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Exact Solution for the Protected TEM Edge Mode
in a PTD-Symmetric Parallel-Plate Waveguide

Enrica Martini , Senior Member, IEEE, Mário G. Silveirinha , Fellow, IEEE, and Stefano Maci , Fellow, IEEE

Abstract— A parity time-reversal duality symmetric structure
constituted by a perfect electric conductor and perfect magnetic
conductor (PMC) parallel plate waveguide is analyzed. This
waveguide supports unimodal transverse electromagnetic (TEM)
edge mode propagation protected against backscattering from a
certain class of deformations and defects. The TEM solution
is found in analytical form by using three different meth-
ods, namely, conformal mapping, mode-matching, and Fourier-
transform methods. It is shown through numerical simulations
that the mode propagation is robust with respect to deformations
such as 90° bends and discontinuities such as transition to free
space. Implementation of the PMC boundary conditions via both
a bed of nails and a mushroom structure is also successfully
investigated.

Index Terms— Metasurface, parity-time-duality symmetry,
topological modes.

I. INTRODUCTION

TOPOLOGICAL edge modes (TPEMs) are the electro-
magnetic (EM) counterpart of the edge states in the

integer quantum Hall effect that occurs due to topological
phase transitions of matter, the discovery at the origin of the
Nobel Prize awarded to Thouless, Haldane, and Kosterlitz in
2016 [1]. Topological methods, originally developed for elec-
tronic systems, have been generalized to EM systems, opening
new and unexpected opportunities for innovation [2]–[4]. The
novel aspect of TPEMs is that they can be unidirectional and
thereby protected against backscattering; thus, they may enable
a wave-guiding immune to the undesired effects of reflections
due to disorder, imperfections, obstacles, or deformations of
the propagation path. TPEM protection normally requires
nonreciprocal elements [2]–[7]; however, recent studies have
shown it can be also generated by reciprocal materials and
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thereby topological protected edge modes may arise in time-
reversal invariant structures [8]–[13]. In this case, the edge
modes are bidirectional but largely (in ideal cases totally)
immune from backscattering due to chiral-type properties.

Furthermore, a few recent works have highlighted that a
broad class of (nontopological) reciprocal systems may as well
offer protection against backscattering [14]–[17]. In this case,
the key property that guarantees that some propagating mode is
immune to reflections is a duality link between the constitutive
parameters of the relevant materials [14]–[17].

In particular, it was first shown in [16] that a wide
family of bidirectional (not necessarily reciprocal) N-port
networks invariant under the combined action of the parity
(P), time-reversal (reciprocity) (T), and duality (D) operators,
is characterized by a scattering matrix with s11 = · · · =
sN N = 0. Thus, a parity time-reversal duality (PTD)-invariant
microwave network is always matched at all ports. Thereby,
PTD-invariant platforms may support waves that are insensi-
tive to any form of perturbations or defects that do not break
the PTD symmetry. This scattering anomaly (i.e., the absence
of backscattering in a bidirectional system) is the optics analog
of the quantum-spin-Hall effect in quantum mechanics [16].
Note that the number of ports is not necessarily identical to
the number of physical waveguides because it may happen
that a certain guide supports multiple modes. The condition
sii = 0 guarantees that the energy coupled to a generic single-
mode waveguide is rerouted to the other waveguides with no
back reflections. When a waveguide supports two or more
propagating modes, some of the energy coupled to it may
return back due to modal conversion. As detailed in [16],
when a waveguide supports an odd number, e.g., 1, 3, 5, . . .,
of propagating modes it is always possible to find some
suitable excitation that guarantees that no power is returned
back via modal conversion [16].

Different from topological systems, the PTD invariance
is not a global property but rather a single-frequency con-
dition. Rather remarkably, PTD-systems can be formed by
reciprocal materials [15], [16]. Hence, the PTD symmetry
only requires reciprocal metamaterials, and this renders the
fabrication quite convenient. The relative permittivity (ε̄) and
permeability (μ̄) tensors of a PTD-invariant system are linked
as ε̄(x, y, z) = V · μ̄T (x, y,−z) · V, where the superscript
T denotes transpose and V is a tensor represented by a
diagonal matrix with diagonal elements {1, 1,−1} [16]. Fur-
thermore, the magneto-electric tensor ξ̄ , associated with a
bianisotropic response, if not zero, must satisfy the condition
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Fig. 1. (a) Geometry of the canonical problem. (b) Distribution of the trans-
verse electric field obtained from CST Microwave Studio for the dominant
TEM mode.

