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In this work, we develop a systematic and self-consistent approach to homogenize arbitrary nonmagnetic
periodic metamaterials. The proposed method does not rely on the solution of an eigenvalue problem and can
fully characterize the effects of frequency dispersion, magnetoelectric coupling, and spatial dispersion, even in
frequency band gaps or when the materials are lossy. We formulate a homogenization problem to characterize
a generic microstructured artificial material, and demonstrate that it is equivalent to an integral-differential
system. We prove that this complex system can be reduced to a standard integral equation and solved using
standard methods. To illustrate the application of the proposed method, we homogenize several important
metamaterial configurations involving split-ring resonators and metallic wires.
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I. INTRODUCTION

In the past few years, there has been growing interest in
the investigation of microstructured materials known as
“metamaterials.” Several interesting potentials of these arti-
ficial composites have been demonstrated and/or suggested,
including the realization of media with negative index of
refraction,1,2 synthesis of media that enable subdiffraction
imaging,3–5 the possibility of fabricating subdiffraction cavi-
ties and waveguides,6,7 the possibility of squeezing electro-
magnetic waves through subwavelength channels,8 and many
others.

What is somehow striking about the field of metamaterials
is that even though some fundamental concepts such as nega-
tive permittivity and/or negative permeability are widely ac-
cepted and relatively well understood today, there is no sys-
tematic and clear way to calculate and define unambiguously
these parameters for metamaterials. In many works, the cal-
culation of � and � is based on the classic Clausius-Mossotti
�CM� homogenization formula.9 Even though such an ap-
proximation may be useful and sufficiently accurate in a
number of problems, in other situations, it may not be ap-
plied and may completely fail. For example, one obvious
problem is that the CM formula relies on the assumption that
the volume fraction of the inclusions is small, which is
hardly the case for most metamaterials. Other authors rely on
band-structure calculations to retrieve the effective param-
eters of a material �e.g., Refs. 10 and 11�. This procedure can
be considered general and rigorous but also suffers from im-
portant drawbacks. Namely, it is not useful to retrieve the
effective parameters either in frequency band gaps or when
the constituent materials have losses. Other homogenization
methods have been developed over the years,12–15 but, in
general, their scope of application is limited to the static limit
or to very specific geometries. The extraction of effective
parameters from measured or simulated S-parameter data
�e.g., Ref. 16� is arguably the most popular method today to
characterize composite media. This method has, however,
several important drawbacks because the extraction method
may be unstable, multiple solutions may occur, and most
importantly, in some cases, it may not be appropriate to de-

scribe thin metamaterial screens as bulk materials.
Another important aspect is that some relevant metamate-

rials are characterized by strong spatial dispersion,17,18 even
for very low frequencies.19,20 For example, as shown in Ref.
21, all the topologies of the three-dimensional wire medium
are characterized by some intrinsic spatial dispersion �see
also Ref. 22�. Nevertheless, to the best of our knowledge,
there is no readily available systematic homogenization pro-
cedure that is able to predict and take into account the effect
of spatial dispersion. Notice that the emergence of spatial
dispersion does not preclude a material from being homog-
enized; it just makes things more difficult. Also we note that
microstructured materials with strong spatial dispersion may
have interesting applications, such as subdiffraction imaging,
as demonstrated in Ref. 4. Another important problem is the
characterization of the bianisotropic effects in metamaterials.
It is known that if the basic inclusions do not have enough
symmetry, then significant magnetoelectric coupling �also
known as optical activity17� may exist, a well-known ex-
ample of which is the split-ring resonator geometry.23 Unfor-
tunately, there is no satisfactory theory to calculate in a sys-
tematic way the magnetoelectric crossed terms and assess the
effect of bianisotropy.

The main objective of this paper is to develop a self-
consistent rigorous approach to homogenize nonmagnetic
periodic metamaterials. The proposed method is completely
general and can be used to calculate the effective parameters
of arbitrary periodic dielectric and/or metallic metamaterials,
taking into account both spatial and frequency dispersions,
even in frequency bands where the propagation of electro-
magnetic waves is not allowed �band gaps�. The method is
not based on the solution of an eigensystem and does not
involve band-structure calculations. Instead, we show that
the homogenization problem can be formulated as a source
driven problem. The idea is to excite the periodic material
with a suitable source distribution. We prove that the homog-
enization problem is equivalent to an integral-differential
system. It is shown that this system can be reduced to a
standard integral equation, which can be solved with known
techniques. Quite remarkably, we are able to obtain a closed-
form expression for the permittivity dyadic in terms of the

PHYSICAL REVIEW B 75, 115104 �2007�

1098-0121/2007/75�11�/115104�15� ©2007 The American Physical Society115104-1

http://dx.doi.org/10.1103/PhysRevB.75.115104


inverse of an infinite matrix. In order to illustrate the pro-
posed theoretical concepts, we homogenize several relevant
metamaterials with negative parameters formed by metallic
wires and split-ring resonators. In particular, we investigate
the magnetic properties of closely packed arrays of split-ring
resonators, and of elliptically shaped rings, showing that the
coupling between the particles may widen the bandwidth of
the negative permeability region and enhance the artificial
magnetism.

This paper is organized as follows. In Sec. II, we discuss
the problem of constitutive relations and the definition of
effective parameters. It is argued that since spatial dispersion
may not be negligible in metamaterials, these microstruc-
tured composites should preferably be characterized by a di-
electric function of the form �� =�� �� ,k�, instead of the con-
ventional local model based on the definition of a dielectric
permittivity �=����, and permeability �=����. The con-
nections between the two models and respective scope of
application are carefully discussed. In Sec. III, we develop a
microscopic theory to calculate the dielectric function ��
=�� �� ,k�. The idea is to excite the material with a source that
imposes an appropriate phase modulation in the unit cell. In
Sec. IV, we use integral equation methods to solve the ho-
mogenization problem. In Sec. V, we illustrate the applica-
tion of the proposed method to the characterization of artifi-
cial materials formed by split-ring resonators and metallic
wires. In particular, we study the magnetic properties of ar-
rays of closely packed resonators and elliptically shaped
split-ring resonators. It is explained how the permeability
�=���� can be extracted from the dielectric tensor ��
=�� �� ,k�. We compare, with good agreement, the homogeni-
zation results with the dispersion characteristics obtained
from the calculation of the band structure of the materials.
Finally, in Sec. VI, the conclusions are drawn.

In this work, we assume that the fields are monochromatic
with time dependence ej�t. We denote the microscopic elec-
tric and induction fields by E and B. On the other hand, the
macroscopic �spatially averaged� electric and induction fields
are denoted by Eav and Bav. Since the electric displacement
vector and the magnetic field are inherently macroscopic
quantities, they are denoted by D and H �the subscript “av”
is omitted�.

II. CONSTITUTIVE RELATIONS

We consider a generic nonmagnetic periodic metamaterial
invariant to translations along the primitive vectors a1, a2,
and a3 �see Fig. 1�. The metamaterial is characterized by the
�relative� permittivity �r�r�, where r= �x ,y ,z� is a generic
point of space; the permittivity is normalized to the host
permittivity �h, which for simplicity is taken to be the per-
mittivity of vacuum �0. All the results derived in this work
remain valid if �0 is replaced by �h. Since the medium is
periodic, the permittivity satisfies �r�r+rI�=�r�r�, where rI
= i1a1+ i2a2+ i3a3 is a lattice point and I= �i1 , i2 , i3� is a ge-
neric multi-index of integers. The unit cell � of the periodic
medium is �= ��1a1+�2a2+�3a3 : ��i��1/2�. The permittiv-
ity �r may be a complex number and depend on frequency. In
addition, we admit that the unit cell may contain perfectly

electric conducting �PEC� metallic surfaces, which we de-
note by �D �see Fig. 1�. The outward unit vector normal to
�D is �̂.

The objective of this work is to homogenize the periodic
metamaterial and extract the effective parameters. Before de-
veloping a microscopic theory—this will be the topic of the
next section—it is fundamental to carefully discuss the prob-
lem of phenomenological constitutive relations.24

In most of the works devoted to metamaterials, the artifi-
cial structures are characterized using an effective permittiv-
ity and an effective permeability. Such a description is very
appealing and useful, but, as will be discussed next, in some
cases, its scope of application to metamaterials may be lim-
ited.

