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Lateral optical forces on linearly polarized emitters near a reciprocal substrate

Hafssaa Latioui and Mário G. Silveirinha *

University of Lisbon–Instituto Superior Técnico - Avenida Rovisco Pais, 1, 1049-001 Lisboa, Portugal
and Department of Electrical Engineering, University of Coimbra, and Instituto de Telecomunicações, 3030-290 Coimbra, Portugal

(Received 30 January 2019; published 22 November 2019)

We theoretically investigate the conditions for the emergence of lateral (recoil) optical forces on generic
dipole-type emitters positioned nearby a reciprocal translation-invariant substrate. Surprisingly, we find that
for linearly polarized electric dipoles and for a gradientless excitation the lateral force invariably vanishes,
independent of the anisotropy (e.g., tilted optical axes) or chirality of the substrate. We identify an opportunity
to have a recoil force relying on a superposition of two linearly polarized and collinear electric and magnetic
dipoles. Counterintuitively, it is shown that when such an emitter stands above a uniaxial dielectric half-space
with tilted optical axes it may experience a recoil force oriented along the direction perpendicular to the plane
defined by the interface normal and the substrate optical axis.
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I. INTRODUCTION

The optical manipulation of small particles is important
for the laser cooling of neutral atoms, particle transport, and
optical sorting, just to name a few applications [1–7]. The op-
tical trapping operation relies on tightly focused laser beams
(optical tweezers), which allow one to precisely position and
displace neutral particles using gradient-type optical forces
[8–15].

Furthermore, fluctuation-induced optical (Casimir-Polder)
forces acting on atoms near the surface of a material are
of considerable interest due to their relevance in a variety
of processes in physics, biology, and chemistry [16,17]. In
translation-invariant scenarios, e.g., when an atom stands
nearby a perfectly smooth material surface, the ground-state
Casimir-Polder force is along the direction normal to inter-
face, and typically it pulls the atom towards the surface.
Interestingly, despite the translation invariance property, for
an excited atom the Casimir-Polder force gains an extra
resonant term [18], which can have a lateral component. The
lateral force is a consequence of the directional nature of the
fields emitted by the excited atom in a spontaneous emission
process. Similar lateral forces are found using purely classical
methods with the atom modeled as a polarizable particle.
In particular, lateral forces have been predicted for chiral
particles standing above a metal surface and related platforms
[19–26] and in a few nonreciprocal systems [27–30]. In fact,
intuitively one may expect that whenever the radiation pattern
of the emitter is asymmetric, let us say when it radiates
more energy to the right as compared to the left, then the
conservation of momentum should imply the emergence of
a lateral (recoil-type) optical force. This is precisely what
happens when a chiral emitter loses its energy in a sponta-
neous emission process above a metallic surface [20–22]. In
this case, the atom will couple selectively to plasmons with
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a certain handedness, and hence due to the spin momentum
locking property [31], it will emit more strongly towards
certain directions of space.

Motivated by this result, one may wonder if linearly polar-
ized dipoles standing above a reciprocal material half-space
can experience similar lateral forces. For example, heuristi-
cally one may expect the emergence of lateral forces when an
atom or a classical particle relaxes from an excited state to
the ground near a uniaxial material half-space with the optical
axis tilted with respect to the interface (see Ref. [32] for a
related problem). Furthermore, since an excited chiral particle
above a dielectric substrate can experience a nontrivial lateral
force [20,21], one may wonder if the chiral property can
be swapped with the substrate, i.e., if an excited linearly
polarized particle above a chiral substrate may experience a
nontrivial recoil force. Surprisingly, we prove here that for
a linearly polarized particle with a purely electric response
(electric dipole approximation) the lateral force vanishes for
any reciprocal translation-invariant substrate, independent of
the orientation of the optical axes or of the bianisotropy
(chirality) of the involved materials. In particular, it follows
that the chiral response of the particle cannot be transferred to
the substrate. Interestingly, we propose a mechanism to have
nontrivial lateral forces with linearly polarized particles with
nontrivial electric and magnetic responses. For the sake of
simplicity, we adopt a classical description with the particle
modeled as a superposition of electric and magnetic dipoles.

II. OPTICAL FORCE ON A SINGLE ELECTRIC DIPOLE

In this section, it is supposed that the particle has a purely
electric response so that it can be approximated by an electric
dipole. The dipole oscillations are either pumped by a gra-
dientless external excitation, or, alternatively, they are due to
the relaxation of some natural mode with a complex-valued
resonant frequency ω = ω′

0 − iω′′
0 , with ω′′

0 > 0. In the latter
case, the decay rate of the dipole oscillations is determined
by ω′′

0 .
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FIG. 1. (a) Geometry of the problem: A particle stands in the air region at a distance d from a reciprocal material (half-space z < 0). The
particle is either formed by a single electric dipole or by a superposition of linearly polarized electric and magnetic dipoles. (b) Illustration of
the uniaxial material substrate with tilted optical axis. The substrate can be visualized as a tilted wire medium and is treated in our model as a
continuous medium with no granularity.