ξ̄ (x, y, z) = −V · ξ̄T (x, y,−z) · V [16]. In the previous
formulas, it is implicit that the parity transformation is
(x, y, z) → (x, y,−z) but other choices are possible. Note that
the topological insulators introduced by Khanikaev et al. [10]
are particular examples of PTD-symmetric systems with an
�-type bianisotropic coupling [16]. Furthermore, the edge
waveguide described in [18] is also a PTD-invariant.

In this paper, we analyze in detail the fundamental mode of
a (nonbianisotropic) PTD-symmetric guide formed by pairing
two dual parallel-plate waveguides (PPWs) with a perfect elec-
tric conductor (PEC) and perfect magnetic conductor (PMC)
walls. This structure was first proposed and numerically inves-
tigated in [15]. Here, we obtain an analytical exact solution
for the fundamental mode. It is shown that while individual
waveguides exhibit cutoff bandwidths from zero frequency to
the frequency at which the distance between the walls is a
quarter of the wavelength, their pairing generates a transverse
EM (TEM) mode protected with respect to PTD-type defects.
The resulting PTD-TEM mode is strongly confined along the
discontinuity of the boundary conditions, with exponential
penetration of the order of the distance between the walls.

This paper is organized as follows. In Section II, three forms
of the exact solution for this protected TEM mode are derived,
based on: 1) a conformal transformation; 2) mode matching;
and 3) a Fourier-transform method. In Section III, examples
of segmented protected propagation and radiation through an
open-ended termination are presented. In Section IV, a design
of the PMC walls using a bed of nails and a mushroom
structure is studied by a full-wave analysis to show pos-
sible practical implementations. Conclusions are drawn in
Section V.

II. CANONICAL SOLUTION

The transverse cross section of the PTD-PPW is shown
in Fig. 1(a). In this paper, we adopt (x, y �, z) → (x,−y �, z) as
the relevant parity transformation so that the PTD condition
reduces to ε(x, y �, z) = μ(x,−y �, z) for structures formed by
simple nonbianisotropic reciprocal isotropic materials. Here,
y � = y − y0 with y0 being the coordinate of the symmetry
plane. Each waveguide wall is formed by PMC-PEC bound-
aries, and the center of symmetry is taken as the middle plane

Fig. 2. Transformation of the domain by the function z(s).

y0 = d/2, being d is the height of the waveguide. Each
individual PPW exhibits a bandgap from zero frequency to
the cutoff frequency for which d = λ/4.

To figure out the EM-field structure we are going to find,
Fig. 1(b) shows the distribution of electric field lines obtained
by CST for the dominant TEM mode.

Let us now introduce the static electric potential ψ(x, y), the
gradient of which provides the electric field in the transverse
plane: ∇tψ(x, y) = −et (x, y) with ∇2

t ψ(x, y) = 0. The
boundary conditions impose that

∂

∂y
ψ(x, 0) = 0 for y = 0, x > 0 (1)

∂

∂y
ψ(x, d) = 0 for y = d, x < 0 (2)

ψ(x, 0) = −V0/2 for y = 0, x < 0 (3)

ψ(x, d) = V0/2 for y = d, x > 0 (4)

where V0 is the difference of potential between the top and
bottom PEC plates. The last two equations impose the potential
±V0/2 on the two PEC parts of the waveguide.

A. Conformal Mapping

The electrostatic problem can be solved by transforming
the original domain into a domain in which the solution is
known in a simple form. Using a combination of two Schwarz-
Christoffel transformations, it is indeed possible to map the
original problem in Fig. 1 (in which for simplicity, d = 1)
into a tilted square with lateral side equal to 1 (Fig. 2).

In this domain, the potential is simply obtained by

φ(z) = V0Re{ze− jπ/4} (5)

where z = x � + j y � are the coordinates of the transformed
domain. The relevant conformal mapping from the original
domain 0 < Im{s} < d = 1 into the square is given by

z(s) = e jπ/4

[
j F2(ξ(s))

F−1
(
π
2

) − (1 + j)
1

2

]
(6)

where ξ(s) = arcsin((1 − coth(πs/2))−1/2) and

Fm(ξ) =
∫ ξ

0
dθ

1√
1 − m sin2 θ

(7)
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Fig. 3. Distribution of the potential ψ(x, y) for d = 1 and V0 = 20 [V]
calculated through the conformal mapping solution (8).

is the incomplete elliptic integral of the first kind. Finally, one
can find the solution as ψ(x, y) = φ(z(s/d)) with s = x + j y.
This leads to the following form of the potential:

ψ(x, y) = V0Re

[
j

F−1
(
π
2

) ∫ ξ( x
d + j y

d )

0

1√
1 − 2 sin2 θ

dθ

]

− V0

2
(8)

ξ(x + j y) = arcsin

((
1 − coth

(
π(x + j y)

2

))−1/2
)
. (9)

Fig. 3 shows the equipotential contour lines for the case d = 1
(note that the behavior for a generic value of d is obtained by
normalizing both the space coordinates by d).

