drift

g (ω)} < 0, as discussed
previously. Thereby, the active response of the drift-biased
graphene sheet is less evident in the local model formal-
ism. Interestingly, Fig. 3(b) shows that with a drift-current
biasing, Im{σ drift

g (ω)} calculated with the local conductivity
(green dashed curve) exhibits an anomalous dispersion, with
Im{∂ωσ drift

g (ω)} > 0, for low frequencies [see thicker green

curve in Fig. 3(b)]. We show in Appendix B that the anoma-
lous conductivity dispersion implies that the energy “stored”
in the material is negative. In other words, when the material
interacts with a time-harmonic excitation it gives away energy
before reaching a steady state, rather than extracting energy
from the excitation as in the no-drift case. This property
unveils the active nature of the drift-biased graphene in the
local-model description.

FIG. 3. Real (a) and imaginary (b) parts of the collisionless graphene conductivity as a function of the normalized frequency h̄ω/μc for
kx = 0.8kF. The conductivity normalization factor is σ0 = e2/(4h̄). Solid curves: Nonlocal graphene conductivity [Eq. (1)]; dashed curves:
local Kubo conductivity [34,37]. The thicker dashed green curve in (b) corresponds to the anomalous dispersion region. Note that the real part
of the conductivity calculated using the local conductivity is exactly zero for ω < 2μc/h̄, and thus the dashed lines in panel (a) are coincident
with the horizontal axis.
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FIG. 4. Dispersion of the SPPs supported by the graphene sheet for several drift velocities v0. The dispersion curves are shown for both
positive and negative frequencies. (a) Nonlocal model results calculated using the conductivity formula (A1); (b) local model results calculated
using the Kubo conductivity formula [34,37].

III. PLASMONS IN A DRIFT-CURRENT-BIASED
GRAPHENE SHEET

The dispersion characteristic of the transverse magnetic
(TM) current-driven graphene SPPs in a single-layer graphene
system (Fig. 1) is given by [32–34]

2iωε0εr,s
/
γs − σ drift

g (ω, kx ) = 0, (4)

where c is the speed of light in vacuum, and γs =√
k2

x − εr,s(ω/c)2 is the transverse (along z) attenuation con-
stant that determines the confinement of the graphene plas-
mons. Figures 4(a) and 4(b) show the dispersions of the
current-driven graphene SPPs calculated using the (bare) non-
local conductivity [σg(ω, q)] and the (bare) local conductivity
[σg(ω, q = 0+)] in Eq. (3), respectively. For the sake of clarity
and completeness, we depict both the positive and negative
frequency branches. The negative frequency solutions can be
found from the positive solutions using the transformation
ω(kx ) → −ω∗(−k∗

x ), which is a consequence of the reality of
the electromagnetic field.

Comparing Fig. 4(a) with Fig. 4(b), it is seen that the
nonlocal effects may substantially alter the dispersion of the
graphene plasmons with values of kx larger than or compara-
ble to kF. In particular, the nonlocal effects prevent the SPP
dispersion curves from crossing the line ω = 0 for large drift
velocities, which is different from the local conductivity re-
sults. The ω = 0 band crossing predicted by the local model is
rooted in the fact that with the local formalism σ drift

g /ω is only
a function of ω̃ and thereby, with a quasistatic approximation,
the plasmon dispersion necessarily bends by the amount kxv0.
Despite this qualitative difference, the drift-current biasing
of graphene causes a strong symmetry breaking in the SPP
dispersion in both models. The degree of asymmetry increases
as the drift velocity increases. Remarkably, for large enough
drift velocities v0, the moving electrons effectively drag the

plasmons toward the +x direction (the direction of v0), such
that the propagation along the −x direction is forbidden. In the
nonlocal model this effect is only possible for drift velocities
v0 > vF/2 [see Fig. 4(a)]. For example, for v0 = vF [see the
purple solid curves in Fig. 4(a)] and for frequencies above
7.5 THz the graphene sheet only supports SPPs propagating
along the +x direction. With a local response, however,
regimes of one-way propagation are feasible for drift veloc-
ities as low as v0 = vF/4 [see Fig. 4(b)]. For instance, for
the drift velocity v0 = vF/2 [see blue curves in Fig. 4(b)],
the propagation is unidirectional (along the +x direction) for
frequencies above 11 THz.

