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Spontaneous rotational symmetry breaking in a Kramers two-level system
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Here, I develop a model for a two-level system that respects the time-reversal symmetry of the atom
Hamiltonian and the Kramers theorem. The two-level system is formed by two Kramers pairs of excited and
ground states. It is shown that due to the spin-orbit interaction it is in general impossible to find a basis of
atomic states for which the crossed transition dipole moment vanishes. The parametric electric polarizability of
the Kramers two-level system for a definite ground state is generically nonreciprocal. I apply the developed
formalism to study Casimir-Polder forces and torques when the two-level system is placed nearby either a
reciprocal or a nonreciprocal substrate. In particular, I investigate the stable equilibrium orientation of the
two-level system when both the atom and the reciprocal substrate have symmetry of revolution about some
axis. Surprisingly, it is found that when chiral-type dipole transitions are dominant the stable ground state is
not the one in which the symmetry axes of the atom and substrate are aligned. The reason is that the rotational
symmetry may be spontaneously broken by the quantum vacuum fluctuations, so that the ground state has less
symmetry than the system itself.
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I. INTRODUCTION

At the microscopic level, physical systems are generically
ruled by time-reversal invariant Hamiltonians [1]. The time-
reversal operator T acts on the system state in such a way
that its dynamics is effectively reversed in time, analogous
to a movie played backwards [1,2]. Evidently, a double time
reversal should essentially undo the action of T , i.e., it must
bring the system back to its original state. This could naively
suggest that T 2 should be the identity operator (T 2 = 1).
Notably, this is not always the case. For example, for spin
1/2 particles, e.g., an electron described by the Schrödinger
equation, the time-reversal operator satisfies T 2 = −1 [3].
The extra minus sign implies a change in the phase of the wave
function but does not alter the expectation of any physical
operator, consistent with the idea that the double time reversal
should leave the system state unchanged.

As is well known, the extra minus sign has several interest-
ing physical consequences. For example, the wave scattering
in time-reversal invariant platforms with T 2 = −1 is charac-
terized by an antisymmetric scattering matrix [4,5]. This prop-
erty may enable propagation immune to the backscattering
due to impurities or deformations of the propagation path, a
phenomenon known as the spin-Hall effect [4]. Furthermore,
another nontrivial implication of T 2 = −1 is that the station-
ary states of an electronic (spin 1/2) system must be doubly
degenerate. This property is known as the Kramers theorem
[3].

The archetypal system in quantum optics is the two-level
atom. In the usual description, the atom has two nondegen-
erate energy states: the excited state and the ground state.
Evidently, such an idealized model is at odds with the Kramers
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theorem, as the time-reversal invariance of the atom Hamilto-
nian requires both the excited state and the ground state to be
doubly degenerate. In fact, a time-reversal invariant spin 1/2
system with two different energy levels has necessarily four
eigenstates.

The main objective of this paper is to understand how the
degeneracy of the ground state and the additional complexity
arising from the dipolar-type interactions between the two
ground states and the two excited states of the Kramers two-
level system affects Casimir-Polder interactions and the stable
ground-state configuration [6–9]. To this end, I calculate the
Casimir interaction energy (van der Waals potential) of the
Kramers two-level atom both in reciprocal and in nonrecip-
rocal environments. I find that for nonreciprocal platforms
the Casimir energy is ground-state dependent and that the
interactions with the quantum vacuum may result in an energy
splitting of the free ground eigenstates, somewhat alike to the
Zeeman effect. It is important to mention that several recent
works highlighted that the nonreciprocity of the environment
can tailor in unique ways the Casimir-Polder dispersion forces
and torques in atomic and nanoscale systems [10–16], but
neglecting in most cases the degeneracy of the atom ground
state.

In addition, it is proven that for reciprocal environments the
Casimir energy is independent of the ground state. I use the
developed formalism to study the equilibrium configurations
of a Kramers two-level system positioned near a metallic
surface. The atom is invariant under arbitrary rotations about
some symmetry axis. Intuitively, one might expect that the
stable ground-state configuration should have rotational sym-
metry, such that the symmetry axes of the atom and of the
substrate should be aligned. Interestingly, it is found that
this intuitive understanding is wrong and that the equilib-
rium configuration depends on the relative strength of the
dipolar transitions with circular and linear polarization. When
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the chiral-type (with circular polarization) dipolar transitions
dominate, the stable ground state has a broken rotational
symmetry and the atom symmetry axis is parallel to the metal
substrate. Thus, the ground state has less symmetry than the
system itself: the rotational symmetry is spontaneously broken
by the quantum vacuum fluctuations.

In general, the mechanism of spontaneous symmetry
breaking plays a fundamental role in many physical phe-
nomena, e.g., in ferroelectricity, ferromagnetism, or in su-
perconductivity [17–19]. The Higgs mechanism is another
example of spontaneous symmetry breaking and explains
the origin of the mass of bosonic particles in the standard
model of elementary particle physics [19]. The spontaneous
symmetry-breaking mechanism is also relevant in the context
of the electrodynamics of moving media and quantum friction
[20,21]. Here, I show that the interactions of a Kramers
two-level system with the quantum vacuum may result in a
spontaneously broken rotational symmetry.

II. TWO-LEVEL SYSTEM FORMED BY KRAMERS PAIRS

According to the Kramers theorem, the stationary states
of a spin 1/2 electronic system described by a time-reversal
invariant Hamiltonian must be degenerate [3]. Indeed, given
a generic state |n1〉 with energy En it is possible to construct
another state, |n2〉 = T |n1〉, with the same energy En. The two
states are necessarily linearly independent because for spin
1/2 systems the time-reversal operator satisfies T 2 = −1. In
particular, it follows that the ground state of any system with
a single electron is necessarily degenerate. For example, the
ground state of the hydrogen atom is determined by the s
orbital which consists of two states with opposite spins. In a
system with a degenerate ground-subspace the time-reversal
operator typically links different ground states.

From the Kramers theorem, it follows that the minimal
basis for a T -invariant two-level system consists of two
excited states and two ground states [Fig. 1(a)], rather than
a single excited state and a single ground state as considered
for simplicity in most works. Let |e1〉, |e2〉 be a basis of the
excited states and |g1〉, |g2〉 a basis of the ground states. The
two sets are formed by Kramers pairs such that

|e2〉 = T |e1〉, |g2〉 = T |g1〉. (1)

From T 2 = −1 it follows that |e1〉 = −T |e2〉 and |g1〉 =
−T |g2〉.

The atom Hamiltonian is Ĥat = ∑
i Ei|i〉〈i| (i =

e1, e2, g1, g2). The atomic transition frequency is
ω0 = (Ee − Eg)/h̄ with Ee ≡ Ee1 = Ee2 and Eg ≡ Eg1 = Eg2.
The light-matter interactions are determined by the direct
coupling Hamiltonian (electric dipole approximation)
Ĥint = −p̂ · E, with E the electric field and p̂ the atomic
dipole moment operator. For a two-level atom with four
stationary states the dipole moment operator can be written
as p̂ = ∑

i, j γi jσi j with σi j = |i〉〈 j| and γi j = 〈i|p̂| j〉 = γ∗
ji

the dipole moment matrix elements in the considered basis
(i, j = e1, e2, g1, g2).

The time-reversal operator for the one-body Schrödinger
equation is of the form T = UK, with K the complex conjuga-
tion operator and U = iσy determined by the Pauli matrix σy

[3]. Taking into account that T is antilinear and T −1 = −T ,

FIG. 1. (a) A two-level system is formed by a minimum of
four eigenstates, linked in pairs by the time-reversal operator T
(Kramers pairs). The black arrows indicate the nontrivial dipole
moment downward transitions (γg,e). The upward transition elements
are γe,g = γ∗

g,e (not shown in the figure). (b) A two-level system
formed by two Kramers pairs is placed at a distance d from a planar
material substrate.

it can be shown that for a generic time-reversal invariant
operator Â (Â = T −1ÂT with Â Hermitian) one has

〈i|Â| j〉 = 〈T i|Â|T j〉∗, (2)

for generic states |i〉 and | j〉. Replacing |i〉 → |ψ〉 and | j〉 →
|T ψ〉 it follows that 〈ψ |Â|T ψ〉 = 0 for an arbitrary |ψ〉.
In particular, by choosing Â as the identity operator one
gets 〈ψ |T ψ〉 = 0, i.e., any atomic state is orthogonal to the
corresponding time-reversed state. Furthermore, the property
〈ψ |Â|T ψ〉 = 0 together with Eq. (2) imply that a generic
time-reversal invariant operator is represented by a scalar in
any subspace of Kramers pairs: 〈ψm|Â|ψn〉 = δm,nA0 (m, n =
1, 2) with |ψ1〉 = |ψ〉 and |ψ2〉 = T |ψ〉 generic Kramers pairs
and A0 ≡ 〈ψ |Â|ψ〉 = 〈T ψ |Â|T ψ〉. For example, the energy
operator is represented by a scalar in a subspace of Kramers
pairs.

