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Multiple embedded eigenstates in nonlocal plasmonic nanostructures
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Trapping light in open cavities is a long sought “holy grail” of nanophotonics. Plasmonic materials may offer
a unique opportunity in this context, as they may fully suppress the radiation loss and enable the observation of
spatially localized light states with an infinite lifetime in an open system. Here, we investigate how the spatial
dispersion effects, e.g., caused by the electron-electron interactions in a metal, affect the trapped eigenstates.
Heuristically, one may expect that the repulsive-type electron-electron interactions should act against light
localization, and thereby that they should have a negative impact on the formation of the embedded eigenstates.
Surprisingly, here we find that the nonlocality of the material response creates new degrees of freedom and
relaxes the requirements for the observation of trapped light. In particular, a zero-permittivity condition is no
longer mandatory and the same resonator shell can potentially suppress the radiation loss at multiple frequencies.
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Confining and storing light into a tiny volume for many
oscillation periods is a long sought “holy grail” in photonics
[1]. This goal remains elusive today, because the coupling
with the surrounding environment invariably leads to absorp-
tion and radiation losses. The standard way to confine light
into some space region is by using opaque physical barriers,
e.g., reflecting mirrors [2] or photonic band-gap materials
[3,4], or alternatively by exploiting the total internal reflection
as in whispering gallery resonators [5,6]. However, these
resonators typically need to have dimensions much larger than
the radiation wavelength to effectively block the radiation
leakage to the exterior. Other mechanisms that promote the
light localization rely on plasmonics [7,8], weakly radiating
anapole modes in dielectric nanoparticles [9], and Anderson
localization [10,11].

Over the last decade, it was shown that optical bound
states with suppressed radiation loss may exist within the
radiation continuum in open resonators [12–22]. These exci-
tations are known as “embedded eigenstates,” in analogy with
the spatially localized electron states with “positive energy”
in quantum systems [23–25]. Importantly, for typical struc-
tures, e.g., dielectric photonic crystal based designs [12–16],
the radiation loss can be fully suppressed only if the open
resonator is spatially unbounded. If the open resonator is
spatially truncated, the lifetime of the embedded eigenstate
becomes finite, even in the ideal case of vanishing material
absorption [26].

Remarkably, it was proven in Ref. [26] that plasmonic
materials offer a unique opportunity to totally suppress the ra-
diation loss in open and spatially bounded three-dimensional
(3D) nanostructures. This idea was further explored in subse-
quent works [27–32]. In particular, a core-shell nanoparticle
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formed by a dielectric core and an epsilon-near-zero (ENZ)
shell may be designed to support wave oscillations with an
infinite lifetime in the limit of vanishing material loss. The
same mechanism can be used to confine light in arbitrarily
shaped optical cavities [28,30]. The emergence of the embed-
ded eigenstates is rooted in the excitation of volume plasmons
in the ENZ shell, which effectively prevent the wave in the
core from escaping to the exterior.

The studies of Refs. [26–32] assumed that the plasmonic
ENZ shell had a local response, i.e., the material permittivity
was assumed independent of the spatial variation of the fields.
The possible effects of spatial dispersion were only superfi-
cially discussed in Ref. [26]. In metals the nonlocal effects
arise primarily due to many-body electron-electron (repulsive-
type) interactions, and are usually modeled through a diffusion
term in the framework of the hydrodynamic model [33–43].
Nonlocal effects may be critically important in plasmonics,
especially for nanosized particles [33–45]. Thus, one might
think that spatial dispersion would be an additional obstacle
to create embedded eigenstates. Surprisingly, we prove in this
Rapid Communication that it is precisely the opposite, and
that nonlocal effects offer a unique path to localize light in
an open resonator. It is shown that the conditions for the
observation of embedded eigenstates are very much relaxed
when nonlocal effects are taken into account; in particular, the
shell permittivity is no longer constrained to be precisely zero.