B. Mode Matching

The two-part problem can be solved by mode matching at
x = 0 after expanding the potential in both regions, x < 0 and
x > 0, in terms of a complete set of functions which respect
the boundary conditions and the Laplace equation.

For the sake of convenience, we construct the solution in
terms of the discontinuous potential ϕ(x, y) defined as

ϕ(x, y) = ψ(x, y)− sgn(x)V0/2 (10)

where sgn(x) is the function which is 1 for positive x and −1
for negativex . Although the introduction of the discontinuous
potential ϕ(x, y) is not essential in finding the solution,
it simplifies the following derivation, because ϕ(x, y) satisfies
conventional Dirichlet and Neumann boundary conditions.
Indeed, according to (1)–(4), the function ϕ(x, y) respects

∂

∂y
ϕ(x, 0) = 0 for y = 0, x > 0 (11)

∂

∂y
ϕ(x, d) = 0 for y = d, x < 0 (12)

ϕ(x, 0) = 0 for y = 0, x < 0 (13)

ϕ(x, d) = 0 for y = d, x > 0. (14)

Furthermore, ϕ goes to zero for |x | → ∞. Also, ϕ(x, y)
respects ∇2ϕ(x, y) = −∇2[sgn(x)V0/2], i.e.,

∇2
t ϕ(x, y) = −V0δ

�(x) (15)

which implies ∇2
t ϕ(x, y) = 0 for x �= 0. Hence, for each

of the relevant domains (x < 0 or x > 0), ϕ(x, y) can be
expanded into a set of functions satisfying ∇2

t ϕn(x, y) = 0 and
the relevant boundary conditions. A complete set of functions
with these properties is

ϕs
n(x, y) = sin(αn y)e−αn |x | x < 0

ϕc
n(x, y) = − sin(αn(d − y))e−αn |x | x > 0 n = 0, 1, 2 . . .

(16)

with αnd = (nπ + π/2). Note that we can also write
ϕc

n(x, y) = (−1)n+1 cos(αn y)e−αn |x |. The function ϕ(x, y) is
therefore represented as

ϕ(x, y) =
∞∑

n=0

anϕ
s
n(x, y) x < 0 (17)

ϕ(x, y) =
∞∑

n=0

bnϕ
c
n(x, y) x > 0. (18)

Due to the symmetry of the problem, it is necessary that
ϕ(x, y) = −ϕ(−x, d − y). Hence, observing that ϕs

n(x, y) =
−ϕc

n(−x, d − y), we find that bn = an . Since the potential
ψ(x, y) in (10) is continuous, ϕ(x, y) is discontinuous at
x = 0, and its discontinuity is equal to V0. This implies the
condition

∞∑
n=0

an{sin(αn y)+ sin[αn(d − y)]} = V0. (19)

Similar conditions are found by imposing the continuity of
the derivative with respect to x and y

∞∑
n=0

anαn{sin(αn y)− sin[αn(d − y)]} = 0 (20)

∞∑
n=0

anαn{cos(αn y)− cos[αn(d − y)]} = 0. (21)

Projecting both the right- and left-hand sides of (19)–(21)
onto the functions sin(αm y) yields three infinite linear systems
(i = 0, 1, 2)

∞∑
n=0

ζ (i)mnan = V(i)m , m = 0, 1, 2 . . . (22)

where the expressions of ζ (i)mn and V(i)m are given in Appen-
dix A. On the basis of the analytical form expressions of these
coefficients, given in (44)–(48) of Appendix A, and after some
algebraic manipulations of (22) which do not invoke other
properties of the boundary value problem, one obtains

∞∑
n=0

a2n
4n + 1

2n − (2m − 1)
= 0 m = 1, 2, 3 . . . (23)

∞∑
n=0

a2n = V0 (24)

a2n+1 = 0 n = 0, 1, 2 . . . (25)

The coefficients an can be found in a closed form from
(23)–(25) following the residue-calculus method suggested



