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It is theoretically and numerically demonstrated that a mixture of two topologically distinct

material phases is characterized by an anomalous “transparency window” in a spectral range

wherein the individual material phases are strongly reflecting. In particular, it is shown that a

metamaterial formed by a metallic wire grid embedded in a magnetized plasma may support the

propagation of waves with long wavelengths, notwithstanding the components, when taken

separately, completely block the electromagnetic radiation. The effect is explained in terms of

topological properties of the magnetoplasmon. Furthermore, it is highlighted that some naturally

available materials may be regarded as a mixture of two topologically distinct phases, and hence

may be characterized by a similar anomalous transparency effect as well. Published by AIP
Publishing. https://doi.org/10.1063/1.5042577

Nonreciprocal effects in electromagnetic and nonrecipro-

cal optical platforms have recently been the object of renewed

interest and scrutiny, due to their unique and singular proper-

ties.1–12 In particular, nonreciprocal systems enable one-way

light flows and optical isolation.2–4,8–12 Nonreciprocal effects

are typically obtained by tailoring the permittivity or perme-

ability response with a static magnetic field, but alternative sol-

utions have been recently explored.6–8,10,11,13,14

Remarkably, some nonreciprocal systems have a topo-

logical nature.15–22 Such systems are characterized by a

topological integer that determines the number of topologi-

cally protected chiral edge states: the “Chern number.”

Indeed, the topology of a material can have remarkable con-

sequences in the context of electromagnetic propagation:

when a topological material is paired with another material

with a trivial topology, unidirectional scattering-immune

gapless edge states emerge in a common bulk bandgap, a

result known as “the bulk edge correspondence” princi-

ple.18,19,22,23 Furthermore, it was recently shown that the

photonic Chern number has a precise physical meaning: it is

the quantum of the light-angular momentum spectral density

in a photonic insulator cavity.23,24

Building on these previous works, here, we theoretically

demonstrate that topological edge modes (magneto-plas-

mons) may enable an anomalous “transparency effect” in a

composite material formed by two topologically distinct

fully-reflecting phases. We discuss how such an effect may

be directly observed in naturally available materials and, in

addition, propose a realistic physical implementation relying

on the metamaterial concept. It is assumed that the electro-

magnetic fields have a time dependence of the form e�ixt.

As a starting point, let us consider a mixture of two

materials, characterized by the permittivity tensors �e1 and �e2,

respectively. The effective permittivity of the mixture

depends on the volume fraction of each material, the shape

of the inclusions, lattice structure, etc.25,26 As an illustration,

for now, we use the simple mixing formula27

�e � 1� fVð Þ�e1 þ fV�e2: (1)

Here, fV is the volume fraction of the 2nd material.

Furthermore, we shall focus on the case fV � 1, so that

�e � �e1 þ fVð�e2 � 1Þ. It is supposed that the 1st material has a

gyrotropic response, e.g., it may be a magnetized plasma

characterized by the plasma frequency xp and the cyclotron

frequency xc ¼ �qB0=m (q ¼ �e is the negative charge of

the electrons, m is the effective mass and B0 ¼ B0ẑ is the

bias magnetic field), for instance, a magnetized semiconduc-

tor.28,29 Then, if the 2nd material is isotropic with a Drude

dispersion (e2 ¼ 1� x2
p2=x

2), it follows that the composite

medium is characterized by a dielectric function of the form

�e ¼ et1t þ eaẑ � ẑ þ iegẑ � 1 (1t ¼ 1� ẑ � ẑ) with

et ¼ 1�
x2

p

x2 � x2
c

�
~x2

p

x2
; eg ¼

1

x

x2
pxc

x2
c � x2

; (2)

and ~xp ¼
ffiffiffiffi
fV
p

xp2. The permittivity component ea is not rele-

vant to this study, and hence is not shown. When ~xp ¼ 0, the

permittivity tensor is coincident with that of the 1st material.30

Magnetized plasmas and other gyrotropic media are generi-

cally topologically nontrivial materials.20,22,31–33 On the other

hand, the second material is reciprocal, and thus is topologi-

cally trivial. Hence, the global permittivity (2) models a com-

posite formed by mixing two different topological phases;

specifically, a mixture of a topologically nontrivial material

(1st phase) and a topologically trivial material (2nd phase).