Figure 1(a) illustrates the geometry of the core-shell meta-
atom. It consists of a bilayered spherical nanoparticle standing
in air. The core region and the outer shell have radii R1 and
R2, respectively. The core material is a simple dielectric with
relative permittivity ε1, e.g., air, and the shell is made of a
plasmonic material, e.g., a noble or alkali metal at optical
frequencies or a semiconductor in the terahertz regime. We
use the hydrodynamic model [39] to describe the nonlocal
effects in the shell. The unbounded plasmonic material sup-
ports three plane-wave modes with a spatial dependence of the
type eik·r: two transverse waves and also a longitudinal wave
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FIG. 1. (a) Geometry of the open bounded bilayered spherical meta-atom. The shell is made of a plasmonic spatially dispersive material.
(b) Characteristic function Ds as a function of frequency, for a meta-atom with β/c = 1/103/2, R21 = 1.1, R1 = 0.973R10, and ωc = 0. The
zeros indicate the values of the frequencies ω

( j)
trap. The insets give the values of the core permittivity ε1 and of the shell transverse permittivity ε2,T

for the first three solutions. (c), (d) Embedded eigenstate frequency (blue lines) and susceptance at the core interface (green lines) as a function
of the (c) locality strength c/β and (d) normalized shell radius R21 = R2/R1. The susceptance is normalized to the free-space impedance
η0. The solid, dashed, and dotted-dashed curves correspond to the j = 1, 2, 3 solution branches, respectively. The structural parameters are
β/c = 1/103/2, ωc = 0, R21 = 1.1, and R1/R1,0 = 1, except when one of the parameters is shown in the horizontal axis of a plot.

[39,41]. The relative permittivity seen by the transverse modes
is described by a standard Drude dispersion model ε2,T(ω) =
ε∞ − ω2

p/[ω(ω + iωc)], where ωp is the plasma frequency,
ωc is the collision frequency, and ε∞ is the high-frequency
relative permittivity. On the other hand, the longitudinal mode
is described by the wave-vector-dependent relative permittiv-
ity ε2,L(k, ω) = ε∞ − ω2

p/[ω(ω + iωc) − β2k2] [39], where
β2 = (3/5)v2

F and vF is the Fermi velocity [37–38]. The
nonlocality strength parameter β/c may reach values on the
order of 1/450 in alkali metals [33], 1/280 in semiconductors
[43], and even larger values in metamaterials [46,47]. For sim-
plicity, except if explicitly mentioned otherwise, it is assumed
in here that ε∞ = 1.

Due to the spherical symmetry, the natural modes of the
core-shell nanoparticle [Fig. 1(a)] can be split into transverse
radial magnetic (TMr) and transverse radial electric (TEr)
waves. We focus on the TMr modes whose properties are
determined by the hybridization of transverse and longitudinal
waves. Using Mie theory [48,49] the electromagnetic fields
may be written in all the regions of space in terms of spherical
Bessel functions [26]. The fields in the different regions
are linked through the standard boundary conditions of the
hydrodynamic model. In this manner, the modal problem is
reduced to a 6 × 6 homogeneous linear system of the form
M · x = 0; for more details, see the Supplemental Material
[50]. The oscillation frequencies ω = ω′ + iω′′ (ω′′ � 0) of
the TMr modes of oscillation are given by the nontrivial solu-
tions of the characteristic equation D(ω, R1, R2, ε1, ωp, β ) ≡
det(M) = 0.

In the local limit (β = 0), i.e., for an electron gas with
noninteracting electrons, it is known from Ref. [26] that the
embedded eigenstates can occur only if the shell has a zero
permittivity, i.e., ε2 = 0 is a mandatory condition. Thus, the
oscillation frequency of a trapped state is necessarily ω = ωp.
An ε2 = 0 shell behaves as a perfect magnetic (PMC) wall
for TMr waves. The embedded eigenstates are formed when
ω = ωp coincides with an eigenfrequency of the equivalent
PMC resonator, i.e., the core surrounded by a fictitious PMC
boundary. For an embedded eigenstate with dipolar-type sym-
metry, this condition leads to the geometrical constraint R1 =
R1,0 ≡ 4.49c/(ωp

√
ε1) [26].

In general, for a spatially dispersive shell, the embedded
eigenstates are solutions of D = 0 with a real-valued ω so
that the oscillations do not decay with time. The simplest
way to understand the general structure of the solutions and
to generate them is by using a reduced dispersion equa-
tion, which is obtained as follows. For an embedded eigen-
state the fields in the air region (r > R2) are required to
be identically zero [26]; hence the tangential electric and
magnetic fields evaluated inside the shell must vanish at
r = R−

2 . In addition, the fields in the shell are required to
satisfy the boundary condition n̂ · j = 0 at both the inner and
outer interfaces of the shell (r = R−