For v0 � vF/2 the SPP dispersion obtained with the non-
local model predicts both positive and negative kx solutions
for a given frequency [see Fig. 4(a)]. Importantly, it turns out
that the SPPs that propagate along the −x direction are much
more attenuated than the SPPs that propagate along the +x
direction, even when the nonlocal effects are considered [see
Fig. 5(a)]. Thus, regimes of effective unidirectional propaga-
tion may be attainable when v0 is significantly lower than vF,
as discussed in greater detail below.

Figure 5(b) shows the SPP propagation length δx =
1/Im{kx} normalized to the SPP wavelength (λSPP = 2π/k′

x)
as a function of frequency. Here, it is assumed that the plas-
mons propagate along the direction of the drifting electrons.
Notably, the normalized propagation length δx/λSPP may be
enhanced by the drift current bias. For instance, for v0 = vF/4
the normalized distance traveled by the SPP can be twice
as large as in the no-drift case [see green and black solid
curves of Fig. 5(b)], increasing up to 3–5 times as the drift
velocity approaches values in the range of vF/2 and vF [see
blue and purple solid curves of Fig. 5(b)]. The local con-
ductivity model tends to overestimate the propagation length
enhancement [see dashed curves of Fig. 5(b)]. In Fig. 5(c)
we show a parametric plot of k′

x + i|k′′
x | in the complex plane
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FIG. 5. (a) Ratio between the attenuation constants of the SPPs that propagate along the −x and +x directions as a function of the frequency
and for several drift velocities v0. Solid curves: Nonlocal results; dashed curves: local results. (b) SPP propagation length normalized to the SPP
wavelength (λSPP = 2π/k′

x) as a function of the frequency for the SPPs propagating along the +x direction [the corresponding SPP dispersions
are depicted in Figs. 4(a) and 4(b)]. Solid curves: Nonlocal results; dashed curves: local results. (c) Parametric plot of the plasmon propagation
constant k′

x + i|k′′
x | in the complex plane [kx = kx (ω)] with no electron drift (black curves) and with drifting electrons (blue curves). The color

gradient represents the SPP frequency.

with the frequency varying in the range 0–60 THz. As seen,
for plasmons with the same k′

x the effect of the drift current
is to decrease (increase) the attenuation constant when the
direction of propagation is parallel (antiparallel) to that of
the drifting electrons. Curiously, a related effect may occur
when the material substrate is a moving metasurface [27]. The
enhancement of the propagation length for k′

x > 0 is plausibly
rooted in the optical gain provided by the drifting electrons.

So far, our analysis was based on the conductivity model
(3), where the effect of the drift current is determined by
a Galilean Doppler shift. Different models for the graphene
conductivity were introduced by other authors [28–31]. In
particular, several works characterized the graphene conduc-
tivity using a skewed Fermi distribution in the Lindhard
formula, which leads to a conductivity that is approximately
determined by a relativistic-type Doppler shift transformation.
The corresponding conductivity is given by

σ Rel
g (ω, kx ) ≈ (ω/ω̃)σg(ω̃, q̃)|

q̃=
√

k̃2
x
, (5)

with ω̃ = γ (ω − kxv0), k̃x = γ (kx − ωv0/v
2
F), and γ =

1/

√
1 − v2

0/v
2
F the graphene Lorentz factor. In a single-

band approximation, the above conductivity formula cap-
tures well the main features of the conductivity models pro-
posed in Refs. [29–31] (for more details see Ref. [40] and
Appendix C).