1038 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 67, NO. 2, FEBRUARY 2019

in [19, p. 647 ff.]. According to this method, one needs
to find a meromorphic function f (z) of the complex vari-
able z, with zero residue at infinity, such that (23) can be
interpreted as the vanishing summation of the residues of
f (z)/[exp( jzπ)+ 1]. The function f (z) can be written as
f (z) = ∑∞

n=0 a2n((4n + 1)/(z − 2n)); it has poles at z = 2n
with residues a2n(4n + 1) for n = 0, 1, 2, . . ., and zeros at
z = (2m − 1) for m = 1, 2, 3, . . . to cancel the poles of
1/(exp( jzπ) + 1) and satisfy (23); furthermore, it should go
to zero at infinity. In Appendix B, it is shown that f (z) has
the form

f (z) = C
�

(− z
2

)
�

(− z
2 + 1

2

) (26)

where �(s) is the Gamma function and C is an arbitrary
constant eventually determined through (24). The residues of
this function are given by (see Appendix B)

Rn = K V0
(2n)!
(n!)24n n = 0, 1, 2, . . . (27)

where K is related to C by K V0 = 2C/
√
π . The coefficients

a2n can be found through (22) imposing a2n(4n + 1) = Rn ,
i.e.,

a2n = K V0
(2n)!

(4n + 1)(n!)24n
n = 0, 1, 2, . . . (28)

where the constant K can be found from (24), namely,

K =
[ ∞∑

n=0

(2n)!
(4n + 1)(n!)24n

]−1

≈ 0.7965. (29)

The above-mentioned coefficients, inserted into (17) and
(18) give the electric potential in closed analytical form. With
the substitution, n → 2n one gets the final solution as

ϕ(x, y) = V0

∞∑
n=0

cne−ξn |x |[sin(ξn y)u(−x)− cos(ξn y)u(x)]

ψ(x, y) = ϕ(x, y)+ sgn(x)V0/2

ξnd ≡ α2nd = 2πn + π

2

cn ≡ a2n

V0
= 0.7965

(2n)!
(4n + 1)(n!)24n

n = 0, 1, 2, . . .

(30)

where u(x) is Heaviside unit step function, which is equal
to 1 for x positive and vanishes for x negative. Note that∑∞

n=0 cn = 1.
The distribution of the coefficients cn is shown in Fig. 4.

It can be seen that the series is strongly dominated by the first
coefficient, that is by the modal function with n = 0 (the first
coefficient is 80% of the entire summation, which is unitary).

As a check of the result, the continuous potential ψ(x, y)
has been numerically calculated from (30) and compared with
the one provided by (8). The results are shown in Fig. 5. As
expected, the two representations provide the same result.

Fig. 4. Distribution of the first 10 coefficients cn in (30).

Fig. 5. (a) Distribution of the potential ψ(x, y) for d = 1 and V0 = 20 [V]
calculated through (30). This distribution is identical to the one obtained
in Fig. 3 from the conformal mapping. (b) Distribution of the potential ψ(x, y)
as a function of x for various values of y.

C. Solution in the Fourier Domain

We can solve the problem in the Fourier-transform domain,
by introducing

�(kx , y) =
∫ ∞

−∞
ϕ(x, y)e jkx xdx . (31)

Due to (15), �(kx , y) satisfies

−k2
x�(kx , y)+ ∂2�

∂y2 (kx , y) = V0 jkx . (32)

The function ϕ(x, y) is absolutely integrable in x, and
hence, �(kx , y) is finite for kx = 0. Furthermore, ϕ(x, y)
is discontinuous at the origin as sgn(x), and hence, its Fourier
transform should decay as 1/kx .
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A suitable form for the spectrum in (31) can be derived
by invoking the symmetry of the problem; this spectrum is
subjected to the symmetry relation �(kx , y) = −�(−kx , d −
y). A solution of (32) that respects this symmetry is

�(kx , y)

= −V0

jkx

[
A(kxd)

sinh(kx y)

sinh(kxd)
+ A(−kxd)

sinh[kx(d − y)]
sinh(kxd)

−1

]
(33)

with A(0) = 1. It is apparent that:

1) Under condition A(0) = 1, the pole in kx = 0 is
canceled for any y, in agreement with the fact that
ϕ(x, y) is integrable in x .

2) Since the function ϕ(x, y) is discontinuous at the origin
as sgn(x)V0/2, �(kx , y) for kx → ∞ tends to V0/( jkx),
namely, limkx →∞ jkx�(kx , y) = V0 for any y. This
implies that the sum of the first two terms inside the
square brackets, and therefore A(kxd), should approach
zero for kx → ∞.

3) The spectrum �(kx , y) of the continuous function
ψ(x, y) can be obtained just neglecting the last unity
term inside the square brackets in (33).