To understand these limitations, it is useful to briefly go
over the standard derivation of macroscopic electromagne-
tism. This theory is based on the fact that when an external
field interacts with matter, it induces microscopic currents Jd,
such that its spatial average, �Jd�, can be expanded into di-
polar and higher-order contributions �Ref. 9, p. 256�:

�Jd� � j�P + � � M + . . . , �1�

where P is the polarization vector and M is the magnetiza-
tion vector. The terms that are omitted involve spatial deriva-
tives of the quadrupole density and other higher-order mul-
tipole moments. The classical definition of the �macroscopic�
electric displacement vector D and of the �macroscopic�
magnetic field H are motivated by the decomposition �1� of
the average microscopic current into mean and eddy cur-
rents. Indeed, D and H are derived �defined� from the fun-
damental macroscopic fields Eav �average electric field� and
Bav �average induction field� through the textbook formulas
�Ref. 9, p. 248�

D = �0Eav + P , �2a�

H =
Bav

�0
− M . �2b�

Thus, definition �2� implicitly absorbs the effect of the mi-
croscopic currents into D and H, and so the macroscopic

FIG. 1. �Color online� Geometry of the unit cell of a generic
metallic-dielectric periodic material with a dielectric inclusion and a
PEC inclusion.
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Maxwell equations in the material have the same form as in
vacuum �apart from the relation between Eav, D, Bav, and H�.
For linear materials, P and M can be written as a linear
combination of Eav and H 	or equivalently, in terms of Eav
and Bav, which are the primitive fields �Ref. 17, Sec. 29�
.
Hence, these materials can be characterized by the following
constitutive relations �valid for generic bianisotropic linear
media24,25�:

D = �0�r
� · Eav + ��0�0�� · H , �3a�

Bav = ��0�0	� · Eav + �0�r
� · H , �3b�

where �r
���� is the relative permittivity dyadic, �r

���� is the

relative permeability, and ����� and 	���� are �dimensionless�
parameters that characterize the magnetoelectric coupling

�gyrotropy18�. Often, the terms ����� and 	���� are negligible,
and so the material can be described using uniquely permit-
tivity and permeability tensors. In fact, it is well known that
gyrotropy can only be observed in media that possess no
center of symmetry. This is the case of some naturally occur-
ring materials studied in crystal optics18 and some artificial
materials.23,24

It is important to underline that the above classic model is
meaningful only when the approximation �Jd�� j�P+�
�M holds and the higher-order multipole moments can be
neglected. Also it is implicitly assumed that the medium is
local, i.e., that D and H at a given “point” of space can be
written in terms of Eav and Bav at the same point of space, as
implied by �3�. Otherwise, the medium is spatially
dispersive.17,18 For ordinary dielectrics, where the lattice
constant �a�0.1 nm� is several orders of magnitude smaller
than the wavelength of radiation, these conditions are typi-
cally verified, and so the model �3� can be used to describe
the propagation of waves. However, in common microstruc-
tured artificial materials, the lattice constant is typically only
5–10 times smaller than the wavelength of radiation, and so
these effects may not be negligible,19–21 and the approxima-
tion �1� may not be accurate. As discussed in Ref. 17, Sec.
79, the same situation may also occur for natural media at
the optical regime. Moreover, as argued in Ref. 17, Sec. 79,
in natural media “the magnetic permeability ceases to have
physical meaning at relatively low frequencies” and to take
into account deviations of ���� from unity “would then be
an unwarrantable refinement.”

In general, in the presence of spatial dispersion, the intro-

duction of the effective permeability tensor �r
� �as well as of

�� and 	�� may not be meaningful �Ref. 17, Sec. 79�. The
problem is that the separation of the mean microscopic cur-
rent as in Eq. �1� is not significant, because P and M may not
be related with average fields through local relations. Due to
this reason, as discussed in Ref. 17, Sec. 103, it is more
appropriate to formulate the macroscopic Maxwell equations
using alternative phenomenological constitutive relations.
More specifically, it is preferable to include all the terms
resulting from the averaging of the microscopic currents di-
rectly into the definition of the electric displacement D with-
out introducing a magnetization vector. Within this approach,

as detailed below, the homogenized medium is described

solely by a dielectric function of the form �ef f
��� ,k�, where k

is the wave vector. The effects of spatial dispersion have
been studied in crystal optics, plasma physics, metal optics,18

and more recently, in metamaterials.19,21

Following Refs. 17 and 18, for a nonlocal medium, we
have the following definitions 	compare with Eqs. �2�
:

Dg = �0Eav + Pg, �4a�

Hg =
Bav

�0
, �4b�

where, by definition, Pg= �Jd� / j�. We introduced the sub-
script g to underline that the electric displacement and the
magnetic field defined as in �4� differ from the classical defi-
nition �2�. In fact, as mentioned above, in this phenomeno-
logical model all the microscopic currents are included di-
rectly in the definition of the dielectric displacement. From
�1�, it is evident that Pg=P+��M / j�+. . .. Thus, Pg is a
generalized polarization vector that contains the effect of the
dipolar moments, and in addition, the effect of all higher-
order multipole moments. The constitutive relations corre-
sponding to �4� are completely different from the constitutive
relations �3�. In fact, Dg cannot be related to the average field
Eav through a local relation, since the polarization Pg at one
point of space depends on the distribution of the macroscopic
electric field in a neighborhood of the considered point. Due
to this reason, it is commonly assumed that Dg can be written
in terms of a convolution of Eav with another function �Ref.
17, Sec. 103�. Thus, in the Fourier domain �dual of the r
domain�, the following constitutive relations can be intro-
duced:

D̃g = �ef f
���,k� · Ẽav, �5a�

H̃g =
B̃av

�0
, �5b�

where �ef f
��� ,k� is the dielectric function. In the above, the

symbol “�” represents the Fourier transform with respect to
the spatial coordinates 	the Fourier transform variable is the
wave vector k= �kx ,ky ,kz�
. Again, we stress that when the
material is spatially dispersive, the constitutive relations as-
sume the simple form �5� only in the Fourier domain �or
equivalently, for plane-wave solutions of Maxwell equa-
tions�, because Pg cannot be locally related to Eav. As men-
tioned before, in the spatial domain, the fundamental fields
are related to the permittivity through a convolution.17 For
simplicity, in the rest of this paper, we will drop the diacritic
“�,” being implicit from the context if a given formula holds
in the spatial domain, in the k domain, or in both. Notice that
when using �4�, it is not necessary to introduce a magnetic
permeability tensor: all the effects are directly taken into

account by �ef f
��� ,k�, including the effect of high-order mul-

tipoles.
In this work, we adopt the nonlocal phenomenological

model based on Eqs. �5�. In Sec. III, we will develop a mi-
croscopic theory to characterize arbitrary periodic nonmag-
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netic metamaterials using the constitutive relations �5�, and

explain how the permittivity dyadic �ef f
��� ,k� can be numeri-

cally calculated. There are several advantages in extracting

�ef f
��� ,k� rather than the parameters implicit in the bianiso-
tropic model �3�. The first advantage is that the nonlocal
theory �5� is more general than the local theory �3�, and
consequently, can be applied in more diverse situations and
problems. Indeed, Eqs. �3� should be regarded as a particular
case of Eqs. �5�. The second advantage is that it is easier to

formulate a microscopic theory to calculate �ef f
��� ,k� rather

than a microscopic theory to directly calculate the parameters
of the bianisotropic model. Also, very importantly, when the
spatial dispersion is weak, it is always possible to extract the

bianisotropic model parameters directly from �ef f
��� ,k� by

expanding it in a Taylor series �Refs. 17, Secs. 103 and 104,
and Ref. 25�. This topic is briefly discussed in what follows.
An excellent discussion is also given in Ref. 26.

In fact, the key result �see Refs. 17 and 26� is that any
�nonspatially dispersive� bianisotropic linear medium can al-
ways be described by the constitutive relations �5� �but the
converse is not true�. It is easy to verify that the relation

between the parameters implicit in �3� and the equivalent �ef f
�

is

�ef f
�

�0
��,k� = �r

� − �� · �r
�−1 · 	� + �� · �r

�−1 �
k



−

k



� �r
�−1 · 	��

+
k



� ��r

�−1 − I�� �
k



, �6�

where 
=���0�0 and I� is the identity dyadic. Quite inter-
estingly, the above formula also confirms that a material can
be described using the bianisotropic model �3� only if the
spatial dispersion is weak �Ref. 17, Secs. 103 and 104�, i.e.,

only if �ef f
� is a quadratic function of k. Moreover, Eq. �6�

demonstrates that the tensors �� and 	� �related with gyrotropy�
can be determined from the first-order derivatives of �ef f

� in
k,17,18 and that the magnetic permeability is related to the

second-order derivatives of �ef f
� in k. More details will be

given in Sec. V when we discuss the numerical calculation of
the magnetic permeability of metamaterials formed by split-
ring resonators. A more detailed analysis of this topic will be
published elsewhere.