A. Lateral force on a linearly polarized dipole

Let us suppose that a generic particle with electric dipole
moment pe stands in air near the flat surface of an arbi-
trary smooth translation-invariant reciprocal substrate. The
direction normal to the substrate is along z [see a generic
geometry in Fig. 1(a)]. For now, we consider the scenario
wherein the dipole oscillations are driven by an incident beam
so that the oscillation frequency ω is real valued. The case
wherein the dipole oscillations are damped (ω is complex
valued) and the emitted radiation is due to the decay from
an excited state is discussed in Sec. II D. The time-averaged
optical force acting on the electric dipole is (the time harmonic
variation e−iωt is implicit),

F = 1
2 Re{∇[p∗

e · Eloc]}r=r0 , (1)

where r0 is the position of the dipole center of mass. In the
above, Eloc represents the complex amplitude of the local field
at the particle position,

Eloc = E − Eself , (2)

with E the total electric field and Eself the self-field of the
dipole in free space. It can be decomposed as:

Eloc = Eext + Es, (3)

where Eext is the external electric field that drives the os-
cillations and Es is the field back-scattered by the substrate
due to the dipole oscillations. Specifically, Eext is the field
distribution created by the incident beam in the absence of
the dipolar particle, i.e., it is the superposition of the incident
wave and of the wave reflected on the substrate in the absence
of the particle. On the other hand, Eself + Es is the field
radiated by a particle with the dipole moment pe standing
above the substrate. The dipole moment pe is itself a function
of Eloc and of the electric polarizability of the particle and its
precise value must be determined self-consistently. Note that
in principle it is possible to tailor the microstructure of the
particle to obtain any desired pe. In this paper, we focus on
linearly polarized dipoles, which can be readily implemented
with either short metallic wires or with current loops, in the
electric and magnetic cases, respectively.

From the previous discussion, the optical force can be
decomposed as:

F = F ext + F s, (4)

with F ext = 1
2 Re{∇[p∗

e · Eext]}r=r0 the force component
due to a gradient in the external field and F s =
1
2 Re{∇[p∗

e · Es]}r=r0 the force component due to the dipole
oscillations.

We will consider throughout the paper that the gradient of
the external field vanishes along the relevant lateral test direc-
tion ∂iEext = 0 with ∂i = ∂/∂xi and i = 1 or i = 2 (x1 ≡ x and
x2 ≡ y). In these conditions, the lateral force is determined
simply by F s. It is shown in Appendix A, that the back-
scattered field can be written as Es(r) = Cee

int (r, r0) · pe/ε0

with Cee
int a 3 × 3 dyadic expressed in terms of the reflection

matrix R for plane wave incidence [Eq. (A1b)]. Therefore, in
the outlined conditions the time-averaged lateral force acting
on the dipole along the ith direction is,

F s
i = Re

{
1

2ε0
p∗

e · ∂Cee
int

∂xi

∣∣∣∣
r=r0

· pe

}
, (i = 1, 2). (5)

B. Electric dipole standing above a uniaxial
material with tilted optical axes

To illustrate the application of the described theory, we
consider that the electric dipole moment of the particle is
oriented along the z direction: pe = peẑ. The substrate is a
uniaxial dielectric material with relative permittivity tensor
ε = εααα̂ ⊗ α̂ + ε||(1 − α̂ ⊗ α̂), with optical axis in the xoz
plane oriented along α̂ = sin α0 x̂ + cos α0 ẑ [see Fig. 1(b)].
For now, the permittivity components are taken equal to
εαα = −∞ and ε|| = 1, which corresponds to a regime of
extreme anisotropy. The tilt angle is α0 = 45◦. To ease the
visualization of the structure, in Fig. 1(b) the substrate is rep-
resented as a tilted wire medium, formed by an array of tilted
metallic wires [33–37]. Note that in our analysis the substrate
is regarded as perfectly smooth with no intrinsic granularity.
The interaction dyadic Cee

int is given by Eq. (A1b) with the
reflection matrix R determined as explained in Appendix B.

Figure 2(a) shows the far-field radiation pattern of the
scattered electric field at z = d plane (dashed line) for
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(a)

(b)

FIG. 2. (a) Polar plot of the intensity of the field back-scattered by the substrate (arbitrary normalization) calculated at a radial distance of
5 λ0 from the vertical dipole. Dashed line: total field (|Es|2) intensity. Solid line: intensity of the z-component (|Es

z|2) of the electric field. The
substrate is a uniaxial dielectric half-space (ε|| = 1 and εαα = −106) with tilted optical axes (α0 = 45◦); the normalized distance is dω/c = 1.
(b) Plot of the lateral force F s

i (i = x, y) as a function of dω/c for the same configuration as in (a).

a dipole at the normalized distance dω/c = 1 from the
interface. As seen, on the overall the fields are scattered more
strongly towards the x > 0 semiplane than towards the x < 0
semiplane. The asymmetry of the radiation pattern and the
conservation of linear momentum suggest that the emitter
should experience a lateral recoil force directed towards the –x
direction. Surprisingly, by evaluating Eq. (5) using numerical
methods we find that up to machine precision the lateral force
F s

i is precisely zero [Fig. 2(b)]. We numerically verified that
this result is rather general and does not depend on any of the
parameters of the problem (e.g., the direction α0 of the optical
axis or the distance to the interface).

C. Reciprocity constraints

Next, it is shown that the result of the previous subsection
is rather universal and that independent of the anisotropy or
chirality of the reciprocal substrate, for a linearly polarized
electric dipole the lateral force F s

i invariably vanishes. The
substrate may be nonuniform along the z-direction (e.g., it can
have finite thickness) but it should be invariant to translations
along x and y.