In order to find A(s), we assume that ϕ(x, y) has an
expansion as in the first equation in (30), without any a priory
assumption on the expression of the coefficients cn . When
this expansion is specialized for y = 0 and y = d in (31), one
obtains

�(kx , 0) = −V0

∞∑
n=0

cn

∫ ∞

0
e−ξn x e j kx xdx =

∞∑
n=0

V0cn

−ξn + jkx

�(kx , d) = V0

∞∑
n=0

cn

∫ 0

−∞
eξn x e j kx x dx =

∞∑
n=0

V0cn

ξn + jkx
. (34)

The poles of �(kx , 0) are all in the lower half-plane (LHP)
of the complex kx plane, because the function should be ana-
lytic in the upper half-plane (UHP) (reversely for �(kx , d)).
The Fourier integral for a generic y should be calculated
as

�(kx , y) = V0

∞∑
n=0

cn

[
sin(ξn y)

ξn + jkx
+ cos(ξn y)

−ξn + jkx

]
(35)

which is a form that automatically respects (32), under (19)
and (20). One can easily see that the function A(±kxd) in
(33) is related to �(kx , 0) and �(kx , d) by the equation
−V0 A(±kxd)/( jkx) = �(kx , d; 0) − V0/( jkx). Therefore,
using (34), and observing that limkx →∞ jkx�(kx , d) = V0
[see 2)] implies

∑∞
n=0 cn = 1, one finds

A(kxd) = − jkx

∞∑
n=0

[
cn

ξn + jkx
− 1

jkx

]
=

∞∑
n=0

cnξn

(ξn + jkx)
.

(36)

We stress that the derivation of the last term in (36) does not
require a particular form of the coefficients cn , thus rendering
this third method of solution independent of the second method

Fig. 6. Re{�(kx , y)} (dashed line) and Im{�(kx , y)} (solid line) for some
values of y. The functions have been calculated both with (35) and with (33)
using (38), leading to indistinguishable curves for any y.

described in Section II-B. By comparing the last term in (36)
with (23) one can argue that

A(s) has zeros at s = zm = j
(

2πm − π

2

)
m = 1, 2, 3 . . .

A(s) has simple poles at s = jξnd = j
(

2πn + π

2

)
n = 0, 1 . . . (37)

From these properties, one can find A(s) in terms of the
following ombination of Gamma functions (see Appendix C):

A(s) =
∞∑

n=0

cnξnd

(ξnd + j s)
= �(3/4)

�(1/4)

�
(

j s
2π + 1

4

)
�

(
j s

2π + 3
4

) (38)

where the leading normalization coefficient is found imposing
that A(0) = 1 (�(1/4) = 3.6256, �(3/4) = 1.2254).
The Gamma function in the numerator constructs the poles
of (38), and the one at the denominator constructs the zeros.
Through the general expression �(z + a)/�(z + b) ∼ za−b,
the behavior at infinity can be found to be s−1/2, which goes
to zero, as expected. Upon insertion of (35) in the inverse FT

ϕ(x, y) = 1

2π

∫ ∞

−∞
�(kx , y)e− j kx x dkx (39)

one can recover (30) through the application of the Jordan
Lemma, just summing up the residues in the LHP for x
positive and in the UHP for x negative. The substitution of (38)
into (33) allows for having a closed form expression for the
spectrum �(kx , y).

Fig. 6 shows the behavior of the spectrum of the potential
for some values of y. The curves obtained by the different
methods are coincident.

III. FIELDS AND IMPEDANCE

A. EM Fields

The fields on the transverse plane are obtained by dif-
ferentiating the potential, namely, ∇tψ(x, y) = −et (x, y),
where ψ(x, y) = ϕ(x, y) + sgn(x)V0/2 and ϕ(x, y) are
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given by one of the alternative forms provided in Section II.
Being the mode TEM, the magnetic field is given by
ht (x, y) = ẑ × et (x, y)/ζ where ζ is the free-space
impedance. Correspondingly, the field spectra are found as
Et = ( jkx x̂ − ŷ∂/∂y)�(kx , y) and Ht = ẑ ×Et/ζ , which can
be rewritten, using (33) and (38), as

Et (kx , y) = −V0
[
x̂
(
�+

s +�−
s

) + j ŷ
(
�+

c +�−
c

)]
Ht (x, y) = − 1

ζ
V0

[− j x̂
(
�+

c +�−
c

) + ŷ
(
�+

s +�−
s

)]
(40)

where

�+
s (kx , ky) = A(kxd)

S(kx , ky)

sinh(kxd)

�+
c (kx , ky) = A(kxd)

C(kx , ky)

sinh(kxd)

�−
s (kx , ky) = A(−kxd)

S(kx ,−ky)e jkyd

sinh(kxd)
(41)

�−
c (kx , ky) = −A(−kxd)

C(kx ,−ky)e jkyd

sinh(kxd)

S(kx , ky) = e jkyd [kx cosh(kxd)− jky sinh(kxd)] − kx(
k2

x + k2
y

)
C(kx , ky) = e jkyd [kx sinh(kxd)− jky cosh(kxd)] + jky(

k2
x + k2

y

) .