To conclude this section, we discuss which set of consti-
tutive relations, �3� or �5�, is better. More specifically, when a
medium can be characterized by both �3� and �5� 	with the
corresponding effective parameters linked by �6�
, which of
the phenomenological constitutive relations is preferable? It
is simple to verify that both sets of constitutive relations
predict exactly the same dispersion characteristics �=��k�
for plane waves, and also the same average fields Eav and
Bav. Despite that, in our opinion, the classical local constitu-
tive relations �3� are more complete and powerful. The rea-
son is very simple: while Eqs. �3� are valid in the spatial
domain, Eqs. �5� are valid only in the Fourier domain. This
remark shows that only the local constitutive relations �3�
can be used to solve boundary value problems using the

classical boundary conditions at an interface26 �continuity of
the tangential components of Eav and H�. The nonlocal
model �5� is of very limited utility for problems involving
interfaces, because Eqs. �5� only apply in the Fourier space,
and so implicitly assume an infinite unbounded homoge-
neous structure. In fact, it is well known that electromagnetic
problems in spatially dispersive media are difficult to
solve.18 Even a simple plane-wave incidence problem is not
trivial because additional boundary conditions may be re-
quired at an interface.18,27 Thus, from that point of view, the
classic model is more complete and powerful. Nevertheless,
we emphasize again that the classic model �3� only applies
when the spatial dispersion is weak, which may not be the
case in some natural materials and certainly in many
metamaterials.

III. HOMOGENIZATION TECHNIQUE

Here, we develop a microscopic theory that enables the

calculation of the nonlocal dielectric function �ef f
��� ,k� for

generic nonmagnetic periodic materials. The physical moti-
vation and mathematical foundation of the proposed extrac-
tion method are presented in Sec. III A. Then, in Sec. III B, it
is shown that even though the mathematical formulation of
Sec. III A is simple and intuitive, the extraction problem is
not well defined when �� ,k� are associated with an electro-
magnetic mode of the periodic medium. To circumvent this
drawback, we regularize the mathematical problem proving
that it can be reformulated as an integral-differential system.
To conclude this section, we describe some elementary prop-

erties of the dielectric function �ef f
��� ,k�.

A. Microscopic theory

In order to retrieve the effective parameters of a periodic
medium, our idea is to excite the structure with a periodic
source that imposes a desired phase modulation in the unit
cell. The unknown dielectric function can then be computed
from the induced microscopic currents. Notice that a similar
procedure is used, for example, in plasma physics to charac-
terize the wave-vector dependence of the dielectric function
of an electron gas �Ref. 28, p. 280�.

To better explain the proposed concepts, consider the
frequency-dependent Maxwell equations in a nonmagnetic
medium,

� � E = − j�B , �7a�

� �
B

�0
= Je + �0�rj�E , �7b�

where E is the microscopic electric field, B is the micro-
scopic induction field, and Je is the applied electric current

density �source of fields�. To calculate �ef f
� for given �� ,k�,

we impose that Je has the Floquet property, i.e., Je exp�jk ·r�
is periodic in the crystal. An immediate consequence is that
the solution �E ,B� of Eqs. �7� also has the Floquet property.
For convenience, we rewrite Eq. �7b� as follows:
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� �
B

�0
= Je + Jd + �0j�E , �7b��

where Jd=�0��r−1�j�E is the induced current relative to the
host medium �assumed vacuum for simplicity�, which is re-
garded here as the microscopic current induced in the host
material, consistent with the definition of the previous sec-
tion.

In order to obtain the counterpart of Eq. �7� in the Fourier
space, we define the average �macroscopic� fields Eav and
Bav as follows:

Eav =
1

Vcell
�

�

E�r�e+jk·rd3r, Bav =
1

Vcell
�

�

B�r�e+jk·rd3r .

�8�

It can be easily verified that the following equations hold
exactly:

− k � Eav + �Bav = 0, �9a�

���0Eav + Pg� + k �
Bav

�0
= − �Pe, �9b�

where Pe= �1/Vcellj����Jee
+jk·rd3r is the applied polariza-

tion vector, and Pg is the generalized �induced� polarization
vector,

Pg =
1

Vcellj�
�

�

Jde+jk·rd3r . �10�

As mentioned in Sec. II, Pg is closely related to the classic
polarization vector. Indeed, if the exponential inside the in-
tegral is expanded in powers of the argument, the leading
term corresponds exactly to the standard polarization vector
�i.e., the average electric dipole moment in a unit cell; the
polarization is relative to the host medium�. The higher-order
terms can be related to the magnetization vector and other
multipole moments.

For future reference, we note that when the unit cell con-
tains PEC surfaces, the polarization vector becomes

Pg =
1

Vcellj�
�

�D

Jce
+jk·rds + �

�−�D

Jde+jk·rd3r� , �11�

where �D is the PEC surface and Jc= �̂� 	B /�0
 is the cor-
responding surface current �see Fig. 1�.

Consistent with Eqs. �4� and �5�, the dielectric function

�ef f
�=�ef f

��� ,k� is defined in such a way that

�ef f
� · Eav = �0Eav + Pg. �12�

Notice that for fixed �� ,k�, the dielectric function �ef f
� can be

completely determined from Eq. �12� provided Pg is known
for three independent vectors Eav �e.g., for Eav� ûi, where ûi
is directed along the coordinate axes�. Thus, the recipe that
we propose here to calculate the dielectric function can be
summarized as follows. First, for fixed �� ,k�, select three
different distributions for the applied current Je such that the
corresponding induced average fields Eav form an indepen-

dent set of vectors with three dimensions. Then, solve the
source driven electromagnetic problem �7� to obtain the mi-
croscopic fields. From the microscopic fields, calculate Eav
and Pg, and then, using Eq. �12�, obtain the desired dielectric

function �ef f
� . In Sec. III B, it is explained in detail how the

outlined method can be applied in practice.
We should note, however, that the proposed homogeniza-

tion procedure is not completely self-consistent. Indeed, the

calculated �ef f
� will depend to some extent on the specific

spatial variation of the chosen applied currents Je, i.e., de-
pending on the specific choice for Je, the computed dielectric
function may not be the same. Nevertheless, for low frequen-
cies, when the dimensions of the cell are much smaller than
the wavelength, it is reasonable to expect that the depen-
dence of the induced polarization Pg on the specific spatial
distribution of Je is relatively weak. Hence, we propose to
calculate the effective parameters by computing Pg under the
excitation of a spatially uniform density of current, i.e., we
assume that Je is of the form,

Je = Je,ave
−jk·r, �13�

where Je,av is a constant vector, i.e., independent of r. As
mentioned before, Je has the Floquet property. We prove in
Sec. III B that Eq. �13� allows formulating a self-consistent
homogenization theory. More physical and mathematical in-
sights and an alternative regularized formulation and integral
equation based solution will also be described.

B. Regularized integral-differential formulation

The straightforward homogenization approach described
before is attractive due to its simplicity. Notice that the ap-
proach is not based, by any means, on the solution of an
eigenvalue problem. In fact, the proposed homogenization
approach is a source-driven problem: for a given Je, we can
solve the Maxwell equations �7� in the periodic medium, and
afterwards compute the effective parameters of the structure
using Eq. �12�. This is very convenient, because it allows
calculating the effective parameters even when materials are
lossy or in frequency bands lying in a complete band gap.

There is, however, an inconvenience with the straightfor-
ward formulation presented in Sec. III A. Indeed, when
�� ,k� is associated with an electromagnetic mode of the pe-
riodic medium, in general, Eqs. �7� do not have a solution
because the corresponding homogeneous system �with Je
=0� has a nontrivial solution. In fact, it is a well-known
result that a nonhomogeneous linear equation is solvable
only if the independent term �the source� is orthogonal to the
solutions of the homogeneous adjoint equation. Hence, when
�� ,k� is associated with a modal solution, Eq. �7� can be
solved only for very specific Je. The physical reason for this
result is that if the medium is excited with a source with the
same �� ,k� as an eigenmode, then a resonance is hit and the
amplitude of the fields may grow without limit.