Figure 6(a) shows the dispersion characteristic of the
current-driven SPPs for two different drift velocities, calcu-

lated using the Galilean Doppler shift model [Eq. (3)] (solid
curves) and the relativistic Doppler shift model [Eq. (5)]
(dot-dashed curves). Clearly, the Galilean Doppler shift model
predicts a larger spectral asymmetry and stronger nonre-
ciprocity than the relativistic Doppler shift model. Similarly,
Fig. 6(b) shows that the relativistic model predicts a weaker
discrepancy between the attenuation constants |k′′

x,−| and
|k′′

x,+| of counterpropagating plasmons. On the other hand,
the relativistic-type model predicts a considerably larger en-
hancement of the propagation length of the SPPs propagating
along the direction of the drift-current bias [see Fig. 6(c)].
In our understanding, the Galilean Doppler shift model is
more accurate than the relativistic Doppler shift model, as
the effect of the drift-current does not change the distribution
of canonical momentum (i.e., it does not lead to a skewed
distribution of canonical momentum), but rather the mean
energy of the graphene electrons [40].

The nonreciprocal response of graphene arises mainly due
to the intraband transitions. This is confirmed by Fig. 6(a),
where we plot the SPP dispersion for v0 = vF/2, calcu-
lated using the Galilean Doppler shift model with the (bare)
graphene conductivity given by Eq. (C2) (orange dashed line);
this model only takes into account the intraband light-matter
interactions. As seen, the calculated dispersion is nearly co-
incident with the one obtained using the full conductivity
response (intraband and interband terms) of graphene [solid
blue line in Fig. 6(a)]; thus, the interband conductivity term is
of secondary importance.

FIG. 6. Similar to Fig. 4 and Fig. 5, but calculated using the Galilean Doppler shift model [Eq. (3)] (solid curves) and the relativistic
Doppler shift model [Eq. (5)] (dot-dashed curves). The orange dashed line in (a) was obtained using Eq. (3) with the (bare) graphene
conductivity calculated with Eq. (C2), which only takes into account the intraband response.
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FIG. 7. A linearly polarized emitter (with vertical polarization) positioned at (x, z) = (0, z0) radiates near a graphene sheet when (a) the
propagation path is free or (b) an obstacle blocks the propagation path. (i), (ii) Time snapshots of the x component of the electric field Ex

(in arbitrary unities) of the current-driven graphene SPPs. (i) v0 = vF/2, f = 31.5 THz, and z0 = 10 nm; (ii) v0 = vF/4, f = 29.5 THz, and
z0 = 15 nm. In (b) the obstacle is located at (i) (xobst, zobst ) = (245 nm, 12 nm), (ii) (xobst, zobst ) = (200 nm, 12 nm).

Next, we consider a scenario wherein a linearly polarized
emitter placed in the immediate vicinity of the graphene sheet
(i.e., in the near-field region) is used to excite the graphene
plasmons [see the top panel of Fig. 7(a)]. The SPP fields are
calculated with the same formalism as in Ref. [32], but now
using the nonlocal conductivity given by formula (A1). Figure
7(a) shows time snapshots of the longitudinal component of
the electric field (Ex) excited by the near-field emitter. The
time snapshots are qualitatively similar to those reported in
Ref. [32], and confirm that a drift-current-biased graphene
sheet supports unidirectional SPPs that propagate only along
the direction of the drifting electrons (+x direction), with the
nonlocal effects fully considered. Moreover, it is interesting to
see that one-way propagation regimes are, in fact, possible for
drift velocities as low as v0 = vF/4 [see Fig. 7(a), panel (ii)].

We also studied a configuration in which an obstacle
partially blocks the propagation path [see the top panel of
Fig. 7(b)]. The obstacle is modeled as a thin metallic strip with
εr,obst = −4.1 and width wobst = 12 nm. The electromagnetic
fields scattered by the metallic strip are found as explained
in Ref. [32]. The time snapshots of the electric field are
shown in Fig. 7(b) and confirm that the one-way SPPs are
strongly immune to the backscattering effects. Notably, the
backscattering suppression is achievable for drift velocities
significantly lower than vF [see Fig. 7(b), panel (ii)]. The
obstacle attenuation |Eno−obst

x /Eobst
x | at 20 THz is shown in

Fig. 8 as a function of the drift velocity. The backscattering is
evidently reduced for v0 > 0.4vF. Qualitatively similar results
were reported in Ref. [32] but relying on the local model
approximation.