The dispersion relation of an electric gyrotropic bulk

medium for transverse magnetic (TM) polarized waves

[wave propagation in the xoy plane with H ¼ Hzðx; yÞẑ] is

given by k2 ¼ eef ðx=cÞ2, with eef ¼ ðe2
t � e2

gÞ=et being the

equivalent permittivity of the gyrotropic material, k2

¼ k2
x þ k2

y and kx; ky the wave vector Cartesian components.

Figure 1(a) shows the band diagram of the TM polarized
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plane waves for a composite medium with xc=xp ¼ 0:5 and

xp2 ¼ xp, so that ~xp ¼ axp with a ¼
ffiffiffiffi
fV

p
being determined

by the volume fraction of the trivial material phase.

For a ¼ 0, the composite material has a single phase

(1st component of the response) and the modes are orga-

nized in two branches. There are two photonic band-gaps

highlighted as shaded regions in Fig. 1(a). The respective

gap Chern numbers are found as explained in Refs. 20 and

21 and are given in the insets. The Chern numbers are

nonzero, and hence the 1st phase is topologically non-

trivial. On the other hand, the 2nd phase (with permittivity

dispersion e2 ¼ 1� x2
p2=x

2) has a topologically trivial

low-frequency band-gap determined by 0 < x < xp2 (not

shown).

Strikingly, for a ¼ 0:5 (fV ¼ 0:25), when the two differ-

ent phases are mixed, a new low-frequency band

(0:10 < x=xp < 0:21) emerges well below the two relevant

plasma frequencies (xp; xp2). This “transparency” window

is the focus of our study. Figures 1(c) and 1(d) show how the

transparency window changes under the variation of either

xc=xp or a. Rather remarkably, the transparency window

moves to even lower frequencies as either the volume frac-

tion of the 2nd phase decreases (a decreases) or the bias

magnetic field is reduced (lower values of xc=xp).

To demonstrate that the discovered low-frequency mode

can be externally excited, next, we study the wave scattering

by a slab of the two-phase topological material. It is assumed

that the material slab is surrounded by air. The air interfaces

are at y ¼ 0 and y ¼ d, so that the propagation is along the y-

direction. The magnetic field can be written as:

Hz ¼ Hinc
0 eikxx �

e�c0y þ Reþc0y; y � 0

A1e�cgy þ A2eþcgy; 0 � y � d

Te�c0 y�dð Þ; y � d;

8><
>:

(3)

where c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x � ðx=cÞ2
q

¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=cÞ2 � k2

x

q
and cg

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x � eef ðx=cÞ2
q

, R and T are the reflection and transmis-

sion coefficients, Hinc
0 is the amplitude of the incident wave,

kx ¼ ðx=cÞsin hi, and hi is the angle of incidence. The elec-

tric field in the gyrotropic material can be found using E

¼ 1
�ixe0

�e�1 	 ð@yHzx̂ � @xHzŷÞ with �e�1 ¼ 1
eef

1t � i
eg

et
ẑ � 1t

� �

þ 1
ea

ẑ � ẑ. Imposing the continuity of Ex and Hz at the inter-

faces, one can find the transmission and reflection coeffi-

cients and the A1;A2 coefficients. The dielectric function of

the gyrotropic material is as in Eq. (2).

Figure 2(a) shows the amplitude of the transmission

coefficient as a function of the normalized thickness Lxp=c
for xc=xp ¼ 0:5, a ¼ 0:5 and different values of incidence

angle. The frequency of operation is x=xp ¼ 0:15, and thus

lies roughly in the middle of the low-frequency transparency

window [see Fig. 1(a)]. As is seen, the transmission coeffi-

cient exhibits a rather standard behavior with transmission

peaks at the Fabry-P�erot resonances. Curiously, the transmis-

sion level improves for oblique incidence. Furthermore, Fig.