This is an undesired property because the effective param-
eters of a composite medium are intrinsically related to its
electromagnetic modes. To circumvent this drawback, next
we derive an alternative regularized formulation for the ho-
mogenization problem. The idea behind this regularized ap-
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proach is that we can tune the amplitude of the imposed
current Je in such a way as to enforce that the induced mi-
croscopic electric field has a given average value Eav, guar-
anteeing in this way that a resonance is not hit when �� ,k� is
associated with an eigenmode. This is possible because the
amplitude of Je becomes interrelated with the induced mi-
croscopic currents in the periodic medium, in such a way that
depolarization effects prevent the fields in the medium to
grow without limit when a resonance is approached. The
details of the method are presented next.

To begin with, we will relate the amplitude of Je to the
induced macroscopic field Eav. To this end, we use Eqs. �9�
to obtain, after straightforward manipulations, that

Pe

�0
=

1


2

1

Vcell
G0
�−1 · Eav −

Pg

�0
, �14�

where we defined the dyadic G0
� and the respective inverse

G0
�−1 by

G0
� =

1

Vcell

1


2


2I� − kk

k2 − 
2 , �15a�

G0
�−1 = − Vcell	�
2 − k2�I� + kk
 , �15b�

and k2=k ·k and 
=���0�0 is the wave number in the host
medium.

Equation �14� relates the applied polarization vector to the
average electric field and the induced polarization vector. It
is convenient to rewrite the equation in terms of two auxil-

iary operators P̂ and P̂av, defined next. The polarization op-

erator P̂ transforms the electric vector field into the corre-

sponding �generalized� polarization vector P̂ :E→Pg= P̂�E�,
where

P̂�E�
�0

=
1

Vcell
 1


2�
�D

�̂ � 	� � E
e+jk·rds

+ �
�−�D

��r − 1�Ee+jk·rd3r� . �16�

In the above, 	��E
=��E+−��E− stands for the discon-
tinuity of the curl of E at the metallic surfaces, and ��E+ is
evaluated at the outer side of �D �see Fig. 1�. It can be easily
verified that the above definition is consistent with Eq. �11�.
The second operator, P̂av, acts on constant vectors �not on

vector fields�, P̂av:Eav→ P̂av�Eav�, and is given by

P̂av�Eav�
�0

=
1


2

1

Vcell
G0
�−1 · Eav. �17�

Equation �14� is thus equivalent to

Pe = P̂av�Eav� − P̂�E� . �18�

Using the definition of Pe and Eq. �13�, we find that the
applied density of current is such that

Je = j�	P̂av�Eav� − P̂�E�
e−jk·r. �19�

We can use this formula to regularize the proposed homog-
enization approach. Thus, instead of imposing a fixed ampli-
tude for Je as in the straightforward formulation of Sec.
III A, we can write Je as a function of the macroscopic field
Eav, and consequently, also as a function of the microscopic
field E, i.e., Je, which is the source of the microscopic fields,
becomes itself a function of the microscopic fields. This
feedback mechanism prevents a resonance from being ex-
cited when �� ,k� is associated with an electromagnetic
mode.

To clarify this aspect, we substitute Eq. �19� into Eqs. �7�
o obtain

� � E = − j�B , �20a�

� �
B

�0
= j�	P̂av�Eav� − P̂�E�
e−jk·r + �0�rj�E .

�20b�

Even though the above system is closely related to Eqs. �7�,
there are some important and relevant differences. First of
all, unlike Eqs. �7�, system �20� is an integral-differential
system, i.e., both differential operators ��� � and integral

operators 	P̂�·�
 act on the electromagnetic fields. Note that

P̂�·� yields the generalized polarization of the unknown field
E, which involves the integration of the electric field over the
unit cell.

Another key property is that while in Eqs. �7� the source
of fields is Je, in Eqs. �20� the source of fields �from a math-
ematical point of view� is the constant vector Eav. An impor-
tant consequence is that the solutions of the homogeneous
problem �Je=0� associated with Eqs. �7� are different from
the solutions of the homogeneous system �Eav=0� associated
with Eqs. �20�, i.e., the systems have different null spaces. In
particular, the electromagnetic modes of the periodic me-
dium are associated with a nontrivial Eav and so do not be-
long to the null space of Eqs. �20�. Thus, unlike in Eqs. �7�,
the formulation based on Eqs. �20� can be used to compute
the effective parameters of the composite medium even if
�� ,k� is associated with an electromagnetic mode. In fact,
when �� ,k� is associated with a modal solution, we have

that P̂av�Eav�= P̂�E� and thus the amplitude of the imposed
current in Eqs. �20� vanishes, avoiding the resonance from
being hit. However, since Eav is different from zero, Eqs.
�20� are still a well-formulated source-driven problem.

Note that the effective parameters retrieved by solving
Eqs. �7� are exactly the same as those obtained by solving
Eqs. �20�. We underline that the only difference between the
two formulations is that the regularized formulation can be
applied even when �� ,k� is associated with an electromag-
netic mode.

Another interesting property of the integral-differential
system �20� is that its solution �E ,B� for a given Eav is such
that the spatial average of E is precisely Eav. The proof of
this result is a direct consequence of Eq. �19�.

MÁRIO G. SILVEIRINHA PHYSICAL REVIEW B 75, 115104 �2007�

115104-6



The possible downside of the regularized approach is that
an integral-differential system is, in general, more difficult to
solve than a differential system. Nevertheless, in Sec. IV, we
will prove that Eqs. �20� can be reduced to a standard inte-
gral equation, which can be solved numerically using well-
known techniques.

C. Characteristic equation

In this section, we confirm that the dielectric function
defined by Eq. �12� can predict the relevant properties of the
macroscopic electromagnetic modes of the periodic medium.
In addition, we briefly review the properties of the associated
dispersion equation and relate the polarization of the macro-
scopic field to the dielectric function.

To begin with, we note that the applied polarization vector
Pe can be zero 	for a nontrivial Eav, see Eq. �18�
 if and only
if �� ,k� is associated with an electromagnetic mode. Hence,
substituting Eq. �12� into Eq. �9�, we conclude that the ho-
mogeneous system,

− k � Eav + �Bav = 0, �21a�

��ef f
� · Eav + k �

Bav

�0
= 0, �21b�

has a nontrivial solution if and only if �� ,k� is associated
with an electromagnetic mode. This is an exact result valid
for arbitrary �� ,k�, not necessarily in the long wavelength
limit. The system �21� is precisely the same as that obtained
for plane-wave solutions in a homogeneous nonmagnetic an-

isotropic medium characterized by the permittivity �ef f
� . This

proves that the dielectric function defined by Eq. �12� can
indeed be used to obtain the band structure and/or average
fields of an arbitrary electromagnetic mode.

For the sake of completeness, next we briefly review the
properties of the characteristic system �21�. As is well known
�Ref. 18, p. 25�, Eqs �21� imply that the average electric field
satisfies the characteristic system

�ef f
�

�0
+

1


2kk −
k2


2I�� · Eav = 0. �22�

From Eq. �21b�, we also have that k ·�ef f
� ·Eav=0. On the

other hand, manipulating Eq. �22�, we easily find that

Eav = − �k · Eav�
2�ef f
�

�0
− k2I��−1

· k . �23�

Thus, provided the average field is not transverse, i.e., pro-
vided k ·Eav�0, we conclude that the macroscopic electric
field can be written as

Eav � �ef f
�

�0
−

k2


2I��−1

·
k



if k · Eav � 0. �24�

Also, multiplying both sides of Eq. �23� by k, we readily find
that �� ,k� satisfies the characteristic equation

− 1 = k · 
2�ef f
�

�0
− k2I��−1

· k if k · Eav � 0. �25�

Note that whenever k ·Eav=0, the dyadic in the above equa-
tion must have a singularity. The solutions, �=��k�, of Eq.
�25� yield the dispersion of the electromagnetic modes.

D. Properties of the permittivity dyadic

Some important properties of the dielectric function de-
fined as in Eq. �12� are enunciated next. The proof of the
results can be found in the Appendix. Note that the derived
properties are consistent with Ref. 17 �Sec. 103�. Below the
superscript t refers to the transpose dyadic.