2 and r = R+
1 ). Enforcing

these boundary conditions, one obtains a reduced 4 × 4
homogeneous system, MS · v = 0, which can have nontrivial
solutions only when DS ≡ det(MS) = 0 [50]. Here, DS =
DS(ω, R1, R2, ωp, β ) depends only on the parameters of the
shell. The solutions in ω of DS = 0 give the allowed values
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FIG. 2. (a) Quality factor (of the dipolar mode) as a function of the normalized core radius R1/R1,trap, for different values of the material
loss in the plasmonic shell. (b) Variation of the real ω′ and imaginary ω′′ parts of the eigenmode frequency ω = ω′ + iω′′ with R1/R1,trap, for a
lossless plasmonic shell (ωc/ωp = 0). The structural parameters are β/c = 1/103/2, R21 = 1.1, ε1 = 1. The quality factor diverges to infinity
when R1 = R1,trap = 0.973R1,0 which yields ω = ωtrap = 1.026ωp.

for the oscillation frequency of an embedded eigenstate of
a given plasmonic shell. For each solution of DS = 0, we
introduce a transverse wave admittance Y +

w that relates the
tangential electromagnetic fields at the inner interface r = R+

1
as Y +

w r̂ × E = r̂ × (H × r̂) [50]. The transverse admittance is
purely imaginary, Y +

w = −iBw. On the other hand, the wave
admittance Y −

w at the core side of the inner interface r = R−
1

can be expressed in terms of the core parameters R1, ε1 and
of ω. An embedded eigenvalue can be formed only when
the conditions DS = 0 and Y +

w = Y −
w (ω, R1, ε1) are simultane-

ously satisfied. For any solution ω of DS = 0 one can generate
embedded eigenstates by solving Y +

w = Y −
w (ω, R1, ε1) with

respect to the core permittivity ε1. Detailed expressions for
DS and Y ±

w can be found in the Supplemental Material [50]. It
is underlined that DS and Y +

w depend exclusively on the shell
parameters.

Remarkably, it turns out that in the lossless limit the
solutions of the reduced equation DS = 0 consist of an infinite
number of branches ω = ω

( j)
trap(R1, R2, ωp, β ), j = 1, 2, 3 . . .

[see Fig. 1(b)]. This implies that a nonlocal plasmonic shell
with a given geometry may support multiple embedded eigen-
states, rather than a unique bound state as in the local case
[26]. This finding is contrary to common sense as the nonlocal
effects are rooted in repulsive electron-electron interactions,
which intuitively should act against light localization. Curi-
ously, it was shown in Ref. [51] that the nonlocal effects in thin
metal slabs may not adversely affect other types of plasmonic
phenomena.

Each solution of DS = 0 corresponds to a certain surface
admittance at the core interface (Y +

w ). As mentioned above, the
core permittivity ε1 needs to be precisely tuned to ensure that
Y +

w = Y −
w (ω, R1, ε1). The insets of Fig. 1(b) show the values

of (ε1, ε2,T) for the first three allowed eigenfrequencies. We
choose solutions characterized by ε1 � 1 (there are many so-
lutions for ε1 both in the local and in the nonlocal cases). The
multiplicity of eigenfrequencies is a consequence of the extra
degrees of freedom provided by the nonlocal response and
gives the opportunity to trap light at frequencies considerably
far from ωp. Different from the local case, when β �= 0, the
condition ω = ω

( j)
trap does not lead to a zero permittivity, i.e.,

ε2,T �= 0 (the longitudinal permittivity is also nontrivial due to
the wave-vector dependence).

Figures 1(c) and 1(d) depict the numerically calculated
oscillation frequency (ωtrap) and the corresponding wave
susceptance (Bw) for the first three branches of solutions
and for fields with a dipolar-type structure (TMr

n mode with
n = 1), as a function of the different geometrical and material
parameters of the meta-atom. Figure 1(c) shows that for a
strong spatial dispersion (small values of c/β), ωtrap and Bw

may differ considerably from the corresponding local values
ωp and 0. Note that in the local regime, one has Y +

w ≡ 0,
which corresponds to a PMC boundary. As the nonlocality
strength decreases (c/β → ∞), and thereby the response of
the plasmonic shell becomes increasingly local, the frequency
of oscillation of the embedded eigenstate approaches ωp. The
sign of Bw alternates from branch to branch and is positive for
the first and third branches (solid and dotted-dashed curves)
and negative for the second branch (dashed curve). The devi-
ations from the local case are more significant for the higher-
order solution branches. Figure 1(d) illustrates the variation
of ωtrap and Bw with the normalized shell radius R21 = R2/R1,
for a fixed value of the nonlocality strength, β/c = 1/103/2 =
1/31.62 (we use a large value of β/c to illustrate more clearly
the impact of the spatial dispersion). The nonlocal effects
are stronger, i.e., the frequency detuning ωtrap − ωp is larger,
when the plasmonic shell is thinner. The effects of varying
the core radius R1 or the high-frequency permittivity ε∞ are
discussed in the Supplemental Material [50].