(42)

The asymptotic behavior of the functions �±(kx , y) is of
type (kxd)−1/2, which implies that the field is singular at the
junctions between the PEC and PMC boundary conditions with
a singularity of type x−1/2.

B. Characteristic Impedance of the Waveguide

Being the mode TEM, the wave impedance is coincident
with the free-space impedance ζ = 377 �. Interestingly,
the characteristic impedance R = V0/I0 of the waveguide is
also equal to ζ . To show this, we calculate the current I0
by integrating the magnetic field on the PEC portion of the
waveguide. The electric current density on y = 0 is given by

I0 =
∫ 0−

−∞
j(x) · zdx = − 1

ζ

∫ 0−

−∞
∂

∂x
ψ(x, 0)dx

= − V0

ζ

∞∑
n=0

ξncn

∫ 0−

−∞
e−ξn |x |dx = V0

ζ

∞∑
n=0

cn = V0

ζ
(43)

where the last equality is due to the property
∑∞

n=0 cn =
1. Hence, for this structure, the characteristic impedance of
the waveguide is equal to the wave impedance and to the
free-space impedance. This implies a power flow equal to
P = |V0|2/(2ζ ). Note that the characteristic impedance is
independent of the distance d between the plates. This can be
understood with a simple dimensional analysis, noticing that
there is no other characteristic length scale in the problem, and
thus the characteristic impedance must be totally independent
of d .

IV. PROTECTED PROPAGATION

Examples of protected propagation are shown in the follow-
ing, with results obtained with CST Microwave Studio.

Fig. 7. Time snapshot of the y-component of the electric field excited by a
point source in a segmented PTD-PPW waveguide. The represented area has
electrical dimensions 2λ × 2λ.

A. Segmented PTD-Waveguide

In this section, we study the propagation in a segmented
PTD-waveguide with ideal PEC-PMC walls (Fig. 7). The
distance d between the two parallel walls has been setup
as d = 1 cm, and the material in between the plates is
air. This case serves to estimate the effect of repetitive 90°
bend discontinuities on the propagation. It is seen that the
propagation is protected through the entire path with the
reflection coefficient precisely zero at the input port over
the entire bandwidth (in the CST simulation the reflection
coefficient is on the order of −25 dB due to numerical noise).
Indeed, the segmented guide is PTD symmetric and for λ > 4d
the input and output ports support a single propagating mode
(the TEM mode characterized in the previous sections). Hence,
the system may be regarded as a two-port network and the
property s11 = s22 = 0 guarantees that back-reflections are
forbidden [16]. A snapshot of the vertical (y-component) of
the electric field in the middle plane of the waveguide is
presented in Fig. 7. The field is excited by a short vertical
dipole radiating at 1 GHz at the junction discontinuity of
boundary conditions. The colored map in Fig. 7 shows a strong
confinement of the field along the line discontinuity with no
diffraction losses.

B. Open Ended PEC-PMC Waveguide

The effect of opening the PTD-PPW waveguide into free
space is investigated in Fig. 8. Being the free space a PTD-
symmetric medium, we expect zero backreflections at the input
port (note that the input port supports a single propagating
mode and the PTD invariance guarantees that s11 = 0).

Fig. 8(a) shows the effect of a single PTD-PPW opened in
free space. The distance between the walls is d = 2 mm.
A time snapshot of the magnitude of the electric field at
30 GHz is visualized at the intermediate section between
the two walls. The reflection coefficient has been found
to be less than −20 dB all over the unimodal bandwidth.
A second numerical example is obtained by pairing two close
waveguides alternating PEC-PMC-PEC boundary conditions
on one wall and PMC-PEC-PMC on the other wall. The
distance between the two adjacent PMC-PEC junctions is
5 mm. Fig. 8(b) shows the distribution of the field magnitude
when the two waveguides are excited by two modes in phase.
Again, the PTD symmetry guarantees that the individual
guides are matched; however, they are not necessarily isolated,
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Fig. 8. PTD-PPW waveguide open in free space. (a) Single PTD-PPW
(b) Double PTD-PPW fed by two TEM modes in phase. Black horizontal
lines: positions of the junctions between the PEC and PMC boundaries. Black
vertical lines: interface with the free space. The results are obtained using CST
Microwave Studio.

hence, now it is not guaranteed that all the incoming energy
is radiated toward the free-space region. The numerically
calculated active reflection coefficient (which includes the
effect of numerical noise) is, however, below −16 dB in
this second setup, which indicates good port isolation. It is
worth noticing the good matching level that is obtained despite
the small value of d in terms of the wavelength.