The electric dipole moment is even under the time-reversal
operation (T −1p̂T = p̂). Thus, from Eq. (2) one finds that
γT i,T j ≡ 〈T i|p̂|T j〉 is such that γT i,T j = γ∗

i j . In particular,
the transition dipole moments satisfy [see Fig. 1(a)]

γd ≡ γg1,e1 = γ∗
g2,e2, γc ≡ γg1,e2 = −γ∗

g2,e1. (3)

Since any component of p̂ must be represented by a scalar
in the excited and ground subspaces it is necessary that
γg1,g1 = γg2,g2 and γg1,g2 = 0 and that γe1,e1 = γe2,e2 and
γe1,e2 = 0. In this paper, I suppose that the dipole moment
expectation vanishes for an arbitrary stationary state (γg1,g1 =
γg2,g2 = 0 and γe1,e1 = γe2,e2 = 0). In these conditions, the
dipole moment matrix is completely determined by the direct
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transition dipole moment (γd ) and by the crossed transition
dipole moment (γc). The dipole moment operator is given by

p̂ = p̂− + p̂+, (4a)

p̂− = γdσg1,e1 + γ∗
dσg2,e2 + γcσg1,e2 − γ∗

cσg2,e1, (4b)

p̂+ = γ∗
dσ

†
g1,e1 + γdσ

†
g2,e2 + γ∗

cσ
†
g1,e2 − γcσ

†
g2,e1. (4c)

The two elements γd and γc depend on the adopted basis of
states. If γd and γ∗

d are linearly independent vectors, it may be
shown that the crossed dipole moment can be set equal to zero
after a suitable basis change only if γc is a linear combination
of γd and γ∗

d in the original basis; moreover, if γd and γ∗
d are

linearly dependent vectors, then the crossed dipole moment
can be set equal to zero only if γd ,γc,γ

∗
c are linearly de-

pendent vectors in the original basis (see Appendix A). Thus,
in general it is impossible to suppress the crossed coupling
element γc by switching to a different eigenstate basis.

III. FREE-SPACE ELECTRIC POLARIZABILITY

A. The parametric polarizability

In the quantum optics literature, it is usually assumed that
γc = 0; in such a case the transitions between the subspace of
states generated by |e1〉, |g1〉 (m = 1) and the subspace gener-
ated by |e2〉, |g2〉 (m = 2) are forbidden. Importantly, because
of the spin-orbit interaction term of the atom Hamiltonian,
the ground and excited states with different indices m can
be coupled, i.e., in principle nothing forces γc to be zero.
Spin-orbit interactions have been widely discussed in recent
years, and, for example, it is known that they may lead to a
new phase of matter, the so-called topological (time-reversal
invariant) insulators [3,22–24].

Consider the interaction between a two-level system
formed by two Kramers pairs and the electromagnetic field
when the atom stands alone in free space. The atomic system
is prepared in an initial state of the form |ψ0〉 = c1|g1〉 +
c2|g2〉 with |c1|2 + |c2|2 = 1, i.e., in a definite ground state.
For relatively weak fields and away from resonances the opti-
cal response can be linearized and the atom behaves similarly
to a classical electric dipole. It is shown in Appendix B that
the (parametric) atomic polarizability satisfies

α(ω; |ψ0〉) = αR(ω) + αNR(ω; |ψ0〉), (5a)

αR = 1

ε0h̄

1

2
(γd ⊗ γ∗

d + γ∗
d ⊗ γd + γc ⊗ γ∗

c + γ∗
c ⊗ γc)

×
(

1

ω0 − ω
+ 1

ω0 + ω

)
, (5b)

αNR = 1

ε0h̄
i� × 1

(
1

ω0 − ω
− 1

ω0 + ω

)
, (5c)

with the gyration vector given by

�(c1, c2) = −i(γd × γcc∗
1c2 − γ∗

d × γ∗
cc∗

2c1)

−i 1
2 (|c2|2 − |c1|2)(γd × γ∗

d + γc × γ∗
c ). (6)

The electric polarizability links the quantum expectation of
the electric dipole moment with the local electric field as
〈p〉 = ε0α · E. In the above, h̄ω0 represents the energy differ-
ence between the excited and the ground states [Fig. 1(a)].

The vector � is real valued. The tensor � × 1 has elements
(� × 1)i j = −�kεi jk with εi jk the Levi-Civita symbol. The
effects of spontaneous emission may be taken into account
by replacing ω → ω + i�/2 in Eq. (5), with � the total
spontaneous emission rate in free space [25]. These effects
are unimportant away from the resonance ω = ω0, and for
simplicity are neglected in the following analysis. Note that
a dissipative α due to the effects of spontaneous emission is
compatible with the time-reversal invariance of the system
Hamiltonian. Indeed, a dissipative α does not imply a non-
Hermitian dynamics, but is rather a consequence of the system
being open [26].

The polarizability depends explicitly on the coefficients
c1, c2 that characterize the ground state, because the vector
� also does. The exception occurs when the direct transition
dipole is linearly polarized (i.e., when the Cartesian compo-
nents of γd have the same phase, so that γd × γ∗

d = 0) and
γc = 0, which is the traditional scenario in quantum optics
studies. In such a case, � = 0 and one recovers the usual
formula for the atomic polarizability (without orientation
averaging) [25,27]:

αS = 1

ε0 h̄

(
γd ⊗ γ∗

d

ω0 − ω
+ γ∗

d ⊗ γd

ω0 + ω

)
. (7)

The tensor � × 1 in Eq. (5) is antisymmetric, and hence
it determines a gyrotropic response. When � �= 0 one has
α(ω; |ψ0〉) �= αT (ω; |ψ0〉) and thereby the (parametric) optical
response of the atom is generically nonreciprocal when it is
prepared in a given definite ground state [28]. This property is
consistent with the recent literature of chiral quantum optics
[29]. Specifically, it has been shown both theoretically and ex-
perimentally that by preparing an elementary quantum emitter
in an initial ground state that favors some particular circularly
polarized (chiral) optical transitions it is possible to have
strongly nonreciprocal light-matter interactions, e.g., highly
asymmetric photon emissions, nonreciprocal absorption, and
modified super-radiance [29–39]. It is relevant to mention that
the standard quantum optics model for a two-level atom also
gives nonreciprocal responses because in general αS �= αS,T

[see Eq. (7)].
An initial state of the form |ψ0〉 = c1|g1〉 + c2|g2〉 is

transformed by the time-reversal operation into T |ψ0〉 =
−c∗

2|g1〉 + c∗
1|g2〉. It may be verified that

α(ω; |ψ0〉) = αT (ω; T |ψ0〉), (8)

where the superscript “T” stands for the transpose of a tensor.
Thus, the polarizability tensors associated with two ground
states linked by the time-reversal operation are related by ma-
trix transposition. This is a standard property of nonreciprocal
systems [28].

In the very special case γc = 0 with γd linearly polar-
ized, the polarizability (α = αR) satisfies the Onsager-Casimir
reciprocity relation α = αT [40,41], and is independent of
the initial ground state. Note that αR, i.e., the first compo-
nent of α in Eq. (5a), is a symmetric tensor independent
of |ψ0〉. Furthermore, for thermal states the ground states
are equiprobable and uncorrelated (〈|c1|2〉th = 〈|c2|2〉th = 1/2
and 〈c1c∗

2〉th = 0; for simplicity, it is assumed that the temper-
ature is sufficiently small so that the probability of occupation
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of the excited states is negligible); thus, the expectation of the
gyration vector vanishes (〈�〉th = 0) and the polarizability of
the two-level system reduces to 〈α〉th = αR, so that the optical
response of thermal states is reciprocal.