2(b) shows the transmission coefficient as a function of the

normalized frequency x=xp for different values of the nor-

malized thickness Lxp=c. Interestingly, independent of the

slab thickness, the wave can tunnel through the two-phase

material near the frequency x=xp � 0:1, which determines

the lower edge of the transparency window in Fig. 1(a). This

property is reminiscent of the super-coupling effect character-

istic of structures with near-zero refractive index.34–36 As illus-

trated in Fig. 2(c), the transmission level is relatively robust to

the effects of unavoidable material loss and remains larger

than 0.5 at the first Fabry-P�erot resonance for a magnetized

plasma with collision frequency C=xp ¼ 0:015.

Next, we discuss how to physically realize the proposed

structure using the metamaterial concept. We suggest that

the two-phase topological material may be implemented

relying on a standard magnetized electron gas as the host

medium (e.g., a magnetized doped semiconductor) and a

metallic wire array. Evidently, the magnetized electron gas

is expected to mimic the response of the nontrivial topologi-

cal phase, whereas the wire array is expected to imitate the

trivial topological phase. The wire medium is formed by a

stack of 2D-metallic grids separated (along z) by the distance

a37,38 [see the inset of Fig. 1(a)]. Each metallic grid consists

of two perpendicular co-planar arrays of metallic strips ori-

ented along the x and y directions with period a. The width

of the strips is w ¼ 0:1a. For simplicity, the metal is modeled

as a perfect electric conductor (PEC). By generalizing the

homogenization approach of Refs. 37 and 39, we were able

to demonstrate that the effective permittivity of the metama-

terial approximately satisfies (neglecting spatially dispersive

effects)

�eef � �eh �
c2

x2
b2

p 1t; (4)

where �eh is the relative permittivity of the gyrotropic host

medium and bp � 1
a ð2p=ðlnða=pÞ þ 0:5275ÞÞ1=2

with p
¼ 2w for strips with width w (for round metallic wires with

radius rw, one should instead use p ¼ 2prw). Equation (4)

FIG. 1. (a) Band diagram of the composite material for propagation in the xoy-

plane (TM-polarized waves) with xc ¼ 0:5xp for (i) a ¼ 0 (solid black lines)

and (ii) a ¼ 0:5 (dashed blue lines). The inset depicts a possible metamaterial

realization, with a stack of metallic wire grids embedded in a magnetized

plasma. (b) Dispersion of the topological edge modes supported by a biased

plasma (xc ¼ 0:5xp in the region y > 0) and a PEC interface (y ¼ 0) for

propagation along the x-direction. (c) Low frequency band for a ¼ 0:5 and

xc=xp ¼ 0:2; 0:5; 0:8; 1:1; 1:4 (the arrow indicates the direction of increas-

ing xc=xp). (d) Low-frequency band for xc ¼ 0:5xp and a ¼ 0:05; 0:2;
0:3; 0:4; 0:5 (the arrow indicates the direction of increasing a).
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extends the results of Ref. 37, 39, and 40 to a gyrotropic host

material. Its detailed derivation will be reported elsewhere.

In our design, the host medium is taken as a magnetized

plasma (xp=2p ¼ 0:1 THz) with a þz-directed magnetic bias

with xc ¼ 0:5xp. Interestingly, in this case, Eq. (4) reduces

to Eq. (2) with ~xp ¼ cbp. The unavoidable effect of loss is

modeled by the collision frequency C. Here, we note that the

inclusion of loss does not necessarily spoil the topological

properties of the magnetized plasma.41 The wire grid period

was chosen as a ¼ 1:91 mm. For w ¼ 0:1a, one has

bp � 1:7=a, and therefore ~xp ¼ axp with a � 0:42. Then,

from Fig. 1(d), a new band is expected to emerge at

x � 0:073xp. In our simulations, the metamaterial slab is

periodic along the x and z directions and has thickness L
along the y direction. We chose a periodic array of short hor-

izontal electric dipoles (oriented along the x-direction) as the

excitation. The dipole array emits a plane wave that illumi-

nates the metamaterial slab along the normal direction.

Figure 3(a) (black symbols) shows that similar to the con-

tinuum model, the metamaterial structure enables an anomalous

wave tunneling at very low frequencies (x ¼ 0:095xp), where

one would expect the electron gas and the wire grid to

completely block the wave propagation. The effect occurs even

in the presence of realistic loss values (C ¼ 0:1xp). However,

the transmission level with metamaterial realization is weaker

than in Fig. 2, in part due to the larger values of C and in part

due to spatial dispersion effects that are not captured by Eq.