For a specific design example, we pick ε1 = 1, R21 =
1.1, and β/c = 1/103/2 and solve D = 0 with respect to
(ω, R1) real-valued. We obtain R1,trap = 0.973R1,0 and ωtrap =
1.026ωp in the first branch of solutions [first zero of Fig. 1(b)].
The quality factor of this meta-atom is depicted in Fig. 2(a) for
a detuned core radius and different values of the shell material
loss. Similar to the local problem [26], for a tuned resonator
(R1 = R1,trap) the quality factor diverges to infinity (Q → ∞)
when the material loss is suppressed (ωc → 0), but in the non-
local case for a frequency ω = ωtrap �= ωp. Evidently, when
the material response is dissipative, the quality factor and the
oscillation lifetime are finite. Figure 2(b) illustrates how
the complex resonance frequency ω = ω′ + iω′′ varies with
the core radius for a lossless material. As expected, when the
core radius matches R1,trap, the oscillation frequency becomes
real-valued, and the radiation loss is fully suppressed.
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FIG. 3. Electromagnetic fields of an embedded eigenstate. (a) Field amplitudes in the core-shell resonator (normalized to the electric field
at the core center, r = 0) as a function of the radial distance in the xoy plane, calculated using the local (dashed lines) and the nonlocal
models (solid lines). Local model results: c/β → ∞, ωtrap = ωp, and R1,trap = R1,0. Nonlocal model results: β/c = 1/103/2, ωtrap = 1.026ωp,
and R1,trap = 0.973R1,0. (b) Zoom of η0|Hz| (blue) and |Eϕ | (green) in the shell for the nonlocal case. (c) η0|Hz|x=0 (blue) and |Er |y=0 (green) as
a function of c/β at center of the shell (r = 1.05R1). (d) Time snapshots of the electric field in the nonlocal meta-atom: (i) Er (t = 0) and (ii)
Hz(t = 0) in the xoy plane. In all the panels, R21 = 1.1, ε1 = 1, and ωc = 0.

Figure 3(a) shows the electromagnetic field distribu-
tion (solid lines) of the embedded eigenstate with R1,trap =
0.973R1,0 and ωtrap = 1.026ωp. The dashed lines represent
the profile of the embedded eigenstate in a meta-atom with-
out spatial dispersion (ωtrap = ωp and R1,trap = R1,0). From
Fig. 3(a), one can see that the electron-electron interactions
in the plasmonic shell affect weakly the electromagnetic field
distributions of the trapped field in the core region (r < R1).
In contrast, the fields in the plasmonic shell (1 < r/R1 < 1.1)
are strongly perturbed by the nonlocality. Most strikingly, the
radial component of the electric field in the shell [see the curve
|Er |y=0 in Fig. 3(a)] becomes continuous at the boundaries
because the charge diffusion effects prevent the localization
of a surface charge density at the interfaces. Both the local
and the nonlocal models predict a strong enhancement of the
radial electric field in the plasmonic shell, which is a clear
fingerprint of the excitation of volume-plasmon-type oscilla-
tions. Furthermore, Fig. 3(b) reveals that the magnetic field in
the spatially dispersive shell, albeit small, is nontrivial. Thus,
the embedded eigenstate results from the hybridization of
transverse (with ∇ · E = 0) and longitudinal (with ∇ · E �= 0)
waves in the shell. Quite differently, in the local case the
embedded eigenstate has a vanishing magnetic field in the
shell and hence is irrotational (∇ × E = 0) [26]. Figure 3(d)
shows time snapshots of the radial Er (t = 0) electric field and
of the z component Hz(t = 0) of the magnetic field obtained
using the nonlocal model. The dipolar structure of the field
in the core is evident; the electric dipole moment is oriented
along x and the fields have a symmetry of revolution around

the x axis. Note that due to the symmetry of the system, the
mode is triply degenerate.

Figure 3(c) depicts the amplitude of the embedded eigen-
state fields in the plasmonic shell center as a function of
c/β; the values of R1,trap and ωtrap are recalculated for each
c/β. Clearly, as the nonlocality strength increases (smaller
values of c/β), the amplitudes of the magnetic field and of
the radial electric field in the shell are enhanced. For β → 0
the magnetic field in the shell approaches zero.