�P1� �ef f
��� ,k�=�ef f

� t�� ,−k�.
�P2� Let T be a translation. Let us suppose that a given

metamaterial is characterized by the dielectric function �ef f
� ,

and that the metamaterial resulting from the application of T
to the original structure is characterized by the dielectric

function �ef f�� . Then, �ef f���� ,k�=�ef f
��� ,k�. In particular, the

definition of the dielectric function is independent of the ori-
gin of the coordinate system.
�P3� Let S be an isometry �a rotation or a reflection�: S ·St

=I�. Let us suppose that a given metamaterial is characterized

by the dielectric function �ef f
� , and that the metamaterial re-

sulting from the application of S to the original structure is

characterized by the dielectric function �ef f�� . Then,

�ef f���� ,S ·k�=S ·�ef f
��� ,k� ·St.

�P4� If a metamaterial is invariant to an affine isometry T
�S �rotation and/or reflection followed by a translation�, then

its dielectric function satisfies �ef f
��� ,S ·k�=S ·�ef f

��� ,k� ·St.
In particular, if the material has a center of symmetry, i.e.,
there is a point such that the material is invariant to the

transformation S :r→−r, then �ef f
��� ,k�=�ef f

��� ,−k�.

IV. INTEGRAL EQUATION FORMULATION

So far, the emphasis of this work has been on the theoret-
ical aspects and properties of the homogenization problem.
As discussed in Sec. III, the regularized homogenization
problem is an integral-differential system. In what follows,
we will prove that this complex system can be reduced to a
standard integral equation, which can be solved using known
techniques. This paves the way for the proposed approach to
be used in solving practical problems using numerical meth-
ods, as exemplified in Sec. V.

A. Integral representation of the electric field

Here, we prove that microscopic electric field—solution
of the homogenization problem �20�—has the following in-
tegral representation �it is assumed that r��D�:
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E�r� = Eave
−jk·r + �

�D

Gp0
��r�r�� · ��̂� � 	�� � E
�ds�

+ �
�−�D

Gp0
��r�r�� · 
2��r − 1�Ed3r�, �26�

where Gp0
� is a Green’s function dyadic introduced below.

The integral representation establishes that the microscopic
field E can be written in terms of the induced microscopic
currents and of the macroscopic electric field. This important
result is used in Sec. IV B to reduce the homogenization
problem to an integral equation.

The proof of Eq. �26� is delineated next. To begin with,
we introduce the lattice Green’s function �p
=�p�r �r� ;
 ,k�,29,30 which verifies

�2�p + 
2�p = − �
I

�r − r� − rI�e−jk·�r−r��, �27�

where I= �i1 , i2 , i3� is a multi-index of integers, r= �x ,y ,z� is
the observation point, r�= �x� ,y� ,z�� is a source point, rI
= i1a1+ i2a2+ i3a3 is a lattice point, and  is Dirac’s distribu-
tion. Green’s function depends on both 
=���0�0 and k.

The lattice Green’s function has the following spectral
representation:

�p�r�r�� =
1

Vcell
�

J

e−jkJ·�r−r��

kJ · kJ − 
2 , kJ = k + kJ
0, �28�

where Vcell= �a1 · �a2�a3�� is the volume of the unit cell, J
= �j1 , j2 , j3� is a multi-index of integers, and kJ

0= j1b1+ j2b2

+ j3b3. The reciprocal lattice primitive vectors, bn, are im-
plicitly defined by the relations am ·bn=2�m,n, m ,n
=1,2 ,3. Although the spectral representation is conceptually
appealing due to its simplicity, the corresponding numerical
series converges slowly. Fortunately, other representations
with Gaussian and exponential convergence rates are also
available.29,30

We also need to introduce the lattice Green’s dyadic, Gp
�

=Gp
��r �r� ;
 ,k�, which is the solution of

� � � � Gp
� − 
2Gp

� = I�e−jk·�r−r����
I

�r − r� − rI�� .

�29�

It is straightforward to verify that

Gp
� = I� +

1



� ���p, �30a�

Gp
��r�r�;
,k� = Gp

� t�r��r;
,− k� . �30b�

Now using Eqs. �20�, �29�, and �30b�, and standard integral
equation techniques,31 it is possible to verify that if E is the
solution of the homogenization problem associated with
�k ,� ,Eav�, then

E�r� = �
�D

Gp
��r�r�� · ��̂� � 	�� � E
�ds�

+ �
�−�D

Gp
��r�r�� · 
2��r − 1�Ed3r�

+ ��
�

Gp
��r�r��e−jk·r�d3r�� · 
2� P̂av�Eav�

�0
−

P̂�E�
�0

� ,

�31�

where the Green’s dyadic is associated with �
 ,k�.
Substituting Eq. �28� into Eq. �30a�, we find that

�
�

Gp
��r�r��e−jk·r�d3r� = VcellG0

�e−jk·r, �32�

where G0
� is given by Eq. �15a�. It is also convenient to

introduce the dyadic Gp0
� =Gp0

��r �r� ;
 ,k� defined by

Gp0
��r�r�� = Gp

��r�r�� − G0
�e−jk·�r−r��. �33�

Using Eqs. �16�, �17�, and �31�, we conclude that E has the
integral representation given by Eq. �26�, as we wanted to
prove.

Since the kernel of the integral in Eq. �26� is Gp0
� , it is

worth noting that it is the solution of

� � � � Gp0
� − 
2Gp0

�

= I�e−jk·�r−r����
I

�r − r� − rI�

−
1

Vcell
� . �34�

The dyadic Gp0
� can also be written as

Gp0
� = I� +

1



� ���p0, �35a�

�p0�r�r�� = �p�r�r�� −
1

Vcell

e−jk·�r−r��

k2 − 
2 =
1

Vcell
�
J�0

e−jkJ·�r−r��

kJ · kJ − 
2 .

�35b�

Note that �p0 can be numerically evaluated very efficiently
using the method proposed in Refs. 14 and 29.

B. Integral equation formulation

Here, Eq. �26� is used to demonstrate that the homogeni-
zation problem can be reduced to a standard integral equa-
tion. Using this result, we derive a closed-form solution for
the unknown dielectric function in terms of the inverse of an
infinite matrix.

The integral representation �26� can be regarded as an
integral equation with unknowns given by the microscopic
currents Jd=�0��r−1�j�E at the dielectric inclusions, and
Jc= �̂� 	B /�0
 at the PEC surfaces. For a given Eav, the
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integral equation is obtained by imposing that Eq. �26� is
verified in the inclusions and that the tangential component
of the electric field vanishes at the PEC surfaces. The inte-
gral equation can be discretized and numerically solved us-
ing standard techniques. In what follows, we discretize the
integral equation using the method of moments31 �MoM� as-
suming that the periodic material is purely dielectric. The
case of PEC inclusions will be briefly described later.

We take the vector field f= ��r−1�E as the unknown of the
integral equation. Notice that the vector density f vanishes in
the host medium and is proportional to the polarization cur-
rent Jd. Supposing there are no PEC surfaces, and enforcing
that Eq. �26� holds outside the host medium, we obtain the
following integral equation:

f�r�
��r − 1�

= Eave
−jk·r + �

�

Gp0
��r�r�� · 
2f�r��d3r�. �36�

The identity is valid over �r :�r�r�−1�0�, i.e., in the dielec-
tric support of the inclusions. Note that because of the pro-
posed regularization method, the kernel of the above integral

equation, Gp0
��r �r��, differs from the kernel Gp

��r �r�� associ-
ated with an integral representation of a generic electromag-
netic mode. This is the reason why the MoM formulation
proposed here is, in fact, numerically stable, even if �� ,k� is
associated with a modal solution. For a given Eav, we can
solve the integral equation �36� with respect to f, as ex-
plained next.

First, we expand f in terms of the vector expansion func-
tions w1,w2 , . . .:

f = �
n

cnwn. �37�

The set of expansion functions is assumed complete. Notice
that f is obviously a Floquet field, i.e., f exp�jk ·r� is peri-
odic. Thus, in general, the expansion functions are Floquet
fields and, therefore, must depend explicitly on k, i.e., wn
=wn,k�r�. The dependence on k can be suppressed only if the
inclusions are unconnected �i.e., when the set �r��: �r�r�
−1�0� does not have two equivalent points spaced by a
lattice primitive vector�. For example, if the medium is
formed by unconnected spheres, the dependence on k may
be suppressed, while if it is formed by continuous tubes �cyl-
inders�, the dependence must be implicitly incorporated in
the expansion functions.