B. Link between the gyration vector and
the orbital magnetic dipole moment

The orbital magnetic dipole moment is m̂ = −γeL̂ where
L̂ = r × P is the (orbital) angular momentum operator, γe =

e
2me

> 0 is the (classical) gyromagnetic ratio, me is the elec-
tron mass, and e > 0 is the elementary charge. Here, r and
P are the position and momentum operators of the electron,
respectively. For a two-level system, the position operator is
p̂/(−e), with p̂ the electric dipole moment operator. In a non-
relativistic approximation, the momentum can be identified
with me

dr
dt = me

−e
i
h̄ [Ĥat, p̂]. With the help of Eq. (4), it may

be written as P = iω0
2γe

(p̂− − p̂+). Hence, the orbital magnetic
dipole moment operator is given by

m̂ = iω0

2e
(p̂+ × p̂− − p̂− × p̂+). (9)

Different from the electric dipole moment, the magnetic
dipole moment is odd under a time reversal (T −1m̂T = −m̂).
Thus, the restriction of m̂ to a subspace of Kramers pairs
does not need to be represented by a scalar. In particular,
the expectation of m̂ is generically ground-state dependent.
Straightforward calculations show that 〈m̂〉0 ≡ 〈ψ0|m̂|ψ0〉 is
given by

〈m̂〉0 = −ω0

e
�. (10)

Thus, the gyration vector � determines the expectation of
the ground-state orbital magnetic dipole moment. In simple
terms, due to the spin-orbit coupling the atom behaves as
a tiny magnet whose magnetization depends on the ground
state. Ground states linked by the time-reversal operator have
antiparallel (additive symmetric) orbital magnetic dipole mo-
ments. Indeed, because m̂ is odd under a time reversal it is
necessary that 〈g1|m̂|g1〉 = −〈g2|m̂|g2〉.

IV. CASIMIR PHYSICS

So far, it was assumed that the atom is far from other
material bodies. The rest of the paper focuses on the interac-
tion of the Kramers two-level atom with the electromagnetic
vacuum. The quantum emitter is placed at a distance d from a
macroscopic planar material interface, as depicted in Fig. 1(b).

A. Casimir interaction energy

The Casimir interaction energy, also referred to as the
van der Waals potential, gives the energy shift of a given
atomic ground state due to the interactions with the vac-
uum of the quantized electromagnetic field [25]. To lowest-
order perturbation theory and for a generic atom “ground
state” |ψ0〉, it can be written in terms of the polarizability
as follows [25,42]:

Eint (|ψ0〉) = −h̄

2π

∫ ∞

0
tr{α(iξ ; |ψ0〉) · Cint (iξ )}dξ, (11)

with tr{..} the trace operator and Cint an interaction tensor
that describes the coupling of the two-level system and the
material substrate (see Appendix C). The polarizability is
evaluated along the imaginary frequency axis (ω = iξ ) where
the material response does not exhibit any resonant features
[43]. For now, it is assumed that kBT 
 h̄ω0 and d 
 λT with
λT = hc/kBT the thermal wavelength, so that the temperature
corrections are negligible.

Evidently, Eint may depend on |ψ0〉 because α also does.
Therefore, initial states of the form |ψ0〉 = c1|g1〉 + c2|g2〉
may suffer different energy shifts. This implies that different
from the free-atom case, when the atom is in the vicinity of a
material surface there may be an energy cost to push it from a
given free-atom ground state to another ground state.

For future reference, it is noted that in the standard model
of quantum optics, i.e., when the two-level atom has uniquely
two eigenstates so that the polarizability is given by Eq. (7),
the Casimir interaction energy is given by

ES
int (γd ) = −1

2πε0

∫ ∞

0

(
γ∗

d · Cint · γd

ω0 − ω
+ γd · Cint · γ∗

d

ω0 + ω

)
dξ .

(12)
The superscript “S” refers to the standard model approxima-
tion.

B. Reciprocal substrate

From Eq. (5) the interaction energy can be written as
Eint = −h̄

4π

∫ ∞
0 tr{(αR + αNR) · Cint}dξ . For a reciprocal sub-

strate, e.g., a standard metal surface, the interaction tensor
Cint is symmetric. The trace of the product of symmetric
and antisymmetric matrices vanishes. Using this property, one
readily finds that

Eint = −h̄

2π

∫ ∞

0
tr{αR · Cint}dξ

= −1

2πε0

∫ ∞

0

(
1

ω0 − ω
+ 1

ω0 + ω

)
× (γ∗

d · Cint · γd + γ∗
c · Cint · γc)dξ . (13)

Hence, the interaction energy (i.e., the energy shift suffered by
|ψ0〉) is independent of the considered ground state |ψ0〉. In
particular, the energy shift is insensitive to the nonreciprocity
of the (parametric) polarizability response.

For a reciprocal substrate (Cint is symmetric), the inter-
action energy calculated with the standard two-level atom
model [Eq. (12)] satisfies ES

int = Eint|γc=0, with Eint|γc=0 the
interaction energy calculated for a Kramers two-level system
[Eq. (13)] with no spin-orbit coupling (γc = 0). Thus, if there
is no spin-orbit coupling and if the substrate is reciprocal, it
makes no difference to compute the Casimir energy (ground-
state energy shift of the atom) using the standard two-level
atom model or the Kramers pairs model: the result is exactly
the same.

Consider now that the substrate is a metal half space
described by a Drude-type dispersion model ε(ω) = 1 −
2ω2

sp/ω(ω + i�m) with ω = ωsp the surface plasmon reso-
nance and �m a damping factor. Using a quasistatic approx-
imation, one finds the following explicit formula for the
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FIG. 2. Interaction tensor evaluated for imaginary frequencies
(ω = iξ ) for d = 0.01c/ωsp and �m = 0.1ωsp. Solid lines: Exact
result [Eq. (C4)]. Dashed lines: Quasistatic approximation [Eq. (14)].
The plot is nearly unchanged for smaller values of the distance d .

interaction dyadic (see Appendix D):

Cint (ω) ≈ 1

32πd3

ε(ω) − 1

ε(ω) + 1
(x̂ ⊗ x̂ + ŷ ⊗ ŷ + 2ẑ ⊗ ẑ).

(14)

As shown in Fig. 2, this quasistatic approximation gives
results nearly indistinguishable from the exact calculation
based on Eq. (C4) of Appendix C for ω = iξ in the imaginary
frequency axis and when the atom-metal distance is deeply
subwavelength (dωsp/c 
 1). Note that in the imaginary
frequency axis Cint is real valued and exhibits a monotonic
decreasing behavior with no resonant features. Due to this
reason, Cint is little affected by realistic metal loss (�m =
0.1ωsp) in the imaginary frequency axis, and thereby the
interaction Casimir energy has the same property.

In the lossless limit (�m → 0+), one has ε(ω)−1
ε(ω)+1 ≈ ω2

sp

ω2
sp−ω2 .

Using the auxiliary identity

1

2π

∫ ∞

0

(
1

ω0 − ω
+ 1

ω0 + ω

)
ω2

sp

ω2
sp − ω2

∣∣∣∣∣
ω=iξ

dξ = ωsp/2

ωsp + ω0

(15)

and Eqs. (13) and (14), one obtains the following closed
analytical formula for the Casimir energy:

Eint = −1

64πε0d3

ωsp

ωsp + ω0
(γ∗

d · C̃ · γd + γ∗
c · C̃ · γc),

(16)
with C̃ = x̂ ⊗ x̂ + ŷ ⊗ ŷ + 2ẑ ⊗ ẑ.

C. Nonreciprocal substrate

Suppose now that the substrate is nonreciprocal so that Cint

does not need to be a symmetric tensor. For simplicity, it is
assumed that the crossed transition dipole moment vanishes
so that γc = 0. Using Eq. (B7), the interaction energy for the

Kramers pairs model is

Eint|γc=0

= −1

2πε0
|c1|2

∫ ∞

0

(
γ∗

d · Cint · γd

ω0 − ω
+ γd · Cint · γ∗

d

ω0+ ω

)∣∣∣∣
ω=iξ

dξ

+ −1

2πε0
|c2|2

∫ ∞

0

(
γd · Cint · γ∗

d

ω0− ω
+ γ∗

d · Cint · γd

ω0+ ω

)∣∣∣∣
ω=iξ

dξ .

(17)

Remarkably, for a nonreciprocal substrate the interaction en-
ergy generally depends on |ψ0〉. The interaction energy can be
written in terms of ES

int (γd ) [Eq. (12)] as follows:

Eint|γc=0 = |c1|2ES
int (γd ) + |c2|2ES

int (γ
∗
d ). (18)

Thus, in the Kramers pairs model, the Casimir energy is a
weighted sum of the Casimir energies associated with the
individual (uncoupled) two-level atom components.

Furthermore, in Appendix E it shown that the ground-
state physics can be described by an effective Hamiltonian
that takes into account the interaction with the quantized
electromagnetic field. The effective Hamiltonian Hef = [hm,n]
(m, n = 1, 2) acts on the ground-state coordinates (c1 c2)T

with hm,n determined by Eq. (E9). In the reciprocal case
Hef reduces to a scalar, as the ground state is necessarily
degenerate. In contrast, for a nonreciprocal substrate Hef is
a nontrivial 2 × 2 matrix. Thereby, the interactions with the
material substrate can lift the ground-state degeneracy. When
γc = 0 the energy eigenstates of the interacting system are
|g1〉 and |g2〉. Typically, the two eigenstates are associated
with different energies, consistent with Eq. (18). Even though
a generic state of the form |ψ0〉 = c1|g1〉 + c2|g2〉 is not a sta-
tionary state of the interacting system, the energy expectation
is always determined by the Casimir energy 〈ψ0|Hef |ψ0〉 =
Eint (|ψ0〉) (see Appendix E).