V. EXAMPLES OF PRACTICAL IMPLEMENTATION

A practical implementation of the PEC-PMC waveguide can
be obtained by realizing equivalent high-impedance bound-
ary conditions through a bed of nails [20], [21]. A struc-
ture formed by a bed of nails top covered by a PEC
wall [see inset “A” of Fig. 9(a)] exhibits an electromagnetic
bandgap (EBG) [22]–[24]. Coupling this structure with an
identical one with opposite position of the pins generates a
mode inside the bandgap. In the example of Fig. 9, the length
of the nails is 6 times the distance d between the equiv-
alent walls. The dispersion diagram is shown in Fig. 9(a)
(calculated with CST Microwave Studio, case relevant to
d = 0.5 mm). This diagram was obtained by solving the
eigenvalue problem for a section of the structure with lateral
PEC boundary conditions at a sufficiently large distance D
from x = 0. In the simulation, we chose D such that the
dominant mode [n = 0 in (30)] is attenuated by a factor
10 000 (this leads to D = 5.86d). With the selected value
of d = 0.5 mm, the bandgap of each half of the waveguide
occurs in the spectral range of 25–40 GHz [gray region in
Fig. 9(a)]. The two boundaries of the bandgap correspond to
6d = [0.25–0.4]λ or equivalently d = [0.04–0.0667]λ.

In the bandgap of the top covered bed of nails
[inset “A” of Fig. 9(a)], a quasi-TEM mode is found
for the composite structure emulating the PTD waveguide

Fig. 9. (a) Dispersion diagram of modes in the PTD-waveguide with the
PMC walls implemented using a bed of nails. (b) Cross section of the PTD
waveguide. (c) Distribution of the electric field associated with the quasi-TEM
mode. (d) Zoomed-in view of the central part.

[inset “B” of Fig. 9(a)]. This mode is quite nondispersive in
the region 30–40 GHz. The dispersion curves below 25 GHz
are associated with spurious modes that travel inside the mul-
ticonnected wire domain constituted by the nails region. They
are present for both structures A and B in the simulation. The
transverse field associated with the dominant quasi-TEM mode
[Fig. 9(c) and zoomed-in view Fig. 9(d)] closely resembles the
one associated with the ideal PTD waveguide [see Fig. 1(b)].

A more compact structure may be obtained by using
the mushroom ground plane [25]. An example is illustrated
in Fig. 10. The mushroom structure [see Fig. 10(a)] is real-
ized with a dielectric slab of thickness 0.5 mm and relative
permittivity equal to 6, and the distance between the equivalent
walls is 0.5 mm. Fig. 10(b) shows the dispersion diagram of
the first 14 modes supported by the structure, calculated with
CST Microwave Studio. As it can be seen, there is a unimodal
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Fig. 10. PTD-waveguide with the PMC walls implemented using a mushroom
ground plane. (a) Geometry of the lower half of the structure. (b) Dispersion
diagram. (c) Distribution of the electric field associated with the quasi-TEM
mode.

region between 28.2 and 41.4 GHz, which falls in the EBG of
each half of the waveguide. The mode supported in this region
is quasi-TEM, and its electric field distribution at 35 GHz is
shown in Fig. 10(c). Also, in this case, the field distribution
is somewhat similar to the one in the ideal PTD waveguide
[see the inset of Fig. 10(c)].

VI. CONCLUSION

The exact solution of a PTD symmetric structure constituted
by a PEC-PMC PPW has been found. This waveguide sup-
ports unimodal TEM edge mode propagation protected against
backscattering deformations and defects that maintain a PTD
symmetry. The exact TEM solution is found in analytical
form by using three different methods, namely, by conformal
mapping, by mode-matching, and by the Fourier-transform
method. It is found that the three solutions are coincident and
each of them highlights different aspects of the structure of the
modal fields. The characteristic impedance of the TEM mode
coincides with the wave impedance of the mode and with the
free-space. It is also shown through numerical simulations that
the mode propagation is robust with respect to deformations
such as 90° bends and transition to free space, confirming that

PTD symmetric reciprocal structures are matched at all ports.
Implementation of the PMC boundaries via both a bed of nails
and a mushroom structure is also proposed, showing a quite
linear dispersion characteristic.