The proof is based on the reciprocity theorem,∫
E′ · j′′dV = ∫

E′′ · j′dV , which applies to generic solutions
(primed and unprimed) of Maxwell’s equations that satisfy
radiation boundary conditions. We take E′ (E′′) as the field
radiated by a generic electric dipole j′ = −iω p′

eδ(r − r′)
(j′′ = −iω p′′

eδ(r − r′′)) standing above the reciprocal
substrate. Since the reciprocity relation is also satisfied by the
self-fields in free space, it follows that it must also be satisfied
by the back-scattered fields:

∫
E′s · j′′dV = ∫

E′′s · j′dV .
Using now Es(r) = Cee

int (r, r0) · pe/ε0 we conclude that for
two generic electric dipoles p′

e, p′′
e positioned at r′, r′′,

respectively, one has,

p′′
e · Cee

int (r
′′, r′) · p′

e = p′
e · Cee

int (r
′, r′′) · p′′

e . (6)

Suppose now that the z coordinate (perpendicular to the
substrate) of the two dipoles is the same: z′ = z′′ ≡ z0. Since
the substrate is invariant to translations along the x and
y directions, the interaction dyadic is necessarily of the

form Cee
int (r2, r1) = Cee

int (r2 − r1, z0). Hence, taking first the
derivative of both sides of Eq. (6) with respect to x′

i (i = 1, 2)
and then setting r1 = r2 ≡ r0 it follows that:

p′′
e · [

∂iCee
int

]
r=r0

· p′
e = −p′

e · [
∂iCee

int

]
r=r0

· p′′
e , (7)

i.e., [∂iCee
int]r=r0 is an antisymmetric tensor. In particular, if

one chooses p′
e = p′′

e ≡ pe it follows that pe · ∂iCint · pe = 0,
and this proves that for linear polarization (when pe can be
taken as a real-valued vector) the lateral force F s

i [Eq. (5)]
vanishes, in agreement with the numerical results of Sec. II B.
This concludes the proof that the lateral force vanishes.

It is worth noting that the reciprocity property [Eq. (6)]
implies that for a dipole oriented along the z direction the
radiation pattern of the z component of the electric field
|E s

z | must have the parity-symmetry (x, y, z) → (−x,−y, z).
Our numerical simulations [see the solid line in Fig. 2(a)]
confirm this property. However, the reciprocity property does
not enforce any particular symmetry on the total radiation
pattern |Es|2 [dashed line in Fig. 2(a)].

More generally, the reciprocity implies that the lateral force
acting on a dipole with dipolar moment pe differs by a minus
sign from the lateral force acting on a dipole with dipole
moment p∗

e , i.e., with the opposite handiness: F s
L,pe

= −F s
L,p∗

e

This property implies, for example, that the F s
i component of

the lateral force acting on a left-circularly polarized dipole is
always the additive symmetric of the force acting on a right-
circularly polarized dipole when the substrate is reciprocal. A
straightforward generalization of the previous analysis shows
that when the particle can be modeled as a single linearly
polarized magnetic dipole the lateral force (F s

i ) also vanishes.

D. Relaxation problem

The analysis of the previous subsections can be readily
extended to the scenario of free (damped) oscillations with
no external excitation. For an open system, the natural modes
of oscillation of a dipole are characterized by a complex-
valued frequency ω = ω′

0 − iω′′
0 , with ω′′

0 > 0, so that the time
variation is of the form e−iω′

0t e−ω′′
0 t . In this case, the total
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optical force acting on the dipole is simply

F = 1
2 Re{∇[p∗

e · Es]}r=r0︸ ︷︷ ︸
F s

e−2ω′′
0 t . (8)

The force F s is still determined by Eq. (5) but now Cee
int

is evaluated at the complex frequency ω = ω′
0 − iω′′

0 . Note
that in a relaxation problem ω′

0 − iω′′
0 and pe depend on the

microstructure of the particle and are generally found from
the solution of an eigenvalue problem.

By analytical continuation arguments, the reciprocity result
(6) still holds true for complex-valued values of ω. Therefore,
proceeding as in Sec. II C one can readily prove that when pe
is linearly polarized the lateral (x and y) components of the
lateral force (F s) must vanish when the substrate is recipro-
cal. In other words, when an excited linearly polarized particle
relaxes above a reciprocal translation-invariant substrate the
optical force is always directed along the normal (z) direction,
so that the lateral components are precisely zero.

III. OPTICAL FORCE ON A COMPOSITE LINEARLY
POLARIZED DIPOLE

Next, we identify a opportunity to generate a lateral force
from the radiation emitted by a generic linearly polarized
particle. Specifically, we will focus on the case wherein the
particle response has both electric and magnetic components
described by linearly polarized collinear electric and mag-
netic dipoles pe and p m. For example, the particle may be
formed by a short metallic wire and a small metallic loop.
The directional emission of composite particles above an
isotropic substrate was recently studied in Ref. [38], but the
analysis was restricted to the case wherein pe and p m are
perpendicular, i.e., to a case where the composite particle also
radiates asymmetrically in free space. Furthermore, in a few
recent works [39,40] it was experimentally demonstrated that
when two collinear and dephased (in quadrature) electric and
magnetic dipoles stand above a dielectric substrate the emitted
far field may mimic that of chiral dipole and is circularly
polarized. In contrast, here we study the optical forces in
a scenario wherein pe and p m are collinear and preferably
in-phase so that the free-space radiation pattern has cylindrical
(revolution) symmetry and is linearly polarized. Similar to
Sec. II A and without loss of generality, it is assumed in the
following that the oscillations are driven by some external
excitation.