To illustrate the ideas, suppose that the substrate is an elec-
tron gas (metal) biased with a static magnetic field oriented
along the +y direction, i.e., parallel to the interface with air
(z = 0). The nonreciprocal material is characterized by the
plasma frequency ωp and by the cyclotron frequency ωc. The
surface plasmon resonance is ωsp = ωp/

√
2. The dispersive

model of the gyrotropic permittivity tensor is the same as
in Ref. [42]. The fluctuation-induced forces in this material
platform were characterized in Ref. [42] using a quasistatic
approximation for the standard two-level system model. From
Eq. (44) of Ref. [42], it follows that ES

int can be written as

ES
int (γd ) = 1

16πε0d3

−1

2π

×
∫ 2π

0

aθωθ

ω0 + ωθ

|(i cos θ x̂ + i sin θ ŷ + ẑ) · γ∗
d |2dθ,

(19)

where aθ , ωθ are functions defined in Ref. [42] and which
are independent of γd . The Casimir interaction energy for
the Kramers pairs model can be evaluated using the above
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FIG. 3. Normalized interaction energy for a two-level system formed by two Kramers pairs placed nearby a gyrotropic magnetized plasma
with ωc = 0.5ωp. (a) Eint as a function of the atomic transition frequency for (i) γd = γd (x̂ ± iŷ)/

√
2 and an arbitrary ground state (H-pol); (ii)

γd = γd (x̂ − iẑ)/
√

2 (V-pol) and for the states |g1〉 (solid green line), (|g1〉 + eiδ|g2〉)/
√

2 (solid black line), and |g2〉 (dashed green line). (b)
Eint as a function of the direction ϕ of the atom polarization plane for the stationary states of the interacting system and ω0 = 0.7ωp.

formula and Eq. (18). As an aside, I note that when there is
no magnetic bias (ωc = 0), one has aθ = 1/2 and ωθ = ωsp,
so that Eq. (19) reduces to the right-hand side of Eq. (16) with
γc = 0.

Figure 3(a) shows the normalized Casimir energy as a
function of the two-level atom transition frequency ω0 for
different free-atom ground states. The energy normaliza-
tion factor is Eint,0 = |γd |2/(16πε0d3). The direct transition
dipole moment is circularly polarized. For a vertical plane
of polarization (V-pol) it is of the form γd = γd (x̂ − iẑ)/

√
2,

whereas for a horizontal plane of polarization (H-pol) it is
given by γd = γd (x̂ ± iŷ)/

√
2. The Casimir force acting on

the atom is directed along z. For stationary states, it is re-
lated to the Casimir energy as Fc,z = −∂Eint/∂d = 3Eint/d <

0 (attractive force) and has a variation with ω0 analo-
gous to the variation of Eint in normalized unities (not
shown).

The atomic energy shift Eint is ground-state independent
for H-pol. In this case, Hef is a scalar and the ground state of
the interacting system is degenerate. In contrast, for V-pol Eint
varies with |ψ0〉. In particular, the Kramers pairs |g1〉 and |g2〉
suffer different energy shifts when the polarization plane is
vertical. This energy-level splitting is due to the nonreciprocal
magnetic bias and is reminiscent of (but not the same as)
the Zeeman effect. Note that the present analysis neglects
the coupling of the atomic spin with the static magnetic
bias, which is the mechanism responsible for the Zeeman
effect.

The Casimir torque may act to reorient the atom plane
of polarization [11,44–46]. To study this effect, I show in
Fig. 3(b) how the interaction energy varies with the orientation
ϕ of the vertical plane of polarization. The corresponding
transition dipole moment is γd (ϕ) = γd (ρ̂ − iẑ)/

√
2, with

ρ̂ = cos ϕx̂ + sin ϕŷ and ϕ the angle of the polarization plane
with respect to the x axis. For stationary states, the Casimir
torque is τC = −∂ϕEint ẑ.

As seen in Fig. 3(b), the energy minimum occurs at ϕ = 0◦
when |ψ0〉 = |g2〉 and at ϕ = 180◦ when |ψ0〉 = |g1〉, which
thereby are the ground-state dependent orientations for a
stable equilibrium. Thus, the Casimir torque acts to reorient
the atom plane of polarization towards the direction ϕ = 0◦
(ϕ = 180◦) when the initial ground state is |g2〉 (|g1〉). In both
cases, the plane of polarization is perpendicular to the bias
magnetic field (see also Ref. [11]). Interestingly, the atomic
polarizability at the equilibrium configurations is identical in
both cases (α(ω; |g2〉ϕ=0◦ ) = α(ω; |g1〉ϕ=180◦ )).Thus, the equi-
librium state of the atom has properties that are independent
of the initial (|g1〉 or |g2〉) ground state. Note that it is
implicit that the atom is free to rotate under the action of
the Casimir torque. Furthermore, the gyration vector is the
same for both |g1〉ϕ=180◦ , |g2〉ϕ=0◦ (� = −ŷ|γd |2/2), i.e., it
is antiparallel to the bias magnetic field. Consequently, from
Eq. (10) the magnetic dipole moment expectation 〈m̂〉 of
the stable ground state of the interacting system is directed
along +ŷ. The tiny magnetic field induced by 〈m̂〉 acts to
demagnetize the substrate (note that the atom lies above the
substrate).

In summary, for a nonreciprocal substrate the ground state
does not need to be degenerate. When γc vanishes, the sta-
tionary states of the interacting system are |g1〉 and |g2〉. For a
circularly polarized atom, the Casimir torque acts to reorient
the polarization plane in such a way that it is vertical and
perpendicular to the magnetic bias.

V. SPONTANEOUS SYMMETRY BREAKING OF
ROTATIONAL SYMMETRY

Next, I analyze the equilibrium positions of a Kramers
two-level atom when it is placed nearby a reciprocal metal
surface. It is supposed that the atom has a rotational symmetry
about some reference axis. It is shown that the ground state
of the combined system (atom+substrate) may have a broken
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symmetry depending on the relative strength of dipole transi-
tions with linear and circular polarization.

A. Casimir torque

It is useful to obtain a general formula for the Casimir
torque acting on the atomic system. As is well known, the
Casimir torque along a generic direction n̂ can be found from
the variation of the Casimir energy under a rotation about
n̂ [11,44,47]. The transition dipole moment matrix elements
transform as γ → Rα · γ under a rotation by an angle α. Here,

Rα (n̂) = eα n̂×1 = n̂ ⊗ n̂ + (1 − n̂ ⊗ n̂) cos α + sin α(n̂ × 1)
(20)

is the rotation matrix. The interaction energy may be
regarded a function of the transition dipole moment
vector amplitudes Eint = Eint (γd ,γ

∗
d ,γc,γ

∗
c ), so that

under a rotation of α around the direction n̂ one has
Eint (α) = Eint (eα n̂×1 · γd , eα n̂×1 · γ∗

d , eα n̂×1 · γc, eα n̂×1 · γ∗
c ).

The Casimir torque τC satisfies n̂ · τC = −∂αEint|α=0, which
yields

n̂ · τC = −
∑

γ=γd ,γ∗
d ,γc,γ

∗
c

(n̂ × γ) · ∂γEint, (21)

with ∂γ = ∂/∂γ. Since n̂ is arbitrary the torque can be ex-
pressed through the compact formula:

τC = −
∑

γ=γd ,γ∗
d ,γc,γ

∗
c

γ × ∂γEint. (22)

B. Metal surface

Applying Eq. (22) to a (reciprocal) metal surface with
interaction energy given by Eq. (16), one gets

τC = 1

64πε0d3

ωsp

ωsp + ω0
(γ∗

d × (C̃ · γd )

+γd × (C̃ · γ∗
d ) + γ∗

c × (C̃ · γc) + γc × (C̃ · γ∗
c )).

(23)

I used the fact that C̃ is a symmetric tensor. Noting that C̃ =
1 + ẑ ⊗ ẑ the above result can be rewritten as

τC = 1

32πε0d3

ωsp

ωsp + ω0

× Re{(γ∗
d × ẑ)(ẑ · γd ) + (γ∗

c × ẑ)(ẑ · γc)}. (24)

In the rest of the paper, I focus on an atomic system that
is invariant under arbitrary rotations about some reference
axis. When the reference axis is aligned with the z direction,
the entire system (atom+metallic substrate) is invariant under
arbitrary rotations around z.