APPENDIX

A. Derivation of the Linear System for the Coefficients an

The linear systems
∑∞

n=0 ζ
(i)
mnan = V (i)

m m = 0, 1, 2 . . ., for
i = 0, 1, 2, . . . in (22) are obtained by imposing the continuity
of the potential ψ and of its derivatives at x = 0 through
testing with the functions sin(αm y).

The coefficients of the linear systems are calculated as

V(0)m = V0

∫ d

0
sin(αm y)dy = V0

d

(mπ + π/2)
(44)

V(i)m = 0, i = 1, 2 (45)

ζ (0)mn =
∫ d

0
[sin(αn y)+ (−1)n cos(αn y)] sin(αm y)dy

= d

2
δnm + d

2

[
(−1)m(2n + 1)− (−1)n(2m + 1)

π(n + 1 + m)(n − m)

]
(46)

ζ (1)mn =
∫ d

0
αn

[
cos(αn y)− (−1)n sin(αn y)

]
sin(αm y)dy

= −d

2
αmδnm + d

2
αn

[
(−1)m(2n+1)−(−1)n(2m+1)

π(n + 1 + m)(n − m)

]
(47)

ζ (2)mn =
∫ d

0
αn

[
sin(αn y)− (−1)n cos(αn y)

]
sin(αm y)dy

= αm
d

2
δnm − d

2
αn

[
(−1)n(2m + 1)−(−1)m(2n + 1)

π(n + 1 + m)(m − n)

]
.

(48)

B. Determination of the Function f(z)

The function f (z) in (26) should have the form

f (z) = p(z)

∏∞
m=1

(
1 − z

2m−1

)
ez/2m

z
∏∞

n=1

(
1 − z

2n

)
ez/2n

(49)

where the exponential terms have been introduced in order
to ensure convergence of the infinite product. Comparing it
with the definition of the gamma function, one can find that
([27], p. 59)

∞∏
n=1

(
1 − z

2n

)
ez/2n = − 2eγ z/2

�
(− z

2

)
z

∞∏
m=1

(
1 − z

2m − 1

)
ez/2m = eγ z/2√π

�
(− z

2 + 1
2

) (50)

from which one has p(z) = const ., therefore, obtaining (26).
In order to find the residues, one can use the mathematical
identities

�
(
− z

2

)
�

( z
2

)
= − 2π

z sin
( zπ

2

)
�

(
− z

2
+ 1

2

)
�

(
z
2

+ 1

2

)
= π

cos
( zπ

2

) (51)
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from which

f (z) = C
�

(− z
2

)
�

(− z
2 + 1

2

) = −C
�

( z
2 + 1

2

)
z�

( z
2

) 2 cot
(zπ

2

)
. (52)

Note that (52) can be also rewritten by using the identity

�

(
z
2

+ 1

2

)
�

( z
2

)
= 2

√
πe−z ln 2�(z) (53)

as

f (z) = −C
2
√
πe−z ln 2�(z)

z
(
�

( z
2

))2 2 cot
(zπ

2

)
(54)

which is the function introduced by Collin for solving a
boundary value problem of a step discontinuity [19]. The
residue of the function f (z) at the poles z = 2n can be found
as

lim
z→2n

f (z)(z − 2n) = Rn = K ��(n + 1/2)

n�(n)
n = 1, 2, . . .

lim
z→0

f (z)z = R0 = K �√π n = 0 (55)

where we have used limz→0[z�(z)] = 1, �(1/2) = √
π ,

and K � = 2C/π . From here, one can find the coefficients
a2n . Observing that �(n) = (n − 1)! and, from (44), that
�(n + 1/2) = √

π(2n)!/(4nn!) one has

Rn = K

√
π(2n)!
(n!)24n

n = 1, 2, 3, . . . (56)

C. Construction of the Function A(s)

To construct the function A(s), we use the relation A(s) =
N(s)/D(s) with

N(s) =
∞∏

m=1

(
1 − s

j (2πm − π/2)

)
es/(j2πm)

= 2eγ s/(j2π)�
( 3

4

)
�

(
j s

2π + 3
4

)

D(s) =
∞∏

n=1

(
1 − s

j (2πn − 3π/2)

)
es/(j2πn)

= 2eγ s/(j2π)�
( 1

4

)
�

(
j s

2π + 1
4

) (57)

which can be found as the general form of the expression
reported in [26] and leads to (38).
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