A. General case

Let us first consider the general case wherein the particle
is described by arbitrary electric and magnetic dipoles pe and
p m (our p m is related to the standard magnetic dipole moment
with units of A×m2 as p m = μ0m). Then, the time-averaged
force can be written as [6,41,42]:

F = 1

2
Re{∇[p∗

g · Floc]}r=r0 − 1

12π

ω4

c3
Re{pe × p∗

m}, (9)

where pg = (pe pm)T and Floc = (Eloc Hloc)T are six-
vectors. As before, the subscript “loc” refers to the local fields.
Similar to Sec. II A, it is possible to decompose the local field
as Floc = Fext + Fs with Fext = (Eext Hext )T the external field

distribution and Fs = (Es Hs)T the field back-scattered by the
substrate due to the dipole radiation. Hence, for a composite
dipole the total force can be written as:

F = F ext + F s + F self , (10)

with F ext= 1
2 Re{∇[p∗

g · Fext]}r=r0 , F s = 1
2 Re{∇[p∗

g · Fs]}r=r0

and F self = − 1
12π

ω4

c3 Re{pe × p∗
m}. The component F self can

be nonzero even when the dipole stands alone in free space
due to the asymmetric radiation of Huygens-type emitters,
which does not have cylindrical symmetry [38,43].

As in Sec. II A, we will focus on the F s component of the
force. Evidently, the field back-scattered by the substrate Fs

can be linked to the generalized dipole moment pg through
a 6 × 6 interaction dyadic Cg as Fs(r) = Cg(r, r0) · pg. The
interaction dyadic can be decomposed as

Cg =
(

Cee
int/ε0 Cem

int c

Cme
int c Cmm

int /μ0

)
(11)

with Cij
int (i, j = e, m) being 3 × 3 tensors with dimensions of

m−3. The explicit formulas of Cee
int (defined as in Sec. II A) and

Cmm
int can be found in Appendix A [Eqs. (A1b) and (A2b)]. The

tensors with crossed indices can be found from the Maxwell
equations (the composite dipole stands in air):

Cme
int = 1

i(ω/c)
∇ × Cee

int, Cem
int = −1

i(ω/c)
∇ × Cmm

int . (12)

The force F s is written is terms of Cg as follows:

F s
i = 1

2
Re{p∗

g · [∂iCg]r=r0
· pg}

= 1

2
Re

{
p∗

e · 1

ε0
∂iCee

int · pe + p∗
m · 1

μ0
∂iCmm

int · pm

+ cp∗
e · ∂iCem

int · pm + cp∗
m · ∂iCme

int · pe

}
r=r0

. (13)

When the external driving field has zero gradient along
the lateral direction of interest, the lateral force is completely
determined by F s + F self .

B. Reciprocity constraints

The general form of the reciprocity theorem when the
electromagnetic sources have both electric and magnetic com-
ponents is [44]∫

j′′ · σz · F′dV =
∫

j′ · σz · F′′dV, (14)

with F = (E H)T the six-vector that determines the elec-
tromagnetic field, j = (je jm)T the six-vector formed by the

electric and magnetic current densities and σz = (13×3 0
0 −13×3

)
is

a matrix with dimension 6. Thus, considering the distributions
of fields (F′, F′′) created by the current distributions j′ =
−iω p′

gδ(r − r′) and j′′ = −iω p′′
gδ(r − r′′) and proceeding as

in Sec. II C it is possible to prove that:

p′′
g · σz · Cg(r′′, r′) · p′

g = p′
g · σz · Cg(r′, r′′) · p′′

g. (15)
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Furthermore, for a structure invariant to translations along
x and y one may prove that for arbitrary p′

g, p′′
g the following

identity holds:

p′′
g · σz · [∂iCg]r=r0 · p′

g

= −p′
g · σz · [∂iCg]r=r0 · p′′

g, (i = x, y) (16)

Picking p′
g = p′′

g = (pe 0)T we see that pe · 1
ε0

∂iCee
int · pe =

0 and picking p′
g = p′′

g = (0 pm)T we get pm · 1
μ0

∂iCmm
int ·

pm = 0. Furthermore, choosing p′
g = (pe 0)T and p′′

g =
(0 pm)T one finds that pm · ∂iCme

int · pe = pe · ∂iCem
int · pm.

Let us now suppose that both the electric and magnetic
dipoles are linearly polarized so that pe = |pe|eiφe ûe and pm =
|pm|eiφm ûm with the unit vectors ûe, ûm real valued. Using the
reciprocity constraints derived in the previous paragraph in
Eq. (13), the lateral force F s

i reduces to:

F s
i = cos (
)c|pe||pm|Re

{
ûm · ∂iCme

int · ûe
}

r=r0
,

(lin. pol. dipoles) (17)

with 
 = φe − φm the phase difference between the two
dipole moments. Therefore, for a composite dipole the lateral
force F s

i may be nonzero, even when the dipoles are linearly
polarized. The lateral force has maximal strength when the
two dipoles oscillate in phase (
 = 0) or in opposition of
phase 
 = 180◦, and vanishes when they are in quadrature
(
 = ±90◦).