In order that the Kramers two-level atom is invariant
under arbitrary rotations around z it is necessary that both
γd and γc are eigenvectors of Rα (ẑ). Thus, the direct and
crossed dipole moments must be proportional to either ẑ or
e+ = (x̂ + iŷ)/

√
2 or e− = (x̂ − iŷ)/

√
2. The crossed dipole

term cannot be eliminated with a suitable change of basis
when the two dipole moments have a different polarization
type; specifically, one of the dipole moments must be linearly
polarized and the other one must be circularly polarized. In

the following, I consider the case

γd |axis align. z = γd ẑ, γc|axis align. z = γc(x̂ − iŷ)
1√
2
. (25)

Since γd ,γc,γ
∗
c are linearly independent it is impossible to

eliminate the crossed dipole element with a basis change.
Evidently, when the axis of symmetry of the atom is aligned
along the generic radial direction r̂, Eq. (25) must be replaced
by

γd (θ, ϕ) = γd r̂, γc(θ, ϕ) = γc(θ̂ − iϕ̂)
1√
2
. (26)

Here, r̂, θ̂, ϕ̂ are unit vectors associated with a spherical
coordinate system attached to the Cartesian reference frame.
Substituting the above formulas into Eqs. (16) and (24) it is
found that the Casimir energy and torque are given by

Eint = −1

64πε0d3

ωsp

ωsp + ω0(
2|γd |2 + |γc|2 +

(
−|γd |2 + |γc|2

2

)
sin2θ

)
, (27)

τC = 1

64πε0d3

ωsp

ωsp + ω0
sin 2θ

(
−|γd |2 + |γc|2

2

)
ϕ̂. (28)

Clearly, the torque acts to rotate the symmetry axis of the
Kramers two-level atom in a vertical plane ϕ = const. The
torque vanishes when the atom symmetry axis is oriented
along θ = 0◦, 180◦, i.e., when the atom and the substrate
symmetry axes are aligned, or when θ = 90◦, i.e., when the
two symmetry axes are perpendicular.

C. Symmetry breaking

The point of stable equilibrium determined by the Casimir
torque depends on the relative strength of the direct and
crossed dipole moments. If |γd | > |γc|/

√
2, i.e., when the

strength of linearly polarized (direct) dipole transitions domi-
nates, the positions of stable equilibrium are θ = 0◦, 180◦, so
that the atom symmetry axis is aligned with the z direction and
the equilibrium ground state has the same rotational symmetry
as the system [Fig. 4(a), top)]. In particular, the minimum of
Eint occurs for θ = 0◦ [Fig. 4(a), bottom]. Note that in the
lower panels of Fig. 4 the angle θ is measured along the radial
direction.

Remarkably, when |γd | < |γc|/
√

2 and the strength of the
chiral (circularly polarized) transitions becomes dominant, the
position of stable equilibrium corresponds to θ = 90◦ and
arbitrary ϕ, which are the minima of Eint [Fig. 4(b), bottom].
The configurations of stable equilibrium form a continuum.
For any of the equilibrium points the atom symmetry axis is
horizontal with respect to the substrate [Fig. 4(b), top]. Any
two equilibrium configurations differ by some rotation with
respect to the z direction; a given equilibrium configuration
does not exhibit any particular symmetry. Evidently, the equi-
librium ground state has less symmetry than the system itself:
the rotation symmetry is spontaneously broken by the vacuum
fluctuations. The point |γd | = |γc|/

√
2 marks a phase tran-

sition between the preserved and the spontaneously broken
rotational symmetries. The spontaneous symmetry breaking
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FIG. 4. Normalized Casimir energy as a function of the orientation of the symmetry axis of a Kramers two-level atom with ω0 = 0.1ωsp.
The atom symmetry axis orientation is determined by the spherical coordinates θ and ϕ. In the lower panels, the angle θ is represented as
a radial coordinate in the interval 0◦ < θ < 90◦. The Casimir torque acts to push the system state to the valley region. (a) γc = 0 (linear
polarization dominates), corresponding to an unbroken rotation symmetry. The atom symmetry axis is vertical with respect to the interface
(upper panel). (b) γc = 2γd (circular polarization dominates), corresponding to a spontaneously broken rotation symmetry. The atom symmetry
axis is horizontal with respect to the interface (upper panel).

due to the interaction of an atom with a metallic surface is
reminiscent of other forms of (parity) symmetry breaking that
occur in natural compounds and organic molecules (e.g., in
polar molecules such as ammonia or in sugar molecules) [17].

A simple mechanical analog of the system consists of a
cylindrical bottle standing in still water. If the bottle stands
vertical with respect to the water surface the system has
rotational symmetry. However, this equilibrium point is un-
stable: any tiny perturbation of the water surface will make
the bottle fall along some direction; the stable equilibrium
position corresponds to a situation for which the bottle sym-
metry axis is horizontal with respect to the interface. The
rotational symmetry of the system is spontaneously broken by
fluctuations on the water surface.

It is relevant to mention that the continuous variation be-
tween the configuration with γc = 0, which has a ground state
with a preserved rotational symmetry, and the configuration
with γd = 0, which has a spontaneously broken rotational
symmetry, is only possible using the Kramers pairs two-level
atom model introduced here. Indeed, in the standard two-
level atom model it is impossible (without suppressing the
light-matter interactions) to deform continuously γd1ẑ into
γd2(x̂ − iŷ) 1√

2
preserving the rotational symmetry of the atom

along the z axis; note that a transition dipole moment of the
form γd1ẑ + γd2(x̂ − iŷ) 1√

2
does not describe an atom invari-

ant under rotations around the z axis because it is not an eigen-

vector of Rα (ẑ). It is also pertinent to point out that the roles of
γd and γc can be exchanged. Indeed, under a change of basis
|e1〉 → |e2〉 and |e2〉 → −|e1〉 the meaning of the vectors is
swapped (see Appendix A). Thus, the general requirement
for the spontaneous symmetry breaking is that the chiral-type
transitions predominate. This means that the platforms that
are currently being studied in the context of chiral quantum
optics are potentially suitable for the observation of the effect
[29]. I also note that the spontaneous symmetry breaking can
be predicted with the standard two-level atom model using
γd (θ, ϕ) = γd (θ̂ − iϕ̂)/

√
2. However, in the standard model

the atomic response has a broken time-reversal symmetry,
different from the Kramers pairs model which respects the
time-reversal invariance.

Figure 5(a) represents the Casimir torque as a function of
the orientation of the symmetry axis θ . As seen, the torque’s
sign is linked to the sign of |γc| − √

2|γd |. When |γc| >√
2|γd | (blue lines) the torque acts to reorient the symmetry

axis so that it becomes parallel to the substrate (direction
θ = 90◦); otherwise, it acts to reorient the symmetry axis
along the z axis (θ = 0◦, 180◦). The torque vanishes when
|γc| = √

2|γd |, which is the point of the phase transition.
So far, the analysis has neglected the effect of temperature.

Figures 5(bi) and 5(bii) show the Casimir (free) energy as a
function of θ for configurations with an unbroken and with a
broken rotational symmetry, respectively, and different values
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FIG. 5. (a) Normalized Casimir torque acting on a Kramers two-level atom as a function of the orientation θ of the atom symmetry axis
with respect to the z direction. The atom transition frequency is ω0 = 0.1ωsp. Solid black line: γc = 0; dashed black line: γc = γd ; green line:
γc = √

2γd ; dashed blue line: γc = √
3γd ; solid blue line: γc = 2γd . The stable equilibrium orientation is θ = 0◦, 180◦ for the black lines

(unbroken rotational symmetry) and θ = 90◦ for the blue lines (spontaneously broken symmetry). (bi) Normalized Casimir free energy as
a function of the orientation of the atom symmetry axis for γc = 0 and ω0 = 0.1ωsp. Dashed black line: zero-temperature limit; black line:
ωT = ω0; blue line: ωT = 2ω0; green line: ωT = 3ω0. The arrow indicates the direction of increasing temperature. (bii) Similar to (bi) but for
γc = 2γd .

of the temperature. The free Casimir energy is determined in a
standard way by replacing the integration over the imaginary
frequency axis in Eq. (11) by a summation over Matsubara fre-
quencies (ξl = ωT l with ωT = 2πkBT /h̄ and l = 0, 1, 2, . . .)
[48–50]:

Eint = −kBT
∑

l=0,1,2,...