In order to reduce Eq. �36� to a linear system, we use the
standard procedure of multiplying both sides of the equation
with test functions and integrating the resulting expression
over the unit cell. For simplicity, we take the test functions
equal to the expansion functions, with one difference: the test
functions are of the form wm=wm,−k�r�, i.e., are associated
with the wave vector −k in order to “kill” the phase variation
and improve numerical convergence. In this way, using Eq.
�37�, we obtain

�
n

�m,ncn = Eav · �
�

wm,−k�r�e−jk·rd3r , �38a�

�m,n = �
�

1

�r − 1
wm,−k�r� · wn,k�r�d3r

− �
�
�

�

wm,−k�r� · 
2Gp0
��r�r�� · wn,k�r��d3rd3r�.

�38b�

Notice that the expansion functions vanish outside the di-
electric inclusions, and so the integration domain may be
replaced by �r��: �r�r�−1�0�. For convenience, we de-
note the inverse of the matrix 	�m,n
 with generic element
�m,n defined as above, as 	�m,n
. Substituting Eq. �37� into
Eq. �16� and using Eqs. �38�, it is easy to verify that

P̂�E�
�0

= � 1

Vcell
�
m,n

�m,n�
�

wm,k�r�e+jk·rd3r

� �
�

wn,−k�r�e−jk·rd3r� · Eav. �39�

where � represents the dyadic product of two vectors.
Therefore, using Eq. �12�, we finally obtain the important
result:

�ef f
�

�0
��,k� = I� +

1

Vcell
�
m,n

�m,n�
�

wm,k�r�e+jk·rd3r

� �
�

wn,−k�r�e−jk·rd3r . �40�

The formula is valid for dielectric crystals with no PEC sur-
faces. Equation �40� is quite interesting because it establishes
a very simple relation between the dielectric function, the
expansion functions, and the elements �m,n. In the next sec-
tion, we will illustrate the application of the formalism to
some relevant microstructured materials with negative pa-
rameters.

In the particular case in which the material only contains
PEC surfaces and �r−1=0 in the rest of the unit cell, the
unknown of the integral equation is taken equal to the vector
tangential density f= �1/
2��̂�� 	���E
 defined over the
metallic surface �D. The vector field f is proportional to the
density of current Jc over the PEC surfaces. As in the dielec-
tric case—see Eq. �37�—the unknown is expanded in terms
of the complete set of vectors w1,w2 , . . ., except that now the
expansion functions form a complete set of tangential vector
fields over the metallic surface. Proceeding as in the dielec-
tric case and enforcing that the tangential component of the
electric field vanishes at the PEC surface, it is possible to
prove that the permittivity dyadic is

�ef f
�

�0
��,k� = I� +

1

Vcell
�
m,n

�m,n�
�D

wm,k�r�e+jk·rds

� �
�D

wn,−k�r�e−jk·rds , �41a�
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�m,n = �
�D
�

�D

„�s · wm,−k�r��s� · wn,k�r��

− 
2wm,−k�r� · wn,k�r��…�p0�r�r��dsds�. �41b�

In the above, �s. stands for the surface divergence of a tan-
gential vector field, and, as before, the matrix 	�m,n
 is the
inverse of 	�m,n
.

V. CHARACTERIZATION OF METAMATERIALS WITH
NEGATIVE PARAMETERS

In order to validate and illustrate the application of the
theoretical formalism developed in the previous sections, we
will homogenize several configurations of artificial materials
formed by split-ring resonators and metallic wires. Before
that, it is worth mentioning that the homogenization ap-
proach that we used in Ref. 21 to characterize a three-
dimensional array of connected and unconnected wires is
formally equivalent to the homogenization theory presented
in this paper, even though in Ref. 21 the concepts were pre-
sented in a completely different manner and the theory was
very specialized to the particular problem under study. Thus,
it can be said that the results presented in Ref. 21 present
further evidence that the homogenization theory developed
here can be used to characterize the effective parameters of
complex metamaterials.

Next, our objective is to characterize the effective permit-
tivity and permeability of metamaterials formed by metallic
wires and split-ring resonators. As discussed in Sec. II, this

requires linking the dielectric function �ef f
��� ,k�—which can

be computed numerically using Eqs. �41�—with the param-

eters �r
����, �r

����, etc., associated with the local model �3�.
As argued in Sec. II, if such a relation exists, it is necessarily
of the form �6�. For simplicity, the examples analyzed here
were chosen in such a way that the microstructure of the
medium has enough symmetry so that the medium is nongy-

rotropic, i.e., the first-order derivatives of �ef f
��� ,k� with re-

spect to k vanish at the origin, or equivalently, the magneto-

electric tensors �� and 	� vanish. To this end, instead of using
the standard edge-side coupled split-ring resonator formed
by two concentric rings, we will use the modified broad-side
coupled split-ring resonator formed by two parallel rings.23

As proved in Ref. 23, this modified split-ring resonator
�MSRR� does not permit magnetoelectric coupling. The
characterization of the bianisotropic properties of artificial
media with relevant optical activity will be reported in a
future communication.

Since, as discussed above, the magnetoelectric tensors
must vanish, we find from Eq. �6� that

�r
���� = lim

k→0

�ef f
�

�0
��,k� . �42�

Moreover, in this work, we assume that the split-ring reso-
nators are parallel to the xoy plane. This implies that the
magnetic permeability of the artificial medium is of the form

�r
� ���= ûxûx+ ûyûy +�zzûzûz. Substituting this formula into

Eq. �6� and using Eq. �42�, we easily find that

�zz��� = �1 + lim
kx→0

ky=kz=0

−

2

kx
2 ûy · ��ef f

�

�0
��,k� − �r

����� · ûy�
−1

.

�43�

Equivalently, we can write that

�zz��� =
1

1 − 
2 1

2�0
� �2�ef f ,yy

�kx
2 �

k=0

, �44�

where �ef f,yy = ûy ·�ef f
� · ûy. Thus, we found out that provided

the metamaterial can be described using a permittivity and
permeability model as in Eq. �3�, then its constitutive param-
eters are given by Eqs. �42� and �44�. Notice that consistent
with the observations of Sec. II and with the results of Ref.
17 �Sec. 103�, the magnetic permeability is a function of the
second derivatives of the dielectric function with respect to
the wave vector.

In the first example, we characterize the effective param-
eters of a metamaterial similar to the one proposed in the
seminal work of Smith et al.,2 formed by MSRRs and me-
tallic wires �see the inset of Fig. 3�. The distances between
the inclusions along the coordinate axes are ax=ay �a and
az=0.5a �note that the lattice is not simple cubic�. As men-
tioned before, the MSRRs are parallel to the xoy plane and
are formed by two rings with mean radius Rmed=0.4a with an
angular gap of 10°. To simplify the numerical implementa-
tion of the proposed homogenization method, we assumed
that the rings are formed by thin metallic wires with circular
cross section and radius 0.01a, instead of being planar par-
ticles as proposed in Ref. 23. The distance between the two
rings �relative to the midplane of each ring� is d=0.125a. On
the other hand, the continuous metallic wires are directed
along the y direction �see the inset of Fig. 3� and also have
radius 0.01a.

Using Eqs. �41�, �42�, and �44�, we have computed the

constitutive parameters �r
���� and �zz of the composite me-

dium. To this end, we have expanded the density of electric
current Jc in an appropriate set of expansion functions wn
=wn,k�r� tangential to the PEC surfaces, and then we used
Eqs. �41� to calculate the dielectric function of the composite
medium. For simplicity, to ease the numerical calculation of
the matrix 	�m,n
, we have used the well-known thin-wire
approximation,31,32 which assumes that the current along
each wire flows exclusively along its axis. Typically, we used
4–5 expansion functions per wire �ring� to obtain the numeri-
cal results. The numerical derivatives that appear in Eq. �44�
were evaluated using numerical methods.

