
Morgado and Silveirinha Reply: In the preceding
Comment [1], Svintsov and Ryzhii (SR) criticized the
conductivity derived in our Letter using the self-consistent
field approach [2,3]:

σdriftg ðω; qxÞ ¼ ðω=ω̃Þσgðω̃; qxÞ: ð1Þ

Here, σgðω; qxÞ is the nonlocal conductivity with no drift
and ω̃ ¼ ω − qxv0. The drift effect was modeled by the
interaction Hamiltonian Ĥint;drift ¼ v0 · p̂, with v0 ¼ v0x̂
being the drift velocity and p̂ ¼ −iℏ∇ [2]. The use of
this interaction Hamiltonian was motivated by an analogy
with moving media [4]. Equation (1) extends to graphene
the well-known result εdriftðω; qxÞ ¼ εðω − qxv0; qxÞ
for a drift-biased plasma [5–7] [for 3D materials
εðωÞ ¼ 1þ σ=ð−iωε0Þ].
SR argued that, because the electrons in graphene are

massless, the Galilean-Doppler shift cannot be used. They
rely on the distribution fdriftðkÞ ¼ f0ðE0

k − ℏk · v0Þ, which
is applicable when the electron-electron (e–e) scattering
predominates [8]. Here, E0

k is the energy dispersion of the
relevant electronic band and f0ðEÞ is the Fermi-Dirac
distribution. SR used fdriftðkÞ in the Lindhard formula.
However, they missed a subtle point. In the shifted Fermi
distribution, ℏk is a kinetic-type momentum rather than a
canonical momentum [9]. The canonical momentum is
p ¼ ℏk − eA, with A the vector potential due to the static
electric field E0 ¼ E0x̂. The vector potential is AðtÞ ¼
−ðt − t0ÞE0 in the intervals between e-e collisions (t ¼ t0
is the time instant of a collision).
The Lindhard formalism relies on the time evolution of

Bloch states (ψnκ). The Bloch wave vector κ determines the
canonical momentum (p ¼ ℏκ). Thus, the relevant distri-
bution for the Lindhard formula is the canonical-
momentum distribution [10]. It is roughly

f̃driftðκÞ ≈ fdriftjk¼κþℏ−1eA

≈ f0ðE0
κ þ ehAi · v0κ − ℏκ · v0Þ

where v0κ ¼ ℏ−1∂κE0
κ. In the second identity, we used a

Taylor expansion, replaced AðtÞ by its time average hAi,
and dropped the term eA · v0 because it is of second order
(∼E2

0). Moreover, because E0 ¼ E0x̂ is space independent,
the canonical momentum of an electron must be preserved
by the static field (it is also preserved by the e-e collisions
because, on average, they are independent of the
space coordinates). This implies that f̃driftðκÞ ¼ f0ðE0

κÞ.
Thus, when the e-e collisions predominate, one has
ehAi · v0κ ¼ ℏκ · v0.
Substitution of f̃driftðκÞ ¼ f0ðE0

κÞ in the Lindhard for-
mula yields (taking the band overlap integral Fκ;κþq ≈ 1)

σdriftω;q ¼ iωe2

q2
gsgv
ð2πÞ2

ZZ
d2κ

f0ðE0
κÞ − f0ðE0

κþqÞ
ℏωþ Eκ − Eκþq

: ð2Þ

Here,

Eκ ≈ hψκjĤ0ðp̂þ ehAiÞjψκi
≈ E0

κ þ heAi · hψκj∂pĤ0ðp̂Þjψκi

is the average electron energy during the interaction with
the static field. Combining hψκj∂pĤ0ðp̂Þjψκi ¼ v0κ and
ehAi · v0κ ¼ ℏκ · v0, it is found that Eκ ≈ E0

κ þ ℏκ · v0.
Note that Eκ ≠ E0

κ because the electron is accelerated by
E0. Substituting Eκ ≈ E0

κ þ ℏκ · v0 in Eq. (2), we recover
Eq. (1) and the Galilean-Doppler shift (see [10] for addi-
tional discussion and a derivation with the Boltzmann
equation).
Regarding the second point raised by SR about the long-

wavelength approximation, we underline that the non-
locality precludes neither the negative Landau damping
(NLD) nor the emergence of instabilities in graphene
platforms. Indeed, the square root singularity of σg is
compatible with gain regimes because, when ω̃ ¼ ω −
qxv0 is negative, the prefactor ω=ω̃ of Eq. (1) is also
negative. Thus, the NLD [Refσdriftg ðω; qxÞg < 0] can occur
in the real-frequency axis (Fig. 1(a)) or in the upper-half
frequency plane (UHP): ω00 ¼ Imfωg ≥ 0 with ω ¼ ω0 þ
iω00 [10,11]. The same result is predicted by the collision-
less SR, Levitov et al.’s [12] and Polini et al.’s [13] models
(see Fig. 1(a)). Thus, similar to Ref. [2], by coupling
the drift-current biased graphene to a resonant system
(here, a metal half-space) (Fig. 1(b)), it is possible
to spontaneously generate terahertz and infrared radiation
(Fig. 1(c)). The collisionless models of SR and Levitov
predict quantitatively similar unstable regimes; all the
models predict solutions with f00 ¼ ω00=ð2πÞ > 0 that grow
exponentially with time.
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FIG. 1. (a) Refσdriftg g in the UHP as a function of ℏω0=EF for
qx ¼ 1.6kF, EF ¼ 0.1 eV, v0 ¼ 0.5vF, and ω00 ¼ 0þ. The NLD
region is shaded in gray. (b) A drift-current biased graphene sheet
and a metal half-space are separated by the distance d with a
dielectric; (c) ω=ð2πÞ ¼ f0 þ if00 for the unstable mode as a
function of qx.
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In summary, the drift-biased conductivity is ruled by a
Galilean transformation when the e-e collisions force the
electron gas to move with a constant velocity. The
instabilities predicted in our Letter may be observed in
properly designed drift-current biased graphene platforms.
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2Instituto Superior Técnico, University of Lisbon
Avenida Rovisco Pais, 1, 1049-001 Lisboa, Portugal