(
1 − 1

2
δl,0

)
tr{α(iξl ) · Cint (iξl )}. (29)

For ωT < ω0, the temperature corrections are insignificant
[see the solid and dashed black lines in Fig. 5(b)]. For
typical values of the atomic transition frequency, the condi-
tion ωT = ω0 corresponds to temperatures on the order of a
few thousand kelvin. For even higher temperatures, the term
l = 0 in Eq. (29) becomes dominant and the free energy
becomes roughly proportional to the temperature. The results
of Fig. 5(b) suggest that the phenomenon of spontaneous
symmetry breaking may be very robust to the effects of a finite
temperature.

VI. SUMMARY

The standard model of a two-level atom violates the time-
reversal symmetry. To circumvent this deficiency, I developed
an alternative model wherein the atom is characterized by two
Kramers pairs of ground and excited states. In general, the two
excited states can be coupled through dipolar-type transitions
to any of the ground states. It was shown that in general it is
impossible to eliminate crossed dipole transitions due to the
spin-orbit interaction component of the atom Hamiltonian. It
was demonstrated that the atom (parametric) electric polariz-
ability for a definite ground state is generically nonreciprocal.

The proposed model was applied to study Casimir-Polder
forces when the Kramers two-level atom interacts with either
a nonreciprocal or with a reciprocal environment. It was
found that for a nonreciprocal environment the ground-state
degeneracy is lifted by the interactions with the electromag-
netic vacuum. In particular, the nonreciprocity of the sub-
strate may induce atomic energy shifts that are reminiscent
of the Zeeman effect. In contrast, for a reciprocal system, the

Casimir-Polder physics is independent of the atomic ground
state.

I investigated the stable equilibrium positions of a Kramers
two-level system with symmetry of rotation about some axis
when it is placed nearby a metal surface. It was shown that
the Casimir torque acts to reorient the symmetry axis of the
atom. Surprisingly, the stable equilibrium orientation does
not always correspond to the alignment of the substrate and
atom symmetry axes. When the chiral-type dipolar transitions
dominate, the quantum fluctuations act to reorient the atom
symmetry axis in such a way that it becomes parallel to the
metallic surface. Thus, the quantum vacuum fluctuations lead
to a stable ground state with a spontaneously broken rota-
tional symmetry. The present theory highlights the richness
of physics that can emerge due to the degeneracy of atomic
states.
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APPENDIX A: TRANSFORMATION OF γd AND γc UNDER
A CHANGE OF BASIS

In this appendix, I study how a change of basis affects the
(vector) amplitudes of the transition dipole moment vector
elements γd and γc.

A change of basis is completely characterized by the
coefficients ai, bi (i = 1, 2) such that the new basis elements
are

|e′
1〉 = a1|e1〉 + a2|e2〉, |g′

1〉 = b1|g1〉 + b2|g2〉, (A1)

with |a1|2 + |a2|2 = 1 = |b1|2 + |b2|2. The remaining ele-
ments of the basis are obtained from the constraints |e′

2〉 =
T |e′

1〉 and |g′
2〉 = T |g′

1〉 [Eq. (1)]:

|e′
2〉 = −a∗

2|e1〉+ a∗
1|e2〉, |g′

2〉 = −b∗
2|g1〉+ b∗

1|g2〉. (A2)
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In the new basis, γd ′ ≡ 〈g′
1|p̂|e′

1〉 and γc′ ≡ 〈g′
1|p̂|e′

2〉 satisfy

γd ′ = a1b∗
1γd + a2b∗

2γ
∗
d + a2b∗

1γc − a1b∗
2γ

∗
c , (A3a)

γc′ = (−a2b1γ
∗
d + a1b2γd + a1b1γ

∗
c + a2b2γc)∗. (A3b)

The relations γd = γg1,e1 = γ∗
g2,e2 and γc = γg1,e2 = −γ∗

g2,e1
[Eq. (3)] were used. Furthermore, a ground state of the form
|ψ0〉 = c1|g1〉 + c2|g2〉 is expressed in the new basis as |ψ0〉 =
c′

1|g′
1〉 + c′

2|g′
2〉 with c′

i given by

c′
1 = b∗

1c1 + b∗
2c2, c′

2 = −b2c1 + b1c2. (A4)

It can be checked that the polarizability tensor (5) is invariant
under a change of basis, i.e., under a transformation of the
type γd → γd ′ , γc → γc′ , and ci → c′

i, as it should be.
Suppose that some (primed) basis (with transition dipole

moments γd ′ ,γc′) is given. Is it possible to switch to another
(unprimed basis) where γc = 0? Clearly, if this is possible
Eq. (A3a) implies that γd ′ = a1b∗

1γd + a2b∗
2γ

∗
d . Combining

this equation with its complex conjugate, one gets

(|a1b1|2 − |a2b2|2)γd = a∗
1b1γd ′ − a2b∗

2γ
∗
d ′ . (A5)

On the other hand, from Eq. (A3b) the relation γ∗
c′ =

a1b2γd − a2b1γ
∗
d must be also satisfied. The leading coeffi-

cient on the left-hand side of Eq. (A5) is necessarily nonzero
when γd ′ ,γ∗

d ′ are linearly independent. In such a case, γd
is a linear combination of γd ′ ,γ∗

d ′ , and hence the crossed
transition element (γc) can be set identical to zero only if γc′
is a linear combination of γd ′ ,γ∗

d ′ .
Furthermore, an identity analogous to Eq. (A3b) also holds

true with the primed and unprimed symbols interchanged.
Thus, when γd ′ ,γ∗

d ′ are linearly dependent it follows that
γc can be set equal to zero only if γd ′ ,γc′,γ∗

c′ are linearly
dependent.

In summary, in order that the crossed dipole moment
(γc) can be set equal to zero with suitable basis change it
is necessary that (i) if γd ′ ,γ∗

d ′ are linearly independent γc′
must be a linear combination of γd ′ ,γ∗

d ′ , alternatively (ii)
if γd ′ ,γ∗

d ′ are linearly dependent then γd ′ ,γc′ ,γ∗
c′ must be

linearly dependent.

APPENDIX B: THE ATOMIC POLARIZABILITY

In this appendix, the free-space atomic polarizability is
calculated using a linear response approximation. The Hamil-
tonian of the quantum system under the action of a classical
electric field is

Ĥ = Ĥat + Ĥint, (B1)

with Ĥat = ∑
i Ei|i〉〈i| and Ĥint = −p̂ · E. It is assumed that

the quantum system is formed by two pairs of degenerate
energy states [Fig. 1(a)]. When the stationary states have a
vanishing dipole moment, the dipole moment operator p̂ =
p̂− + p̂+ is determined by Eq. (4).

The time dynamics of p̂− is determined by the Heisenberg
equation of motion dp̂−

dt = i
h̄ [Ĥ, p̂−], which is equivalent to

d

dt
p̂− = −iω0p̂− − i

h̄
[p̂+ · E, p̂−], (B2)

with ω0 = (Ee − Eg)/h̄. It is assumed that the atomic state
is of the form |ψ0〉 = c1|g1〉 + c2|g2〉 with |c1|2 + |c2|2 = 1.

The equation is linearized by replacing [p̂+ · E, p̂−] by
its expectation calculated at initial time: [p̂+ · E, p̂−] →
〈ψ0|[p̂+

t=0 · E, p̂−
t=0]|ψ0〉 = −〈ψ0|p̂−

t=0 ⊗ p̂+
t=0|ψ0〉 · E, with

p̂±
t=0 given by Eqs. (4b) and (4c). Denoting 〈p̂− ⊗ p̂+〉0 ≡

〈ψ0|p̂−
t=0 ⊗ p̂+

t=0|ψ0〉, the Heisenberg equation reduces to

d

dt
p̂− = −iω0p̂− + i

h̄
〈p̂− ⊗ p̂+〉0 · E. (B3)

The equation can be explicitly solved for a time-harmonic
electric field [E(t ) = Eωe−iωt + c.c.]:

p̂− = p̂−
t=0 + 1

h̄

〈p̂− ⊗ p̂+〉0

ω0 − ω
· Eωe−iωt

+1

h̄

〈p̂− ⊗ p̂+〉0

ω0 + ω∗ · E∗
ωe+iω∗t . (B4)

Since p̂+ = (p̂−)† and 〈p̂t=0〉 = 0 it can be easily verified that
the expectation of the dipole moment can be written as 〈p̂〉 =
ε0α · Eωe−iωt + c.c., with the polarizability tensor α given by

α(ω) = 1

ε0 h̄

〈p̂− ⊗ p̂+〉0

ω0 − ω
+ 1

ε0 h̄

〈p̂− ⊗ p̂+〉∗0
ω0 + ω

. (B5)

Using Eq. (4) one obtains

〈p̂− ⊗ p̂+〉0 = [(γd ⊗ γ∗
d + γc ⊗ γ∗

c )|c1|2
+ (γ∗

d ⊗ γd + γ∗
c ⊗ γc)|c2|2]

+ [(−γd ⊗ γc + γc ⊗ γd )c∗
1c2

+ (γ∗
d ⊗ γ∗

c − γ∗
c ⊗ γ∗

d )c∗
2c1]. (B6)

From here, it is seen that α(ω) is given by

α = 1

ε0 h̄

{
|c1|2

(
γd⊗γ∗

d+γc ⊗ γ∗
c

ω0 − ω
+ γ∗

d ⊗ γd + γ∗
c ⊗ γc

ω0 + ω

)
+ |c2|2

(
γ∗

d ⊗ γd + γ∗
c ⊗ γc

ω0 − ω
+ γd ⊗ γ∗

d + γc ⊗ γ∗
c

ω0 + ω

)}
+ 1

ε0h̄
i�̃ × 1

(
1

ω0 − ω
− 1

ω0 + ω

)
, (B7)

with �̃ = −i(γd × γcc∗
1c2 − γ∗

d × γ∗
cc∗

2c1). Writing the po-
larizability as a sum of symmetric and antisymmetric tensors
and taking into account that |c1|2 + |c2|2= 1, one obtains
Eq. (5) of the main text.