The extracted effective permittivity �yy and effective per-
meability �zz are depicted in Fig. 2 for three configurations
of the metamaterial. The permittivity along z, �zz=1, is not
depicted in the figure. Note that the extracted parameters are
real numbers because we assume that the wires are perfectly
conducting. Consistent with the results of Ref. 2, it is found
that the effective permittivity is negative when the MSRRs
are removed and the material is formed by continuous wires
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�curve c�. On the other hand, if the continuous wires are
removed and the metamaterial is formed by only MSRRs
�curve b�, the numerical results predict that the permeability
has a resonance at the normalized frequency �a /c=0.86.
When the MSRRs and the continuous wires are combined
�curve a�, there is a frequency window, 0.86��a /c�1.04,
where both the effective permittivity and permeability are
simultaneously negative. In order to confirm these results
and check the accuracy of the proposed homogenization
method, we have calculated the band structure of the com-
posite medium using the extracted �yy and �zz. For propaga-
tion along the x direction, we should have the dispersion
relation kx= ± �� /c���yy����zz���. Solving this equation
with respect to �, we obtain several bands of the form �
=��kx�, which are depicted in Fig. 3 �solid black lines�.
Then, we compared these results �based on the proposed ho-
mogenization method� with the “exact” band structure calcu-

lated using the full wave hybrid method introduced in Ref.
32 �“star” symbols in Fig. 3�. The full wave results can be
considered “numerically exact,” even though we should refer
that we also used a thin-wire approximation to simplify the
implementation of the full wave method proposed in Ref. 32.

It is seen in Fig. 3 that the comparison between the ho-
mogenization results and the full wave results is good, par-
ticularly for frequencies such that �a /c�1.3. In particular,
the frequency band where the material has both permittivity
and permeability simultaneously negative is predicted with
very good accuracy, even for values of kx near the edge of
the Brillouin zone. This is a very interesting and unexpected
result, because, in general, the scope of application of ho-
mogenization methods is thought to be �a /c�� and ka /c
��. For frequencies above �a /c=1.4, near the resonance of
�yy, the agreement quickly deteriorates and the magnetic per-
meability ceases to have meaning �notice that when �yy var-
ies fast, it is not expected that a Taylor expansion of the
dielectric function can be accurate, and thus spatial disper-
sion becomes dominant�.

We have performed similar band-structure calculations for
the case in which the continuous wires are removed and the
material is formed uniquely by MSRRs. These results are
reported in Fig. 4. Notice that as in the original work of
Smith et al.,2 the frequency region where the composite ma-
terial has simultaneously negative parameters becomes a fre-
quency band gap when the metallic wires are removed.

The effective permittivity of the composite medium can
be tuned by varying the radius of the continuous wires. For
example, if one increases the radius five times �radius 0.05a�,
the band structure results obtained with the extracted effec-
tive parameters �not shown here for the sake of brevity� and
the full wave numerical method32 are depicted in Fig. 5.
Comparing with Fig. 3, it is seen that the gap between the
band where the material has both �yy and �zz negative, and
the band where �yy and �zz are simultaneously positive be-
comes more pronounced, confirming the fact that �yy be-
comes more negative when the radius of the wires increases.

We have also investigated the magnetic properties of me-
dia formed by elliptical rings. The motivation is that we in-

FIG. 2. �Color online� Extracted effective permittivity �solid
line� and effective permeability �dashed line� for a metamaterial
formed by �a� continuous wires � MSRRs �medium thick red
lines—light gray in grayscale�, �b� only MSRRs �thin black lines�,
and �c� only continuous wires �thick blue line—dark gray in
grayscale�.

FIG. 3. �Color online� Band structure of composite material
formed by wires+MSRRs �geometry of the unit cell is shown in the
inset�. The solid black line was calculated using the extracted �yy

and �zz. The star symbols were obtained using the full wave hybrid
method introduced in Ref. 32.

FIG. 4. �Color online� Band structure of composite material
formed by MSRRs �geometry is shown in the inset�. The solid black
line was calculated using the extracted �yy and �zz. The star sym-
bols were obtained using the full wave hybrid method introduced in
Ref. 32.
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tuitively expect that by using rings with large axial ratios, so
that the semiaxis of the ring along the y direction Ry is sig-
nificantly larger than the semiaxis Rx along the x direction, it
may be possible to decrease the electrical size �footprint in
the xoz plane� of the particles. This may have interesting
applications in problems where the propagation is limited to
the xoz plane. Notice that the resolution of subwavelength
imaging devices based on metamaterials is limited by the
electrical size of the particles, and so there is a great interest
in designing more compact resonant particles and thus im-
proving the performance of the devices.

In our simulations, we assumed that the distances between
the inclusions along the coordinate axes are ax�a, ay =2a,
and az=0.5a. The elliptical MSRRs are parallel to the xoy
plane and are formed by two elliptical rings �see the inset of
Fig. 7�. The �mean� semiaxes of the rings are Rx=0.4a and
Ry =0.8a �the axial ratio is 2�. The angular gap is 42.5°. As
before, the distance between the rings is d=0.125a and all
the metallic wires have radius 0.01a.

In Fig. 6, the extracted effective parameters are depicted
for composite media with both elliptical rings and wires
�curve a�, only elliptical rings �curve b�, and only wires
�curve c�. The results are qualitatively similar to those re-
ported for circular rings. There is, however, an important
difference: the resonance of the magnetic particles is now at
�a /c=0.5, i.e., the resonant frequency is only 58% of that
we obtained for circular rings. Moreover, the frequency band
where the composite medium has both �yy and �zz negative
is now 0.5��a /c�0.65 and so the absolute bandwidth as-
sociated with the negative refraction effect is nearly the same
as that for circular rings, whereas the relative bandwidth �the
most important parameter� is almost twice. These results
confirm our intuition and demonstrate that elliptically shaped
resonant rings may have interesting potentials and may help
reduce the electrical size of the inclusions. The comparison
between the band structure computed using the extracted �yy
and �zz parameters and the full wave method proposed in
Ref. 32 is shown in Figs. 7 and 8, revealing a very good
agreement for �a /c�1.1 and confirming that for low fre-
quencies the metamaterial can be described using a local
homogenization model.

In the last example, we investigate a different opportunity
to reduce the electrical size of the magnetic particles. In Ref.

33, it was shown that the bandwidth of the negative refrac-
tion regime in a material formed by plasmonic spheres may
be improved by closely packing the inclusions, and in this
way, enhancing the mutual coupling. Extrapolating this result
to our problem, we may expect that if the MSRR rings are
closely packed �along the z direction; see the inset of Fig. 9�,
it may be possible to enhance artificial magnetism, and in
this way, reduce the electrical size of the particles. A similar
configuration has also been studied in Ref. 34, where it was
found that the permeability of the metamaterial could be rea-
sonably high over a wide frequency range. Also in Ref. 35,
planar near-field magnetoinductive lens based on such geom-
etry was investigated. It was proved that due to the excitation
of magnetoinductive surface waves,36 it was possible to
achieve subwavelength imaging. In a certain sense, the struc-
ture studied in Ref. 35 can be regarded as the magnetic dual

FIG. 5. �Color online� Same as Fig. 3 but the radius of the
continuous wires �directed along y� is increased five times. FIG. 6. �Color online� Extracted effective permittivity �solid

line� and effective permeability �dashed line� for a metamaterial
formed by �a� continuous wires+elliptical MSRRs �medium thick
red lines—light gray in grayscale�, �b� only elliptical MSRRs �thin
black lines�, and �c� only continuous wires �thick blue line—dark
gray in grayscale�.

FIG. 7. �Color online� Band structure of composite material
formed by wires+elliptical MSRRs �geometry is shown in the in-
set�. The solid black line was calculated using the extracted �yy and
�zz. The star symbols were obtained using the full wave hybrid
method introduced in Ref. 32.
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of the wire medium.37 Here, we will characterize the effec-
tive parameters of such metamaterial as an application of the
proposed homogenization method.

As in the first example, we suppose that the rings have a
circular geometry. The dimensions of rings are the same in
the first example, but now the lattice constants are ax=ay
�a and az=0.25a, i.e., as compared to the first example, the
distance between the MSRR rings along z is reduced to half,
increasing in this way the capacitance between the rings. The
extracted effective permittivity �solid line� and permeability
�dashed line� are shown in Fig. 9. The material exhibits nega-
tive permeability in the frequency range 0.66��a /c�0.87,
i.e., the resonant frequency is about 77% of that obtained in
the first example, while the absolute bandwidth increases by
16%. This confirms that by reducing the distance between
adjacent MSRRs, it may indeed be possible to design more
compact metamaterials with electrically smaller particles.
The comparison between the band structures calculated using
the extracted parameters and the full wave method32 is de-
picted in Fig. 10, further supporting and validating the pro-
posed homogenization theory.