Figures 4(a) and 4(b) show the electromagnetic field pro-
files in the shell for the second and third solutions of Fig. 1(b),
respectively. The electric field profiles of the higher-order
modes are characterized by an increased number of maxima
and nulls as compared to the first (fundamental) mode shown
in Fig. 3(a). The fields in the core are similar to those of the
fundamental mode (not shown).

To study the electromagnetic response of the core-shell
particle under an external excitation, we consider the problem
of plane-wave scattering with the electric field linearly polar-
ized. The meta-atom parameters are as in Fig. 3(a). Figure 5(a)
depicts the absolute value of the Mie coefficient in the core
region |aTM

1 | as a function of frequency and for three different
values of the core radius R1 [50]. When R1 is detuned from
the optimal value R1,trap, the Mie coefficient has a resonant
behavior with a Fano-type line shape. In contrast, when R1

exactly matches R1,trap, |aTM
1 | ≈ 1 has no resonant features

due to a pole-zero cancellation rooted in the reciprocity of
the system [26]. The reciprocity constraint can be circum-
vented with a nonlinear material response [29]. Specifically,
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with a nonlinearity the embedded eigenstates can be pumped
from the outside, ensuring that the energy stored in the
resonator is precisely quantized [29] (see also Refs. [18–21]).
Figure 5(b) shows that the Mie coefficient in the air region
cTM

1 has a behavior analogous to aTM
1 .

The emergence of embedded eigenstates in plasmonic
nanostructures is a quite unique effect. Indeed, it is fundamen-
tally impossible to localize light in any spatially bounded (in-
homogeneous) structure formed by transparent local isotropic
dielectrics with ε �= 0 and μ �= 0 [26]. To unveil the reason
why spatially dispersive materials are less constrained than
local materials, next we analyze the structure of the fields in
the shell [26,39]. Here, we focus on layered spherical struc-
tures, but a general argument is presented in the Supplemental
Material [50].

The key point is that the electromagnetic field of a TMr

mode in the nonlocal shell is a superposition of two coun-
terpropagating transverse waves and two counterpropagating
longitudinal waves; hence, for a given spherical harmonic
order there are 2 + 2 = 4 degrees of freedom. In order that
the radiation loss is suppressed, the electromagnetic fields
outside the core-shell nanoparticle must vanish. Thus, both
the tangential electromagnetic fields and the normal compo-
nent of the electric current (n̂ · j) must vanish at the shell
outer interface, which corresponds to 1 + 1 + 1 = 3 scalar
homogeneous boundary conditions. Evidently, there is a re-
maining degree of freedom (4 − 3 = 1), and thereby the ho-
mogeneous boundary conditions at the outer interface do not

automatically force (E, H) to vanish in the shell when ω �=ωp.
In contrast, in the local limit there are only two degrees of
freedom associated with the TMr transverse waves. In this
case, the boundary conditions at the outer-shell interface re-
quire the continuity of the tangential components of the fields,
which correspond to two scalar equations. For homogeneous
boundary conditions there are no extra degrees of freedom,
and thus in the local case the fields in the shell are necessarily
trivial and it is fundamentally impossible to have embedded
eigenstates with ε2 �= 0 [26]. Clearly, the spatially dispersive
response strongly relaxes the conditions under which the
embedded eigenstates can be formed and does not require the
material response to be singular in any manner.

In summary, we theoretically demonstrated that multiple
embedded eigenstates with suppressed radiation loss may be
supported by open spatially dispersive core-shell meta-atoms.
Surprisingly, the nonlocal effects due to electron-electron
repulsive interactions do not prevent the emergence of bound
states in the continuum. They rather act to strongly relax the
material and geometrical conditions required for the forma-
tion of light oscillations with infinite lifetimes. Remarkably,
the nonlocality enables the same material shell to perfectly
screen multiple frequencies. Moreover, the material parame-
ters of the shell do not exhibit any type of singularity. The
effect is not restricted to spherical geometries, but can occur
in any plasmonic resonator with two or more disjoint inter-
faces. Even though realistic material loss remains a practical
obstacle, in principle it can be compensated using some gain
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mechanism [52,53]. Thus, we believe that spatial dispersion
may provide an exciting path for the realization of nanostruc-
tures with embedded eigenstates, which can have applications
in optical memories and others. Furthermore, our work unveils
an unique mechanism to couple radiation with matter without
any form of radiation leakage.
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