APPENDIX C: THE INTERACTION TENSOR

The interaction tensor Cint introduced in Sec. IV can be
expressed in terms of the scattering part of the system Green
function [25,42]. The Green function G(r, r0) (6 × 6 tensor)
is defined here as the solution of [42,51]

N̂ · G = ωM(r) · G + i16×6δ(r − r0), (C1)

with the differential operator N̂ and the material matrix M
given by

N̂ =
(

0 i∇ × 13×3

−i∇ × 13×3 0

)
, and

M =
(

ε0ε̄(r, ω)13×3 0
0 μ013×3

)
. (C2)
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In the above, 13×3 is the identity matrix of dimension three
and ε̄ is the relative permittivity tensor. The total field radiated
by a classical electric dipole can be expressed in terms of
the Green function as E = −iωGee · p, with Gee the 3 × 3
tensor obtained from the 3 × 3 upper-left block of G and p
the electric dipole moment.

Let Eloc(r0) ≡ E − Eself be the local field at the position of
the dipole, i.e., the difference between the total electric field
and the field radiated by the dipole alone in free space (Eself ).
The local field may be written as Eloc = −iωGscat

ee (r0, r0) · p

where Gscat
ee is the scattering part of the Green function (total

Green function with the self-field excluded). The interaction
tensor Cint is by definition Cint = −iωε0Gscat

ee (r0, r0) so that
the local field is related to the electric dipole moment as

Eloc = Cint · p
ε0

. (C3)

Supposing that the region above the material substrate
in Fig. 1(b) is a vacuum, the interaction tensor is given by
[42,52]

Cint = 1

(2π )2

∫∫
dkxdky

[
1t + i

γ0
ẑ ⊗ k||

]
· R(ω, kx, ky) ·

[
iγ0k|| ⊗ ẑ +

(
ω2

c2

)
1t − k|| ⊗ k||

]
e−2γ0d

2γ0
, (C4)

where 1t = x̂ ⊗ x̂ + ŷ ⊗ ŷ is the transverse identity tensor,

k|| = kxx̂ + kyŷ, γ0 = −i
√

(ω/c)2 − k|| · k||, and d is the dis-
tance of the dipole with respect to the interface (plane z = 0).
Here, R(ω, kx, ky) is a 2 × 2 matrix that links the tangen-

tial components of the reflected and incident fields,
(

E ref
x

E ref
y

)
=

R(ω, kx, ky) ·
(

E inc
x

E inc
y

)
, for plane-wave incidence on the substrate

[52]. In the quasistatic limit, the term ω2/c21t in Eq. (C4) can
be dropped, and within this approximation Cint,zz = Cint,xx +
Cint,yy.

The matrix R can be written in terms of the matrix R̃ =(
Rpp Rps
Rsp Rss

)
that relates the amplitudes of incident and reflected

p- and s-polarized waves. A straightforward analysis shows
that

R = 1

k||

(
kx

kz0

k0
−ky

ky
kz0

k0
kx

)
· R̃ · k0

k||kz0

(
kx ky

−ky
kz0

k0
kx

kz0

k0

)
,

(C5)
with kz0 = iγ0 and k0 = ω/c. For reciprocal systems
R̃(ω, kx, ky) = [R̃(ω,−kx,−ky )]T (the corresponding reci-
procity relation for the matrix R is cumbersome, and hence
is omitted here).

When the p and s polarizations are uncoupled (e.g., for any
isotropic dielectric substrate), the matrix R̃ is diagonal and the
R matrix is given by

R = 1

k2
x + k2

y

(
Rppk2

x + Rssk2
y (Rpp − Rss )kxky

(Rpp − Rss )kxky Rppk2
y + Rssk2

x

)
. (C6)

Here, Rpp, Rss are the standard (tangential electric field) reflec-
tion coefficients for p and s polarizations (see Ref. [52]). For
example, for a perfect electric conductor Rpp = Rss = −1 and
R = −1t .

APPENDIX D: Cint FOR A METAL HALF SPACE

Here, I obtain an explicit formula for Cint for a metal half
space using a quasistatic approximation.

For lossless systems, the Green function can be ex-
panded in terms of the normal modes [fnk = (Enk Hnk )T ]

as [51,53,54]

−iωG =
∑

ωnk>0

ωnk

2

(
1

ωnk − ω
fnk(r) ⊗ f∗

nk(r′)

+ 1

ωnk + ω
f∗
nk(r) ⊗ fnk(r′)

)
− M−1

∞ δ(r − r′),

(D1)

where M∞ = M(ω = ∞) and ωnk are the resonant frequen-
cies. The modes are normalized as

1

2

∫
d3r f∗

nk · ∂

∂ω
[ωM]ω=ωnk · fnk = 1. (D2)

As discussed in Appendix C, the electric field radiated
by an electric dipole with dipole moment p is given by
E = G · p with G = −iωGee. Evidently, the tensor G has a
decomposition analogous to G:

G = G+ + G− − 13×3
1

ε0ε∞
δ(r − r′), (D3a)

G+ =
∑

ωnk>0

ωnk

2

1

ωnk − ω
Enk(r) ⊗ E∗

nk(r′),

G− =
∑

ωnk>0

ωnk

2

1

ωnk + ω
E∗

nk(r) ⊗ Enk(r′). (D3b)

When the emitter is placed in the vicinity of the metal half
space the retardation effects due to the finite speed of light are
negligible. In these conditions, it is helpful to use a quasistatic
approximation such that the complex field amplitudes satisfy
E ≈ −∇φ and H ≈ 0. In the quasistatic limit, the modes
are surface plasmon polaritons described by Enk = −∇φk
and φk = Akeik|| ·re−k|||z| [42,53]. Assuming that the metal
permittivity is ε(ω) = 1 − 2ω2

sp/ω
2, the resonance frequen-

cies are ωk = ωsp [53]. Thus, the quasistatic approximation
yields

G+ = ωsp

2

1

ωsp − ω

∑
ωnk>0

Enk(r) ⊗ E∗
nk(r′). (D4)
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From Eq. (D2), the normalization coefficient is found to be Ak =
√

1
Asε02k||

, where As is the area of the metallic surface [53].

Letting As → ∞ it is found that

G+ = ωsp

2

1

ωsp − ω

⎡⎣ 1

As

∑
k||

1

ε02k||
�∇eik|| ·(r−r′ )e−k||(|z|+|z′ |) ←

∇
′
⎤⎦

= ωsp

2

1

ωsp − ω
�∇
[

1

(2π )2

∫∫
d2k||

1

ε02k||
eik|| ·(r−r′ )e−k||(|z|+|z′|)

]
←
∇

′
. (D5)

This gives the closed-form result:

G+ = ωsp

2

1

ωsp − ω
�∇
[

1

4πε0

1√
(x − x′)2 + (y − y′)2 + (|z| + |z′|)2

]
←
∇

′
. (D6)

The term G−
(ω) is given by a similar formula with −ω in the place of ω. In the quasistatic approximation, the scattering part of

the Green function can be identified with G+ + G−
and satisfies

G+ + G− = ε(ω) − 1

ε(ω) + 1
�∇
[

1

4πε0

1√
(x − x′)2 + (y − y′)2 + (|z| + |z′|)2

]
←
∇

′
. (D7)

Note that ε(ω)−1
ε(ω)+1 = ω2

sp

ω2
sp−ω2 for a lossless Drude model. Even

though the previous analysis ignored the effect of loss, the
final result [Eq. (D7)] can be readily extended to lossy
systems simply by using the lossy permittivity function
[ε(ω) = 1 − 2ω2

sp/ω(ω + i�m)] in the formula. In the zero-

frequency limit ε(ω)−1
ε(ω)+1 → 1 and G+ + G−

gives precisely the
field backscattered by a perfect electrically conducting (PEC)
surface, i.e., the field created by an image dipole. Using
Cint = −iωε0Gscat

ee (r0, r0) with −iωGscat
ee (r0, r0) = G+ + G−

one obtains the result of the main text [Eq. (14)].