C. Collinear linearly polarized dipoles

The case of collinear dipoles (ûe = ûm) is particularly in-
teresting because the corresponding self-force F self vanishes.
Thus, when the gradient of the external field along the lateral
direction of interest is zero, the lateral force is fully deter-
mined by F s [Eq. (17)]. Note that the free-space radiation
pattern (the far-field Poynting vector) of two collinear electric
and magnetic dipoles is identical to the radiation pattern of a
single electric dipole. Furthermore, when the electric and the
magnetic dipoles oscillate in phase or in opposition of phase
(
 = 0 or 
 = π ) the emitted field is linearly polarized,
and the far field does not carry any spin or orbital angular
momentum. This is different from Refs. [39,40] where the far
field is circularly polarized analogous to the emission from a
chiral dipole.

Using Cme
int = 1

i(ω/c)∇ × Cee
int and Eq. (A1b) it is possible to

obtain an explicit formula for the lateral force, but it is a bit too
cumbersome to show here. When both dipoles are perpendic-
ular to the interface (ûe = ûm = ẑ) and the composite particle
is positioned at a distance d from the substrate we get:

F s
L

F0
= cos(
)Re

{
d4

(2π )2

∫∫
dkxdky

1

2

−kt

(ω/c)
e−γ02d (ẑ × kt )

·R(ω, kx, ky ) · kt

}
(18)

with F0 = c|pe||pm|/d4 a normalizing factor with units of
force (N), R(ω, kx, ky) the reflection matrix for plane wave
incidence, and kt = kxx̂ + kyŷ the transverse wave vector (see
Appendix A).

D. Uniaxial dielectric substrate

To illustrate the possibilities, next we consider a com-
posite particle formed by the superposition of two collinear
(linearly polarized) electric and magnetic dipoles positioned
at a distance d above the same uniaxial dielectric substrate
as in Sec. II B. For simplicity, the transverse permittivity of
the uniaxial dielectric is taken equal to ε|| = 1 in all the
simulations.

Even though the reciprocity constraints do not forbid a
lateral force for a superposition of electric and magnetic
dipoles, surprisingly, it turns out that the force component
along the x direction vanishes. Even more puzzling, we find
that the lateral force can be nonzero along the y direction.
Figures 3(a) and 3(b) show how the y component of the lateral
optical force F s

y varies with the normalized distance dω/c
and with the tilt angle of the optical axis α0. As seen in
Fig. 3(a), the sign of the lateral force can be tuned by varying
the height of the particle with respect to the substrate, so that
the force can be either positive or negative. The lateral force
depends strongly on the value of εαα , and most notably its sign
changes when εαα crosses the point εαα = −1. Furthermore,
the lateral force depends on the tilt angle of the substrate
optical axis [Fig. 3(b)], and vanishes when the optical axis
is either normal or parallel to the interface. The lateral force
sign is locked to the tilt angle sign.

Figure 3(c) illustrates how the lateral force varies with
the orientation of the two collinear dipoles αe = αm for the
normalized distance dω/c = 1 and for α0 = 45◦. Curiously,
when ε|| = 1 as considered here, the lateral force vanishes
when the dipole moment is parallel to the optical axis di-
rection αe = αm = α0. In agreement with Eq. (17), Fig. 3(d)
shows that the lateral force depends on the phase difference,

 = φe − φm, between the two dipole moments, and has the
largest value when the dipole moments are either in phase or
in opposition of phase.

Hereafter, we consider the case where the two dipole mo-
ments are vertical (αe = αm = 0) and oscillate in phase (
 =
0). Furthermore, it is assumed that the normalized distance
satisfies dω/c = 1, and that the substrate has α0 = 45◦ and
εαα = −∞ (extreme anisotropy), corresponding to a positive
lateral force (Fig. 3) along the +y direction.

Figure 4 shows a polar plot of the back-scattered electric
field pattern |Es|2 in the half-space z > 0 at 5λ0 radial dis-
tance from the composite particle (red line). For the sake of
completeness, we also show the back-scattered field patterns
when the particle is a simple electric dipole (green line) or a
simple magnetic dipole (blue line).

The composite particle has a radiation pattern that is
quasisymmetric in the y = 0 plane [Fig. 4(b)]. On the other
hand, in the x = 0 plane the radiation from the particle is
strongly scattered to the negative y direction [Fig. 4(c)] as
expected from the lateral force being positive (F s

y > 0). This
property is further highlighted in Fig. 4(a), which shows that
in the xoy plane the fields are scattered almost equally to
the right and left (along the x direction) but mainly to the
negative y semiplane. Figure 5 shows the near-field density
plots of |Es|2 in different cut planes. In agreement with
Fig. 4, the density plots are strongly asymmetric in the yoz
plane.
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FIG. 3. Plot of the (y component of the) lateral force F s
y for a uniaxial material with ε|| = 1 for εαα =

−106, −10, −4, −2, −0.5, −0.2, −0.1, −0.01. (a) F s
y as a function of dω/c for α0 = 45◦, αm = αe = 0, and 
 = 0◦. (b) F s

y as
function of the optical axis tilt angle α0 for dω/c = 1, αm = αe = 0, and 
 = 0◦. (c) F s

y as a function of αe with α0 = 45◦, dω/c = 1,
αm = αe, and 
 = 0◦. (d) F s

y as a function of 
 with α0 = 45◦, dω/c = 1, and αm = αe = 0. In all panels the arrow indicates the direction of
increasing εαα (from the red color, for εαα = −106, towards the dark blue color, for εαα = −0.01).