IV. PLASMONS IN A DRIFT-CURRENT-BIASED
DOUBLE-LAYER GRAPHENE SYSTEM

One may wonder if by adding an additional drift-current-
biased graphene layer to the system it may be possible
to enhance the radiation drag by the drifting electrons. To
investigate this problem, next we study the propagation of
the current-driven SPPs supported by a DLG system [see

Fig. 9(a)]. The dispersion equation for the TM SPPs in this
system can be written as [34][

(2εr,s
/
γs) − (

1/κdrift
g

)]2
eγsd − (

1/κdrift
g

)2
e−γsd = 0, (6)

where d is the distance between the two graphene sheets, and
κdrift

g (ω, kx ) = iωε0/σ
drift
g (ω, kx ). The two graphene sheets are

simultaneously biased with the same drift current and with the
same chemical potential (μc = 0.1eV).

The calculated dispersion characteristic for a distance d =
5 nm and different drift velocities is shown in Figs. 9(b)–9(f).
As expected, two hybridized SPP modes arise in this system:
an acoustic (or even) mode and an optical (or odd) mode; the
designations even and odd refer to the magnetic field profile.
Without the drift current biasing [see Fig. 9(b)], the dispersion
curves of the two SPP modes are related as ω(k′

x ) = ω(−k′
x ),

in agreement with the parity and time-reversal symmetries

FIG. 8. Ratio between the amplitudes of the electric field without
the obstacle (E no−obst

x ) and with the obstacle (E obst
x ) as a function

of the normalized drift velocity v0/vF at the fixed frequency f =
20 THz. The emitter is placed at (x0, z0) = (0, 12 nm) and the obsta-
cle at (xobst, zobst ) = (200 nm, 12 nm). The field is measured at the
point (xp, zp) = (100 nm, 0) (blue curve) and at the point (xp, zp) =
(350 nm, 0) (green curve).

075102-6



NONLOCAL EFFECTS AND ENHANCED NONRECIPROCITY … PHYSICAL REVIEW B 102, 075102 (2020)

FIG. 9. (a) Two graphene sheets are embedded in a dielectric with permittivity εr,s. The graphene sheets are biased with identical drift
currents. (b)–(f) Dispersion of the SPPs supported by the DLG system for d = 5 nm and for the values of v0 indicated in the insets. Solid
curves: Acoustic (even) modes; dashed curves: optical (odd) modes. The brown dot-dashed curves in (e) correspond to the SPP supported by
the SLG configuration.

(taken separately). Quite differently, in the presence of a
drift-current biasing, the parity and time-reversal symmetries
are individually broken, and thus the spectral symmetry be-
tween the +k′

x and −k′
x parts of the dispersion curves is

lost [see Figs. 9(c)–9(f)]. In particular, for sufficiently large
drift velocities, the symmetry breaking caused by the drift-
current biasing gives rise to wide frequency bands wherein
the acoustic and/or optical SPP modes only propagate along
the +x direction (the direction of the drifting electrons), which
is consistent with the results of Sec. III for the drift-current-
biased SLG system.

Moreover, analogous to what happens in the drift-current-
biased SLG system, the attenuation factor of the current-
driven acoustic and optical SPPs that propagate along the
−x direction is considerably larger than that of the SPPs

propagating along the +x direction [see Fig. 10(a) for v0 =
vF/2]. Hence, the unidirectional propagation of the DLG plas-
mons may be also achievable for drift velocities significantly
smaller than vF. To further study how the drift-current biasing
affects the dispersion properties of the DLG plasmons, we cal-
culated the SPP propagation length [see Fig. 10(b)]. Clearly,
the propagation length of both the acoustic and optical SPPs
is considerably augmented when a drift-current biasing is
applied to the graphene sheets.