APPENDIX E: EFFECTIVE GROUND-STATE
HAMILTONIAN

Here, I derive an effective ground-state Hamiltonian for the
Kramers two-level atom using lowest-order perturbation the-
ory. When the substrate is reciprocal the effective Hamiltonian
is always represented by a scalar (real-valued number).

The Hamiltonian of the system can be written as Ĥ =
Ĥ0 + Ĥint where Ĥ0 = Ĥat + ĤEM is the Hamiltonian for
the noninteracting (free) atom and field, and Ĥint = −p̂ · Ê
is the interaction term. The Hamiltonian can be repre-
sented by a matrix in a basis formed by the free ground
states G = {|g10〉, |g20〉} (where |0〉 represents the quan-
tum vacuum) and by the free-field “excited” states, E =
{|gi1 j〉, |ei1 j〉, ..., |giF 〉, |eiF 〉} where F is a generic field state
with one or more light quanta. In this basis, the Hamiltonian
is represented by

Ĥ →
[

HGG HGE

HEG HEE

]
. (E1)

Here, HGG = (Ĥ0 + Ĥint )|GG is a 2 × 2 matrix with elements
〈gm0|Ĥ0 + Ĥint|gn0〉 (m, n = 1, 2), HGE = Ĥint|GE is a 2 × ∞
matrix, and so on. The energy eigenstates are the nontrivial

solutions of[
HGG − E12×2 HGE

HEG HEE − E1

]
·
(

cG

cE

)
= 0. (E2)

For simplicity, the energy of the free ground states is taken
identical to zero (Ĥ0|GG = 0). Then, since 〈gm0|Ĥint|gn0〉 =
0, it follows that HGG = 02×2. Writing the free-excited-states
coefficients (cE ) in terms of the free-ground-states coefficients
(cG), the secular equation reduces to

[−E12×2 − HGE · (HEE − E1)−1 · HEG] · cG = 0. (E3)

Thus, the ground state of the interacting system is
characterized by the effective Hamiltonian Hef = −HGE ·
(HEE − E1)−1 · HEG. Since HGE = Ĥint|GE and HEG = Ĥint|EG

are proportional to the interaction strength, to lowest-order
perturbation theory it is possible to replace HEE − E1 by
Ĥ0|EE (note that the ground-state energy of the interacting
system must be of the same order as that of the free fields,
i.e., E ≈ 0). Hence, the effective Hamiltonian is

Hef ≈ −Ĥint|GE · (Ĥ0|EE)−1 · Ĥint|EG. (E4)

Let hm,n = 〈gm0|Ĥef |gn0〉 (m, n = 1, 2) be a generic matrix
element of Hef . The electric-field operator can be written as
[51,53,55]

Ê(r) =
∑
ωi>0

√
h̄ωi

2
(Ei(r)âi + E∗

i (r)â†
i ), (E5)

with Ei a generic field mode (normalized as in Eq. (D2)
[51,53]) associated with the angular frequency ωi, and âi, â†

i
are the corresponding annihilation and creation operators
satisfying standard commutation relations ([âi, â†

i ] = 1, etc.).
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Then, a straightforward analysis shows that

hm,n = −
∑

i,ĩ

〈gm0|Ĥint|eĩ1i〉 1

h̄(ω0 + ωi )
〈eĩ1i|Ĥint|gn0〉

= −
∑

i,ĩ

h̄ωi

2
〈gm|p̂ · Ei(r0)|eĩ〉

1

h̄(ω0 + ωi )

×〈eĩ|p̂ · E∗
i (r0)|gn〉. (E6)

In the above, ω0 and r0 are the transition frequency and
coordinates, respectively, of the two-level system. Taking
into account that 〈gα|p̂|gβ〉 = 0 and 1 = |e1〉〈e1| + |e2〉〈e2| +
|g1〉〈g1| + |g2〉〈g2| one finds that

hm,n = −ε0 h̄
∑

i

ωi

2

1

ω0 + ωi
tr{E∗

i Ei · R(m,n)}, (E7)

where R(m,n) = 1
ε0 h̄ 〈gm|p̂ ⊗ p̂|gn〉.

The matrix element hm,n can be written in terms of
the system Green’s function defined in Appendix D. Us-
ing the modal expansion (D3) one readily sees that hm,n =
−ε0 h̄ tr{G−

(r0, r0; ω0) · R(m,n)}. From (D3) it can be checked
that for Re{ω0} > 0

G−(r0, r0; ω0) = 1

2π

∫ ∞

−∞
dξ

1

ω0 − iξ
(G− + G+)(r0, r0; iξ )

= 1

2π

∫ ∞

0
dξ

1

ω0 − iξ
(G− + G+)(r0, r0; iξ )

+ 1

ω0 + iξ
[(G− + G+)(r0, r0; iξ )]T

, (E8)

where it was taken into account that [(G−+G+)(r, r0; −iξ )]=
[(G− + G+)(r0, r; iξ )]T . Combining the previous equation
with hm,n = −ε0 h̄ tr{G−

(ω0) · R(m,n)} one finds after some
manipulations that

hm,n = − h̄

2π

∫ ∞

0
dξ tr

{
Cint (iξ ) ·

(
R(m,n)

ω0 − iξ
+ R(m,n),T

ω0 + iξ

)}
,

m, n = 1, 2, (E9)

with Cint (iξ ) = ε0(G− + G+)(r0, r0; iξ ) the interaction tensor
of Appendix C. Note that the above formula holds true even
when the material substrate is dissipative, as a lossy system
can be regarded as the limit of a sequence of lossless systems
[26].

The energy expectation for a generic ground state
|ψ0〉 = c1|g10〉 + c2|g20〉 is 〈ψ0|Hef |ψ0〉 = ∑

m,n c∗
mcnhm,n.

From Eq. (B5) the atomic polarizability can be ex-
pressed as α(ω; |ψ0〉) = ∑

m,n c∗
mcn

R(m,n)

ω0−ω
+ 1

ε0 h̄
R(m,n),T

ω0+ω
[note

that 〈p̂ ⊗ p̂〉0 = 〈p̂− ⊗ p̂+〉0 and 〈p̂− ⊗ p̂+〉∗0 = 〈p̂− ⊗ p̂+〉T
0 ;

the latter result is a consequence of Eq. (B6)]. Using this
formula for the polarizability, it is simple to verify that the
energy expectation obtained from the effective Hamiltonian
is exactly coincident with the Casimir interaction energy
determined by Eq. (11): 〈ψ0|Hef |ψ0〉 = Eint (|ψ0〉).

The matrices R(m,n) can be explicitly evaluated as

R(1,1) = 1

h̄ε0
(γd ⊗ γ∗

d + γc ⊗ γ∗
c ),

R(2,2) = 1

h̄ε0
(γ∗

d ⊗ γd + γ∗
c ⊗ γc), (E10a)

R(1,2) = 1

h̄ε0
(−γd ⊗ γc + γc ⊗ γd ),

R(2,1) = 1

h̄ε0
(γ∗

d ⊗ γ∗
c − γ∗

c ⊗ γ∗
d ). (E10b)

The matrices R(1,2) and R(2,1) are antisymmetric. Thereby,
when the substrate is reciprocal (Cint is symmetric) it fol-
lows that tr{Cint (iξ ) · R(m,n)} = 0 = tr{Cint (iξ ) · R(m,n),T } for
(m, n) = (1, 2) and (n, m) = (2, 1) (as previously mentioned,
the trace of the product of symmetric and antisymmetric ten-
sors vanishes). This implies that h12 = 0 = h21. Furthermore,
since the symmetric parts of R(1,1) and R(2,2) are identical, one
has h11 = h22. In conclusion, when the substrate is reciprocal
the effective Hamiltonian is a scalar Hef = Eint12×2.

In contrast, for a nonreciprocal substrate Hef has a non-
trivial structure and in general a free ground state of the form
|ψ0〉 = c1|g10〉 + c2|g20〉 is not an eigenstate of Hef . When the
Kramers pairs are uncoupled (γc = 0) the matrices R(1,2) and
R(2,1) vanish and therefore Hef is a diagonal matrix. In this
case, the ground state of the interacting system is typically
nondegenerate and is either |g10〉 or |g20〉.
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