VI. CONCLUSION

In this work, we developed a numerical method to ho-
mogenize arbitrary nonmagnetic periodic materials. In our
formalism, the homogenized medium is described by a di-

electric function of the form �ef f
�=�ef f

��� ,k�. The advantage
of this approach is that it is completely general and allows
characterizing both frequency and spatial dispersion. It was
discussed that if a medium is local, i.e., if it can be charac-

terized using effective parameters �r
���� and �r

���� �and pos-
sibly magnetoelectric crossed terms�, it is possible to link

these local parameters with the dielectric function �ef f
��� ,k�.

Namely, it was discussed that the effective permeability may
be related to the second-order derivatives of the dielectric
function with respect to the wave vector, consistent with Ref.
17 �Sec. 103�.

It was proved that the problem of calculation of the di-

electric function �ef f
��� ,k� can be reduced to an integral-

differential system. We developed an approach based on the
MoM to obtain the numerical solution of such a system. In
particular, we found out that the dielectric function can be
written in closed analytical form—see formulas �40� and
�41�—in terms of the inverse of an infinite matrix. In order to
validate the proposed concepts, we studied numerically the
properties of media formed by metallic wires and split-ring

resonators. It was explained how to extract �r
���� and �r

����
from the nonlocal dielectric function. The extracted effective
permittivity and permeability were used to predict the disper-
sion characteristics �=��k�, showing good agreement with
results obtained using a full wave method that calculates the
band structure of periodic media. In order to investigate the
possibility of designing more compact metamaterials, we
characterized microstructured composites formed by ellipti-
cal split rings and closely packed rings. The results of the
simulations showed good potential for these structures and
that the size of the inclusions may be significantly reduced.
This may have important applications in subwavelength im-

FIG. 8. �Color online� Band structure of composite material
formed by elliptical MSRRs �geometry is shown in the inset�. The
solid black line was calculated using the extracted �yy and �zz. The
star symbols were obtained using the full wave hybrid method in-
troduced in Ref. 32.

FIG. 9. Extracted effective permittivity �solid line� and effective
permeability �dashed line� for a metamaterial formed by closely
packed MSRRs �geometry is shown in the inset�.

FIG. 10. �Color online� Band structure of composite material
formed by closely packed MSRRs �geometry is shown in the inset�.
The solid black line was calculated using the extracted �yy and �zz.
The star symbols were obtained using the full wave hybrid method
introduced in Ref. 32.
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aging devices. To conclude, we emphasize that the proposed
homogenization method can be applied to a wide range of
composite structures and can also be used to characterize
bianisotropic media �e.g., chiral media�. These results will be
reported in a future work,38 where the extracted parameters
are used to study a reflectivity problem.
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APPENDIX

In this appendix, the results enunciated in Sec. III D are
proved. To begin with, we prove property �P1�. To this end,
let E1 be a solution of the regularized homogenization prob-
lem �20� associated with �k ,� ,Eav,1� and E2 be a solution
associated with �−k ,� ,Eav,2�. Then, using Eqs. �20�, we
have that

� · �− E1 � � � E2 + E2 � � � E1�

= 
2 1

�0
�E1ejk·r · 	P̂av�Eav,2;− k� − P̂�E2;− k�


− E2e−jk·r · 	P̂av�Eav,1;k� − P̂�E1;k�
� . �A1�

Next, we integrate both sides of the equation over the unit
cell. Using the divergence theorem, the Floquet boundary
conditions, and the boundary conditions at the dielectric
and/or metallic interfaces, it is clear that the integral corre-
sponding to the left-hand side term vanishes. Therefore, us-
ing Eq. �12� and the fact that the spatial average of Ei is Eav,i,
i=1,2, we find that

Eav,1 · � P̂av

�0
�Eav,2;− k� − ��ef f

�

�0
��,− k� − I�� · Eav,2�

= Eav,2 · � P̂av

�0
�Eav,1;k� − ��ef f

�

�0
��,k� − I�� · Eav,1� .

�A2�

Using Eq. �17� and noting that the above equation holds for
arbitrary Eav,1 and Eav,2, we easily obtain �P1�.

Next, we demonstrate property �P2�. The transformed
metamaterial is characterized by the relative permittivity
�r��r��=�r�r�, where r�=T ·r, T: r→r+u is a translation
along the constant vector u, and �r is the relative permittivity
of the original periodic material. The metallic surfaces are
transformed similarly. We define E��r��=E�r� and B��r��
=B�r�. Then, from Eqs. �20� and using the identity �=��,
we find that

�� � E� = − j�B�, �A3a�

�� �
B�

�0
= j�	P̂av�Eav� − P̂�E�
ejk·ue−jk·r� + �0�r�j�E�.

�A3b�

Because the volume of the transformed unit cell is the same

as the original volume, it is clear that P̂av= P̂av� . On the other

hand, using Eq. �16� and making a coordinate transformation
in the integrals, we obtain that

P̂�E�
�0

=
e−jk·u

Vcell
� 1


2�
T·�D

�̂� � 	�� � E�
e+jk·r�ds�

+ �
T·�−T·�D

��r� − 1�E�e+jk·r�d3r�� . �A4�

In the above, we used the fact that �̂�r�= �̂��r��. Since the
sets T ·�D and T ·� are equivalent to �D� and ��, respec-
tively, and because the integrands are periodic functions, we
find that

P̂�E� = P̂��E��e−jk·u. �A5�

Substituting the above expression into Eqs. �A3�, it follows
that E� is a solution of the homogenization problem in the
transformed periodic material, associated with
�k ,� ,Eave

jk·u�. Then, using Eqs. �12� and �A5�, it is imme-
diate that �P2� holds.

Now we consider that the transformed metamaterial is the
result of the application of an isometry S �composition of
rotations and reflections� to the original structure. The rela-
tive permittivity of the transformed structure is such that
�r��r��=�r�r�, where r�=S ·r, and S is the isometry. We de-
fine E��r��=S ·E�r� and B��r��=det�S�S ·B�r�, where det�S�
is the determinant of the application. Note that det�S�2=1

because S ·St=I�. To proceed, we need the following auxiliary
formula �which is valid because S is an isometry�

S · � � = det�S��� � S · �A6�

Using this result and applying S to both sides of Eq. �20�, we
obtain

� � E� = − j�B�, �A7a�

� �
B�

�0
= j�	S · P̂av�Eav;k� − S · P̂�E;k�
e−j�S·k�·r�

+ �0�r�j�E�. �A7b�

The volume of the transformed unit cell is invariant because
S is an isometry. It is also straightforward to verify that

S · P̂av�Eav;k�= P̂av� �S ·Eav;S ·k�. On the other hand, from Eq.
�16�, we obtain

S · P̂�E;k�
�0

=
1

Vcell
� 1


2�
�D

S · ��̂ � 	� � E
�e+j�S·k�·r�ds

+ �
�−�D

��r� − 1�E�e+j�S·k�·r�d3r� �A8�

but, because S is an isometry, we have S · ��̂� 	��E
�
=det�S��S · �̂� 	S ·��E
�. Using also Eq. �A6� and the fact
that S · �̂�r�= �̂��r��, it is clear that S · ��̂� 	��E
�= �̂�
� 	���E�
. Substituting this result into Eq. �A8� and mak-
ing a coordinate transformation in the integration variables,
we obtain
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S · P̂�E;k�
�0

=
1

Vcell
� 1


2�
S·�D

�̂� � 	�� � E�
e+j�S·k�·r�ds�

+ �
S·�−S·�D

��r� − 1�E�e+j�S·k�·r�d3r�� . �A9�

As before, the sets S ·�D and S ·� are equivalent to �D� and
��, respectively. Therefore, since the integrands are periodic
functions, it follows that

S · P̂�E;k� = P̂��E�;S · k� . �A10�

Substituting the above expression into Eq. �A7�, we conclude
that E� is a solution of the homogenization problem in the
transformed periodic material, associated with
�S ·k ,� ,S ·Eav�. Finally, using Eqs. �12� and �A10�, it is im-
mediate that �P3� holds.

To conclude, we note that �P4� is an immediate conse-
quence of �P2� and �P3�.
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