The brown curves in Fig. 9(e) and in Figs. 10(a) and
10(b) are for the SPP supported by a SLG configuration
with v0 = vF/2. Quite interestingly, for frequencies above 19
THz |k′′

x,−/k′′
x,+| has a maximum value for the optical SPP

of the DLG system. This indicates that with two sheets of
drifting electrons it may be possible to have an enhanced

FIG. 10. (a) Ratio between the attenuation constants of the plasmons that propagate along the −x and +x directions as a function of the
frequency for v0 = vF/2. (b) SPP propagation lengths (δx) with (solid curves) and without (dashed curves) drift-current biasing as a function of
the frequency for the SPPs propagating along the +x direction. Blue curves: Acoustic (even) mode; green curves: optical (odd) mode; brown
curves: SPP SLG.
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drag effect and enhanced optical isolation, as compared to
a single graphene sheet. Furthermore, as seen in Fig. 10(b)
the propagation length of the optical SPP of the DLG con-
figuration is greater than for the SLG configuration up to
frequencies on the order of 25 THz. These results suggest that
the additional drift-current-biased graphene sheet can enable
a stronger nonreciprocity and better optical isolation, if the
DLG system can be operated using the optical SPP.

V. CONCLUSIONS

In conclusion, we theoretically studied the impact of the
spatial dispersion of the bare graphene conductivity on the
propagation of current-driven graphene plasmons in single-
layer and double-layer graphene systems. It was shown that
even though the nonlocality weakens the nonreciprocal ef-
fects, the drift-current bias remains a rather exciting solution
to obtain one-way propagation and a one-atom thick “iso-
lator.” Interestingly, we have shown that the nonreciprocity
strength and isolation level can be higher in a system formed

by two drift-current-biased graphene sheets, due to the addi-
tional drag provided by the drifting electrons of the second
graphene layer. Furthermore, it was demonstrated that the
drift-current biasing may strongly suppress the backscattering
caused by an obstacle placed along the propagation path of the
graphene SPPs and may boost the propagation length of the
graphene plasmons. The drift-current-biased graphene may
be, therefore, a very attractive tunable nonreciprocal platform
for highly integrated nanophotonic circuits.
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APPENDIX A: ANALYTICAL CONTINUATION OF THE NONLOCAL CONDUCTIVITY FORMULA

In this Appendix, we extend the nonlocal zero-temperature conductivity formula (1) reported in [36–37] to the cases where
either kx or ω is complex.

For a complex-valued kx (kx = k′
x + ik′′

x ) with |k′′
x /k′

x| � 1, σg can be calculated using

σg(ω, q) = −iω
e2

4π h̄

[
8kF

q2vF
+ Gm,2(�−) − [Gm,2(�+) − iπ]

SUHP(ω − qvF)SUHP(ω + qvF)

]
, (A1a)

SUHP(x) =
{−√

x, Re[x] < 0 and Im[x] < 0,√
x, other cases,

(A1b)

Gm,2(z) = zSUHP(z − 1) SUHP(z + 1) − ln{[z + SUHP(z − 1) SUHP(z + 1)]eiπ/4} − iπ/4. (A1c)

In the above, the square root and logarithm functions are the standard ones with branch cuts in the negative real axis. It can
be checked that the formula provides an analytical continuation of Eq. (1), when |k′′

x /k′
x| � 1.

Furthermore, when kx is real-valued Eq. (1) can be extended analytically to the first quadrant of the complex plane Re{ω} > 0
and Im{ω} � 0 as

σg(ω, q) = −iω
e2

4π h̄

⎡
⎣ 8kF

q2vF
+ G(�−) − [G(�+) − iπ]√

ω2 − q2v2
F

⎤
⎦, (A2)

with G(z) = z
√

z − 1
√

z + 1 − ln(z + √
z − 1

√
z + 1). The square root and the logarithmic functions are again the standard

ones, with branch cuts in the negative real axis (note that due to this reason, in general
√

z − 1
√

z + 1 �= √
z2 − 1). Furthermore,

Eq. (A2) can be extended to the entire upper-half frequency plane using the reality condition

σg(ω, q) = σ ∗
g (−ω∗, q∗). (A3)

APPENDIX B: ENERGY STORED IN GRAPHENE

The instantaneous power transferred to the electrons in the graphene by the electromagnetic field is given by p = ∫
ds js · E.