Received 15 January 2019; published 20 November 2019

DOI: 10.1103/PhysRevLett.123.219402

*tiago.morgado@co.it.pt
†mario.silveirinha@co.it.pt

[1] D. Svintsov and V. Ryzhii, preceding Comment, Comment
on “Negative Landau Damping in Bilayer Graphene”, Phys.
Rev. Lett. 123, 219401 (2019).

[2] T. A. Morgado and M. G. Silveirinha, Negative Landau
Damping in Bilayer Graphene, Phys. Rev. Lett. 119, 133901
(2017).

[3] T. A. Morgado and M. G. Silveirinha, Drift-induced unidi-
rectional graphene plasmons, ACS Photonics 5, 4253
(2018).

[4] M. G. Silveirinha, Optical Instabilities and Spontaneous
Light Emission by Polarizable Moving Matter, Phys. Rev.
X 4, 031013 (2014).

[5] A. B. Mikhailovskii, Theory of Plasma Instabilities, Vol. 1:
Instabilities of a Homogeneous Plasma (Springer,
New York, 1974).

[6] E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics
(Butterworth-Heinemann, Washington, DC, 1981).

[7] K. Y. Bliokh, F. J. R. Fortuño, A. Y. Bekshaev, Y. S. Kivshar,
and F. Nori, Electric current induced unidirectional propa-
gation of surface plasmon-polaritons, Opt. Lett. 43, 963
(2018).

[8] V. F. Gantmakher and Y. B. Levinson, in Carrier Scattering
in Metals and Semiconductors (North-Holland, Amsterdam,
1987), p. 176.

[9] N.W. Ashcroft and N. D. Mermin, Solid State Physics
(Brooks/Cole, Thomson Learning, Cornell, Belmond,
MA, 1976), Appendix H.

[10] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.123.219402 for (i) ad-
ditional discussion of the derivation of Eq. (1) using the
Lindhard formula; (ii) derivation of Eq. (1) using the
Boltzmann theory; (iii) an overview of the graphene condu-
ctivity models in the collisionless regime; (iv) dispersion
equation of the graphene-dielectric-metal cavity; (v) analy-
sis of the scattering of an evanescent wave by a drift-current
biased graphene sheet; (vi) properties of the conductivity of
a passive material in the upper-half frequency plane.

[11] Note that a passive medium has Refσðω; qxÞg ≥ 0 in the
UHP for any real-valued qx [10]. A response with
Refσðω; qxÞg < 0 may lead to power flows emerging from
the graphene sheet [10].

[12] D. S. Borgnia, T. V. Phan, and L. S. Levitov, Quasi-
relativistic Doppler effect and non-reciprocal plasmons in
graphene, arXiv:1512.09044.

[13] B. V. Duppen, A. Tomadin, A. N. Grigorenko, and M.
Polini, Current-induced birefrigent absorption and non-
reciprocal plasmons in graphene, 2D Mater. 3, 015011
(2016).

PHYSICAL REVIEW LETTERS 123, 219402 (2019)

219402-2

https://orcid.org/0000-0002-3730-1689
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.219402&domain=pdf&date_stamp=2019-11-20
https://doi.org/10.1103/PhysRevLett.123.219402
https://doi.org/10.1103/PhysRevLett.123.219402
https://doi.org/10.1103/PhysRevLett.123.219402
https://doi.org/10.1103/PhysRevLett.123.219402
https://doi.org/10.1103/PhysRevLett.123.219401
https://doi.org/10.1103/PhysRevLett.123.219401
https://doi.org/10.1103/PhysRevLett.119.133901
https://doi.org/10.1103/PhysRevLett.119.133901
https://doi.org/10.1021/acsphotonics.8b00987
https://doi.org/10.1021/acsphotonics.8b00987
https://doi.org/10.1103/PhysRevX.4.031013
https://doi.org/10.1103/PhysRevX.4.031013
https://doi.org/10.1364/OL.43.000963
https://doi.org/10.1364/OL.43.000963
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.219402
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.219402
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.219402
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.219402
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.219402
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.219402
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.219402
https://arXiv.org/abs/1512.09044
https://doi.org/10.1088/2053-1583/3/1/015011
https://doi.org/10.1088/2053-1583/3/1/015011