To unveil the reason why the force is directed along y, it is
convenient to visualize the uniaxial material as a tilted wire
medium [Fig. 4(d)] [33–36]. In these conditions, when the

two collinear (vertical) dipoles are placed above the substrate,
they induce a current along the metallic wires, i.e., some sort
of image electric dipole oriented along the substrate optical
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FIG. 4. (a) Polar plot of the scattered field intensity (|Es|2) (arbitrary normalization) in the z = d plane calculated at the 5 λ0- distance
from the particle for α0 = 45◦ at the normalized distance dω/c = 1 for (i) a single vertical electric dipole (green color), (ii) single vertical
magnetic dipole (blue color), and (iii) vertical collinear electric and magnetic dipoles (red color). The amplitudes of the electric and magnetic
dipoles are related as pe = (1/η0 )pm. (b) Same as (a) in the y = 0 plane. (c) Same as (a) in the x = 0 plane. (d) Two collinear electric and
magnetic dipoles standing above a uniaxial substrate with tilted optical axes behave effectively as two noncollinear electric and magnetic
dipoles (Huygens source), leading to an asymmetric radiation pattern and a lateral recoil force.
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FIG. 5. (a) Density plot of the scattered field intensity (|Es|2) (in arbitrary units) at the xoz plane for a composite particle with pe =
(1/η0)pmẑ and pm = pmẑ. The tilt angle is α0 = 45◦ and dω/c = 1. The arrows show a time snapshot (t = 0) of the in-plane electric field
back-scattered by the substrate. (b) Same as (a) but in the yoz plane. (c) Same as (a) but in the z = d plane.

axis. The combined effect of the primary dipoles and of the
image electric dipole is analogous to a Huygens radiator
with the effective electric and magnetic dipoles in the xoz
plane and the effective electric dipole nearly parallel to the
metallic wires [Fig. 4(d)]. This elementary analogy explains
why the radiation pattern may be strongly asymmetric along
the y direction when αe = αm 
= α0, despite the structural
symmetry of the substrate. Furthermore, Fig. 4(d) elucidates
why the lateral force vanishes when αe = αm = α0 [Fig. 3(c)],
because in this scenario the effective electric and magnetic
dipoles are parallel. A different explanation for the reason why
when αe = αm 
= α0 the lateral force can be nontrivial is that
the dipole emitter is not invariant under the parity transfor-
mation (x, y, z) → (x,−y, z) because this transformation flips
the magnetic dipole but not the electric dipole. This breach
of symmetry explains the asymmetric radiation patterns along
the y direction.

IV. CONCLUSION

In summary, we theoretically studied the conditions for
the emergence of lateral optical forces on generic dipole-
type particles placed nearby a reciprocal translation-invariant
substrate. The particle oscillations are either pumped by a
gradientless field distribution or, alternatively, the particle
relaxes freely from an excited state. It was shown that counter-
intuitively the scattering from electric dipoles above a smooth
reciprocal planar substrate does not lead to recoil-type forces,
even if the substrate is chiral or has tilted optical axes. A non-
trivial lateral force can only be generated when the external
field excitation has a gradient along a direction parallel to the
interface.

We proposed a mechanism to create lateral forces using a
composite dipolar particle formed by collinear linearly polar-
ized electric and magnetic dipoles, e.g., a composite particle
formed by short metallic wire and a metal loop. We discussed
in detail the physical mechanisms that enable the emergence
of the anomalous recoil force when the composite particle
stands above a uniaxial material with tilted optical axes. The
interactions of the particle with the substrate effectively create
an image electric dipole that is not parallel to the dipoles

that form the composite particle, leading to an asymmetric
radiation pattern analogous to a Huygens radiator [Fig. 4(d)].
Our results may enable exotic optical manipulations and may
find applications in particle sorting and delivery.

ACKNOWLEDGMENTS

This work is supported in part by the IET under
the Harvey Engineering Research Prize, by Fundação
para a Ciência e a Tecnologia Grant No. PTDC/EEI-
TEL/4543/2014 and by Instituto de Telecomunicações under
project UID/EEA/50008/2019.

APPENDIX A: BACK-SCATTERED FIELD

In this Appendix, we obtain the fields back-scattered by
a material substrate for a dipole-type excitation. The electric
and magnetic dipoles cases are analyzed separately. The fields
radiated by a composite dipole (with electric and magnetic
components) can be simply obtained using the superposition
principle. It should be mentioned that analytical formulas for
the radiation patterns of dipoles with arbitrary orientation
above a dielectric substrate are available in the literature
[45]. However, such a result is inapplicable to our system
because the substrate is a uniaxial material with tilted optical
axes.