Here, E is the instantaneous electric field and js the surface electric current density in graphene. The integral is over the area
of the graphene sheet. For a time-harmonic excitation with frequency ω = ω′ + iω′′, the relevant fields are of the form E =
1
2 (Eωe−iωt + E∗

ωe+iω∗t ) and js = 1
2 [σg(ω)Eωe−iωt + σg(−ω∗)E∗

ωe+iω∗t ]. Thus, the transferred power is

p = 1

4

∫
ds (Eωe−iωt + E∗

ωe+iω∗t ) · [σg(ω)Eωe−iωt + σg(−ω∗)E∗
ωe+iω∗t ]

= 1

4

∫
ds {|Eω|2[σg(ω) + σg(−ω∗)]e+2ω′′t + · · ·}, (B1)
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where the term “· · · ” has a time variation of the type e2ω′′t e±i2ω′t . For a lossless system, p = dE
dt with E the “stored” (kinetic)

energy. Thereby, the change of the electrons’ kinetic energy due to the electromagnetic interaction is

δE = 1

4

∫
ds

{
|Eω|2[σg(ω) + σg(−ω∗)]

1

2ω′′ e
+2ω′′t + · · ·

}
, (B2)

where the term “· · · ” has a time variation of the type e2ω′′t e±i2ω′t . Hence, letting ω′′ → 0 it follows that the time-averaged
“stored” energy in the time-harmonic regime is given by

δEav = lim
ω′′→0

1

4

∫
ds |Eω|2[σg(ω′ + iω′′) + σg(−ω′ + iω′′)]

1

2ω′′

= lim
ω′′→0

1

4

∫
ds |Eω|2[σg(ω′) + σg(−ω′) + i2ω′′∂ωσg(ω′)]

1

2ω′′

= 1

4

∫
ds |Eω|2Im{−∂ωσg(ω′)}. (B3)

We used the properties σg(ω′) + σg(−ω′) = 0 and σg(ω′) = iIm{σg(ω′)} for a lossless graphene (i.e., below the interband
transition threshold). Therefore, for a lossless passive graphene it is necessary that Im{∂ωσg(ω′)} < 0 so that the energy
transferred from the field to the electrons is positive. When the conductivity dispersion is anomalous, Im{∂ωσg(ω′)} > 0, the
moving electrons give away their energy to the field, rather than extracting energy from it, until the steady state is reached. This
can only occur in the presence of a drift current.

APPENDIX C: RELATIVISTIC DOPPLER SHIFT MODEL OF THE GRAPHENE CONDUCTIVITY

The nonlocal polarizability of a drift-current biased graphene sheet was derived in Ref. [29] relying on a single band model and
a skewed Fermi distribution. Based on such a model the authors derived a dispersion equation for the graphene plasmons (Eq. (1)
of Ref. [29]). The corresponding formula for the graphene conductivity is not written explicitly in Ref. [29] but can be found by
comparing the quasistatic dispersion of the graphene plasmons [|kx| − 2εr,sκ

drift
g = 0 with κdrift

g (ω, kx ) = iωε0/σ
intra,drift
g (ω, kx )]

with Eq. (1) of Ref. [29]. This yields the result

σ intra,drift
g (ω, kx ) = iωe2

h̄2

2μc

π

1

γ (ω − kxv0)
√

ω − kxvF
√

ω + kxvF + ω2 − v2
Fk2

x

, (C1)

with γ = 1/

√
1 − v2

0/v
2
F the graphene Lorentz factor. In the absence of a drift current, the conductivity reduces to

σ intra
g (ω, kx ) = iωe2

h̄2

2μc

π

1

ω
√

ω − kxvF
√

ω + kxvF + ω2 − v2
Fk2

x

. (C2)

Interestingly, the σ intra,drift
g (ω, kx ) is related to σ intra

g (ω, kx ) through a relativistic Doppler shift transformation [Eq. (5)] such
that σ intra,drift

g (ω, kx ) = (ω/ω̃)σ intra
g (ω̃, k̃x ), with ω̃ = γ (ω − kxv0) and k̃x = γ (kx − ωv0/v

2
F). The no-drift nonlocal intraband

conductivity of graphene [Eq. (C2)] can also be obtained using Boltzmann’s theory [40]. In the kx → 0 limit, Eq. (C2) reduces
to the standard Drude model of graphene σ intra

g (ω, kx → 0+) = ie2

h̄2
μc

π
1
ω
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