(4). The matching between the metamaterial slab and the air

regions can be noticeably improved with quarter-wavelength

transformers at the input and output interfaces [blue symbols in

Fig. 3(a)]. In this case, the transmission amplitude may reach

15% for the thickness L ¼ 3a. Figure 3(b) shows that the trans-

mission level depends significantly on the thickness, due to the

excitation of Fabry-P�erot resonances, further supporting that

the metamaterial really supports a propagating mode.

Figure 3(c) shows a time snapshot of the magnetic field

at the frequency x ¼ 0:095xp and for a thickness L ¼ 5a.

The time animation of the fields is available in the supple-

mentary material and reveals that in each metal loop the

wave follows a rotating motion, such that the energy tends to

circulate in closed orbits and the fields have a nontrivial

angular momentum.24,31 This property can be understood as

a consequence of the excitation of topological edge modes

(magneto-plasmons) at the wire grid-gyrotropic material

interface, due to the different topological nature of the two

material phases. The dispersion of the magneto-plasmon

mode is depicted in Fig. 1(b) for the case of a planar inter-

face (y¼ 0) between the gyrotropic host material and a PEC.

The edge mode dispersion is found as explained in Refs. 9,

20, and 22. As is seen, the low-frequency unidirectional edge

mode propagates exclusively towards the þx-direction in the

spectral range 0 < x < xc. When the gyrotropic material

fills a closed metallic cavity, the low-frequency edge-mode

will go around the cavity walls following an anti-clockwise

motion,24 consistent with the winding motion of the

magneto-plasmons in each loop of the wire grid. Thus, the

anomalous transparency effect can be understood as a conse-

quence of the excitation of topological modes that create

coupled vortices of the electromagnetic field [see Fig. 3(c)

FIG. 2. (a) Amplitude of the transmission coefficient as a function of the normalized thickness Lxp=c at the frequency x ¼ 0:15xp for xc ¼ 0:5xp and a ¼ 0:5
and for the incidence angles: hinc ¼ 0
; 45
; 70
; 80
 (the arrow indicates the direction of increasing hinc). (b) Amplitude of the transmission coefficient as a function

of x=xp for xc ¼ 0:5xp, a ¼ 0:5 and hinc ¼ 0 and for the normalized thicknesses: Lxp=c ¼ 1:0; 2:0; 3:0; 4:0 (the arrow indicates the direction of increasing L).

(c) Similar to (a) with hinc ¼ 0
 but for the plasma collision frequency: C=xp ¼ 0; 0:005; 0:01; 0:015 (the arrow indicates the direction of increasing C=xp).

FIG. 3. (a) Amplitude of the transmission coefficient as a function of the

normalized frequency x=xp for xp=ð2pÞ ¼ 0:1 THz, xc ¼ 0:5xp,

a ¼ 1:91 mm, hinc ¼ 0, and L ¼ 3a for C ¼ 0:1xp (black symbols) and for

C ¼ 0:05xp (blue symbols), without impedance transformers (circle sym-

bols) and with k=4 transformers with etrans ¼ 6:7 (star symbols). (b)

Amplitude of the transmission coefficient as a function of the normalized

thickness L=a at the frequency x ¼ 0:095xp. The legend and the remaining

structural parameters are as in (a). (c) Time snapshot of the magnetic field

(Hz) emitted by the dipole array at the frequency x ¼ 0:095xp, for L ¼ 5a,

C ¼ 0:1xp, and etrans ¼ 6:7. The remaining structural parameters are the

same as in panel (a). The black dashed rectangles indicate the location of the

k=4 transformers. The results are obtained with a full wave simulator.42
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and the time animation in the supplementary material].

Indeed, due to the different Chern numbers of the bulk mate-

rials, the bulk-edge correspondence indicates that localized

surface states may emerge on metal structures embedded in a

gyrotropic material (strictly speaking, the bulk edge corre-

spondence can be applied to planar interfaces, and hence the

argument is semi-heuristic). The “transparency band” is due

to the near-field coupling of the states supported by different

cells.