1. Electric dipole

Here, we characterize the fields radiated by an electric
dipole that oscillates with frequency ω in air (region z > 0)
in the vicinity of a planar material structure (region z < 0)
[Fig. 1(a)]. The electromagnetic fields in the z > 0 region
are the superposition of the field radiated by the dipole in
free space (Eself ) and the field back-scattered by the material
slab (Es), E = Eself + Es. The self-electric field is given by
Eself = ∇ × ∇ × ( pe

ε0
0) for r 
= r0, where r0 = (x0, y0, z0)

determines the coordinates of the electric dipole, pe is the

electric dipole moment, 0 = eik0 |r−r′ |
4π |r−r′ | is the Hertz potential,

and k0 = ω/c is the free-space wave number.
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Let us consider the problem of plane wave incidence
on the material slab with the incident wave propagating in
the air region (z > 0). Let kt = kxx̂ + kyŷ be the transverse
(parallel to the interface) wave vector of the incident plane
wave that determines the variation of the fields (eikt ·r) along
the x and y directions. We introduce R = R(ω, kx, ky) as the
(2 × 2) reflection matrix such that the transverse electric field

(Eref
t = E ref

x x̂ + E ref
y ŷ) associated with the reflected wave is

related to the transverse incident electric field (Einc
t = E inc

x x̂ +
E inc

y ŷ) as Eref
t = R · Einc

t .
Following Refs. [28,46], the electric field back-scattered by

the material slab, Es, can be written in the air region in terms
of R through a Sommerfeld-type integral:

Es(r) = Cee
int · pe/ε0 (A1a)

Cee
int (r, r0) = 1

(2π )2

∫∫
dkxdky

1

2γ0
e−γ0(z+z0 )eikx (x−x0 )eiky (y−y0 )

(
1t + ẑ ⊗ ikt

γ0

)
· R · (

iγ0kt ⊗ ẑ + k2
01t − kt ⊗ kt

)
. (A1b)

Here, γ0 = −ikz0 with kz0 =
√

ω2/c2 − k2
x − k2

y the propagation constant in the air region and 1t = x̂ ⊗ x̂ + ŷ ⊗ ŷ. Equation
(A1) is completely general and applies to any planar substrate that is invariant to translations along the x and y directions.
The magnetic field radiated by the electric dipole in the air region can be written as H = Hself + Hs with Hi = 1

iωμ0
∇ × Ei

(i = s, self ).

2. Magnetic dipole

The fields radiated by a magnetic dipole (with dipole moment pm) can be easily found using duality arguments. Specifically,
in the air region it is possible to write H = Hself + Hs with Hself = ∇ × ∇ × ( pm

μ0
0) for r 
= r0 and Hs given by

Hs(r) = Cmm
int · pm/μ0 (A2a)

Cmm
int (r, r0) = 1

(2π )2

∫∫
dkxdky

1

2γ0
e−γ0(z+z0 )eikx (x−x0 )eiky (y−y0 )

(
1t + ẑ ⊗ ikt

γ0

)
· RH · (

iγ0kt ⊗ ẑ + k2
01t − kt ⊗ kt

)
. (A2b)

Note that the tensor Cmm
int is defined in the same manner

as the tensor Cee
int, except that the reflection coefficient matrix

is different: R → RH . The reflection coefficient matrix RH is
such that for plane wave incidence the transverse components
of the incident and reflected magnetic fields are linked as
Href

t = RH · Hinc
t . Using the Maxwell equations, it is straight-

forward to check that for a plane wave propagating in free
space the transverse electric and magnetic fields are related
as:

E±
t = − ±1

ωε0kz0

( −kxky −(
k2

y + k2
z0

)
k2

x + k2
z0 kxky

)
· H±

t . (A3)

The ± sign determines if the wave propagates towards +z
or −z semispace. From this result, one may show that the
reflection matrix for the magnetic field is

RH (ω, kx, ky) = −
(

−kxky −(
k2

y + k2
z0

)
k2

x + k2
z0 kxky

)−1

·R ·
( −kxky −(

k2
y + k2

z0

)
k2

x + k2
z0 kxky

)
. (A4)

In the air region, the electric field radiated by the magnetic
dipole is given by E = Eself + Es with Ei = − 1

iωε0
∇ × Hi

(i = s, self ).

APPENDIX B: REFLECTION MATRIX FOR A UNIAXIAL
SUBSTRATE WITH A TILTED OPTICAL AXIS

Next, we derive the reflection matrix R (defined as in
Appendix A) for the scenario wherein the region z < 0 is
a nonmagnetic uniaxial dielectric with optical axis directed

along the unit vector α̂. The relative permittivity of the
uniaxial dielectric is of the form:

ε = ε||(1 − α̂ ⊗ α̂) + εααα̂ ⊗ α̂. (B1)

1. Reflection matrix

Here, we obtain a general formula for R in terms of wave
admittance matrices. We follow closely the ideas of Ref. [47,
Appendix A] and define the transverse fields,

Et =
(

Ex

Ey

)
and J · Ht =

(
0 1

−1 0

)(
Hx

Hy

)
=

(
Hy

−Hx

)
(B2)

For some generic bulk material, it is useful to introduce
two admittance matrices, Y±, such that for plane waves
propagating along the +z and –z directions with transverse
wave vector kt , the corresponding transverse fields are related
by,

J · H+
t = Y+ · E+

t , J · H−
t = −Y− · E−

t . (B3)

The matrices Y± depend on the material, on the frequency
ω, and on the transverse wave vector kt . For an isotropic
dielectric with permittivity ε, one easily finds that,

Y+η0 = Y−η0

= 1

k0k+
z

[
k2

0ε − k2
y kxky

kxky k2
0ε − k2

x

]
, (isotropic dielectric)

(B4)

where k+
z =

√
k2

0ε − k2
x − k2

y , k0 = ω/c is the free-space
wave number, and η0 is the vacuum impedance.
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The reflection matrix for an interface between air (z > 0)
and a uniaxial material (z < 0) can be found by imposing the
continuity of Et and J · Ht at the interface. This procedure
yields [47]:

R(ω, kx, ky) = (Yd + Y−
u )−1 · (Yd − Y−

u ), (B5)

where Yd = Y±
d is the admittance matrix of the air region

[Eq. (B4) with ε = 1 ], and Y−
u is the admittance matrix of

the uniaxial medium. Note that in general the matrices Yd and
Y−

u do not commute. In the next sections, we obtain an explicit
formula for Y−

u .