Incidentally, some naturally available materials may be

as well regarded as a mixture of two inequivalent topological

phases with features analogous to those of the model of

Eq. (2). For example, let us consider a situation where the

microscopic drift current of a plasma is dictated by two spe-

cies of current carriers (e.g., with different effective masses or

different densities), i.e., the electron gas is formed by two dis-

tinct current “channels.” Each species of carriers reacts differ-

ently to a bias field, and thereby the combined response of the

two-channels may yield the different terms of the dielectric

function (2). An illustration of this concept is provided by

standard semiconductors, for example, GaAs. The dielectric

function of GaAs has three contributions: (i) the bound

charges, (ii) the free electrons and (iii) the electrons-holes.

The response of the bound charges is insensitive to a bias

magnetic field and may be described by a static permittivity

term, es ¼ 12:8. On the other hand, both the electrons and the

holes originate drift-currents, yielding a multi-component

plasma. The dielectric function of GaAs is of the form

et ¼ es �
x2

pe

x2 � x2
ce

�
x2

ph

x2 � x2
ch

;

eg ¼
1

x

x2
pexce

x2
ce � x2

þ 1

x

x2
phxch

x2
ch � x2

; (5)

with xpe and xph (xce and xch) being the plasma (cyclotron)

frequencies for electrons and holes. Interestingly, comparing

with Eq. (1), one sees that the dielectric function of the semi-

conductor is the same as the one for a mixture of two gyro-

tropic materials with parameters ðxpe;xceÞ and ðxph;xchÞ.
For GaAs, the effective masses of electrons and holes are

related as m�e ¼ 0:134m�h.43,44 Hence, the cyclotron frequen-

cies of the two species are linked as xch ¼ �0:134xce, and

hence have opposite signs. Since the sign of the gap Chern

number is linked to the sign of the cyclotron frequency,20,21

the material phases determined by each of the current car-

riers (electrons or holes) are topologically inequivalent.

Indeed, for a þz-directed bias magnetic field, the band struc-

ture determined by the gyrotropic response with parameters

xpe;xce (xph;xch) has a low-frequency band-gap with the

gap Chern number being �1 (þ1).

Figure 4(a) shows the band diagram of GaAs with and

without a bias magnetic field. The plasma frequency

(xp ¼ ðe2n=e0m�Þ1=2
) depends on the concentration (n) and

the effective mass (m�) of each carrier species. For an intrin-

sic semiconductor, the concentration of electrons and holes

is identical, and for the GaAs case, xph ¼ 0:37xpe. As is

seen, when xce ¼ 0 ¼ xch (unbiased semiconductor) the dis-

persion of the modes [black solid line in Fig. 4(a); the flat

band associated with longitudinal modes is not shown] has a

single band-gap defined by 0 < x < xU � xpe=
ffiffiffiffi
es
p

. Note

that without the bias magnetic field, both the electron and

hole phases are trivial. In contrast, with a bias magnetic field,

the electron and hole phases become topologically distinct

due to the different signs of cyclotron frequencies. Hence,

similar to the permittivity model (2), the combination of the

two distinct topologically phases (which can be observed

simply by applying a static bias magnetic field) determines

the emergence of a low-frequency transparency window.

The transparency window moves to lower frequencies as the

bias magnetic field is reduced (xce=xpe decreases), as shown

in Fig. 4(b), analogous to Fig. 1(d). It is interesting to note

that the “electrons” and “holes” determine two independent

current channels, somewhat analogous to the metamaterial

design wherein the two material components (metal and

magnetized plasma) also determine different paths for the

electric current.

In summary, we theoretically demonstrated that by mix-

ing two distinct topological material phases it is possible to

create unusual conditions for wave propagation in a spectral

range wherein the two phases are impenetrable by light. An

electron gas with two current channels (e.g., intrinsic semi-

conductors) may provide an ideal platform to realize such a

structure. In addition, we proposed a realistic metamaterial

implementation of the suggested system. Detailed numerical

simulations confirm that a material with two distinct topolog-

ical phases enables, indeed, an anomalous wave tunneling at

extremely low frequencies, and thus opens new inroads and

opportunities for topological effects in the terahertz and

microwave ranges.

See supplementary material for the time animation of

Fig. 3(c).
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