2. Admittance matrices

The admittance matrices Y±(ω, kx, ky) can be constructed
from the plane wave modes of the bulk medium. Specifically,

let (E±
i H±

i ) (i = 1, 2) be the fields associated with the
plane waves with a wave vector of the form ki = (kx, ky, k±

z,i )
and 1

2 Re{E±
i × H±,∗

i } · (±ẑ) > 0 so that the energy flows
towards the ±z direction depending on the superscript. Then,
from Eq. (B3) we can write:

[J · H±
t,1 J · H±

t,2] = ±Y± · [E±
t,1 E±

t,2], (B6)

where the subscript “t” indicates that only the transverse
components are considered. Thereby, the admittance matrices
are given by:

Y± = ±[J · H±
t,1 J · H±

t,2] · [E±
t,1 E±

t,2]−1. (B7)

For nonmagnetic structures, the plane wave fields satisfy
H = 1

ωμ0
k × E. Using this property it is possible to show that,

Y+η0 = 1

k0

1

(E+
1 × E+

2 ) · ẑ

[
E+

1 · [ŷ(k+
2 × ŷ) − (k+

1 × ŷ)ŷ] · E+
2 E+

1 · [(k+
1 × ŷ)x̂ − x̂(k+

2 × ŷ)] · E+
2

E+
1 · [(k+

1 × x̂)ŷ − ŷ(k+
2 × x̂)] · E+

2 E+
1 · [x̂(k+

2 × x̂) − (k+
1 × x̂)x̂] · E+

2

]
. (B8a)

A similar formula is obtained for Y− with a minus sign in front of the right-hand side expression and with E+
i (the waves that

propagate along +z) replaced by E−
i (the waves that propagate along −z):

Y−η0 = − 1

k0

1

(E−
1 × E−

2 ) · ẑ

[
E−

1 · [ŷ(k−
2 × ŷ) − (k−

1 × ŷ)ŷ] · E−
2 E−

1 · [(k−
1 × ŷ)x̂ − x̂(k−

2 × ŷ)] · E−
2

E−
1 · [(k−

1 × x̂)ŷ − ŷ(k−
2 × x̂)] · E−

2 E−
1 · [x̂(k−

2 × x̂) − (k−
1 × x̂)x̂] · E−

2

]
. (B8b)

When the medium is either reciprocal or invariant under a parity transformation (r → −r), the admittance matrices have the
symmetries discussed in Ref. [47].

3. Uniaxial dielectric

Let us now focus on uniaxial dielectrics with relative permittivity tensor as in Eq. (B1). In this case, the relevant plane waves
are the usual ordinary (E1) and extraordinary (E2) waves, with electric field of the form (apart from an arbitrary multiplication
factor):

E1 = k1 × α̂, k1 ≡ kO. (B9a)

E2 = ε−1 · [k2 × (k2 × α̂)] = (k2 · α̂)

ε||
k2 − α̂

ω2

c2
, k2 ≡ kE . (B9b)

The ordinary wave satisfies the dispersion equation:

kO · kO =
(ω

c

)2
ε||, (B10a)

while the extraordinary wave satisfies,

1

ε||
(kE · α̂)2 + 1

εαα

[(kE · kE ) − (kE · α̂)2] =
(ω

c

)2
. (B10b)

The second identity in Eq. (B9b) is obtained with the help of Eq. (B10b). The wave vectors of the ordinary and extraordinary
waves are the form:

kO = kxx̂ + kyŷ + kO,zẑ, kE = kxx̂ + kyŷ + kE ,zẑ (B11)
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with the z component of the wave vectors determined by Eqs. (B10a) and (B10b), respectively. Straightforward calculations
show that:

kO,z = ±
√(

ω

c

)2

ε|| − k2
x − k2

y (B12a)

kE ,z = 1

ε|| + (ẑ · α̂)2(εαα − ε||)

[
−(εαα − ε||)(kt · α̂)(ẑ · α̂)

±
[

((εαα − ε||)(kt · α̂)(ẑ · α̂))2 +
(

ω2

c2
εααε|| − ε||k2

t + (kt · α̂)2(ε|| − εαα )

)
(ε|| + (ẑ · α̂)2(εαα − ε||))

]1/2]
(B12b)

with kt = kxx̂ + kyŷ the transverse (parallel to the interface with air) wave vector. The ± sign is chosen depending on the desired
propagation direction (±z). In particular, the matrix Y−

u is calculated using Eq. (B8b) with E−
i defined as in Eq. (B9) with the

wave vectors determined by Eq. (B12) with the − sign.
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