
PHYSICAL REVIEW B 97, 165128 (2018)

Link between the photonic and electronic topological phases in artificial graphene
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In recent years the study of topological phases of matter has emerged as a very exciting field of research, both
in photonics and in electronics. However, up to now the electronic and photonic properties have been regarded as
totally independent. Here we establish a link between the electronic and the photonic topological phases of the
same material system and theoretically demonstrate that they are intimately related. We propose a realization of
the Haldane model as a patterned two-dimensional electron gas and determine its optical response using the Kubo
formula. It is shown that the electronic and photonic phase diagrams of the patterned electron gas are strictly related.
In particular, the system has a trivial photonic topology when the inversion symmetry is the prevalent broken
symmetry, whereas it has a nontrivial photonic topology for a dominant broken time-reversal symmetry, similar
to the electronic case. To confirm these predictions, we numerically demonstrate the emergence of topologically
protected unidirectional electromagnetic edge states at the interface with a trivial photonic material.
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I. INTRODUCTION

The discovery of topological phases of matter was a major
breakthrough in modern condensed-matter and electromag-
netics research [1–5]. The material topology is determined
by the global properties of the electronic or photonic bands,
which are characterized by some topological invariant, e.g.,
the Chern number. The topological properties are robust
against smooth variations of the system parameters and can
only be changed through a phase transition that involves the
exchange of topological numbers of different bands by closing
and reopening of a band gap. This characteristic makes the
topological properties quite insensitive to fabrication imper-
fections. Furthermore, perhaps the most remarkable feature of
topological materials is their ability to support unidirectional
edge states or spin-polarized edge states at the interface with
ordinary insulators [6–10]. This property was demonstrated
theoretically and experimentally in a plethora of systems
relying on nonreciprocal [11–27] and reciprocal materials
[28–35]. In particular, topological systems are quite unique
platforms for the development of integrated one-way, defect-
immune electronic and photonic guiding devices, even though
other solutions not based on topological properties may exist
[35].

Topological materials can be divided into two categories
depending on whether or not they remain invariant under the
time-reversal operation. Historically, the importance of the
time-reversal symmetry in the topology of physical systems
was underscored by Haldane who demonstrated in his sem-
inal work [36] that a broken time-reversal symmetry is the
key ingredient to obtain a quantized electronic Hall phase.
This important result was some decades later extended to
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electromagnetism [9], and since then a variety of strate-
gies to obtain nontrivial photonic topological phases with
a broken time-reversal symmetry was proposed [13,15–
19,22,24,25,27].

In parallel, recent studies about the reflection of a light
beam on 2D materials with a quantized Hall conductivity
[37,38] have revealed interesting connections between non-
trivial electronic and photonic topological properties (namely
quantized Imbert-Fedorov, Goos-Hänchen, and photonic spin
Hall shifts).

Inspired by these ideas, here we show using the Haldane
model [36] how a topologically nontrivial electronic material
with a quantized Hall conductivity in the static limit can be
used as a building block to create a topologically nontrivial
photonic material. It is proven that analogous to the electronic
counterpart, the photonic band structure is topologically non-
trivial when the time-reversal symmetry is the dominant broken
symmetry. Thus, our work establishes a direct link between the
electronic and photonic topological properties.

The paper is organized as follows. In Sec. II A we propose
a patterned two-dimensional (2D) electron gas (2DEG) with
the symmetries of the Haldane model. The structure consists
of an array of scattering centers organized in a honeycomb
lattice (often referred to as “artificial graphene” [39,40]) under
the influence of a fluctuating static magnetic field with zero
mean value. Using a “first-principles” calculation method, we
find the values of the Haldane tight-binding parameters and
derive the electronic topological phase diagram. In Sec. III the
dynamic conductivity response of the 2D material is calculated
with the Kubo formula. The conductivity is used in Sec. III to
characterize the photonic properties of the system and derive
the natural modes. The photonic Chern numbers are found
with an extension of the theory of [41]. It is shown that the
transition from a trivial to a nontrivial electronic topological
phase in Haldane graphene induces a photonic topological
phase transition. Thereby, we unveil the intimate relation
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between the electronic and photonic topological properties.
Furthermore, it is demonstrated with full-wave simulations
that the nontrivial photonic topological phase enables the
propagation of unidirectional edge states at the interface with
an ordinary light “insulator” (i.e., an opaque material with no
light states). A brief overview of the main findings of the article
is presented in Sec. V.

II. HALDANE ARTIFICIAL GRAPHENE

A. Overview of the Haldane model

The Haldane model is a generalization of the tight-binding
Hamiltonian of graphene to systems with a broken inversion
symmetry (IS) and/or a broken time-reversal symmetry (TRS)
[36]. Analogous to the graphene case, the Haldane Hamiltonian
describes a 2D hexagonal lattice with two scattering centers per
unit cell. However, in the Haldane model the two sublattices
are allowed to be different, and in the model this feature
is described by a mass term M , which may be positive or
negative. When the two sublattices are identical the mass term
vanishes and the 2D material is invariant under the inversion
operation. Furthermore, the Haldane model takes into account
the possible effect of a nontrivial space-varying static magnetic
field with a net flux equal to zero. The magnetic field is
responsible for breaking the TRS.

The Taylor expansion of the Haldane’s Hamiltonian near K

and K ′ is given by

H (K + q) = −3t2 cos(φ) · 1 + αK · σ z

− 3
2 t1a(qxσ x + qyσ y), (1a)

H (K′ + q) = −3t2 cos(φ) · 1 + αK ′ · σ z

− 3
2 t1a(qxσ x − qyσ y), (1b)

wherea is the nearest-neighbors distance, q = qx x̂ + qy ŷ is the
wave vector taken relatively to K or K ′, t1 and t2 are the nearest
neighbors (in different sublattices) and next-nearest neighbors
(in the same sublattice) hopping energies, respectively, σ i’s are
the Pauli matrices, and

αK = M − 3
√

3t2 sin(φ), (2a)

αK ′ = M + 3
√

3t2 sin(φ) (2b)

are the terms resulting from breaking the IS and/or the TRS
at K and K ′, respectively. These parameters vanish in pristine
graphene. The phase factor φ is determined by the integral
of the magnetic vector potential along a path that joins next-
nearest neighbors [36].

The Haldane Hamiltonian leads to a two-band model whose
upper and lower band eigenfunctions, denoted by |+〉 and |−〉,
respectively, have energies E± given by

E±(K) = −3t2 cos(φ) ± 1
2

√
(3t1aq)2 + 4α2

K, (3a)

E±(K ′) = −3t2 cos(φ) ± 1
2

√
(3t1aq)2 + 4α2

K ′ . (3b)

Of course, when the inversion and time-reversal symmetries
are preserved αK = αK ′ = 0, and one recovers the band di-
agram of pristine graphene with Dirac cones at K and K ′.
On the other hand, a nonzero αK (αK ′) opens an energy gap

Eg,K = 2|αK | (Eg,K ′ = 2|αK ′ |) at K (K ′) between the |+〉
and |−〉 bands. Remarkably the electronic phases obtained by
breaking predominantly the TRS [sgn(αK ) �= sgn(αK ′)] or the
IS [sgn(αK ) = sgn(αK ′)] are topologically distinct, leading to
different electronic Chern numbers ν [36]. The Chern number
of the valence band |−〉 can be written as (see Appendix A)

ν = 1
2 [sgn(αK ) − sgn(αK ′)]. (4)

For convenience, we will refer in the following to the electronic
phase with sgn(αK ) �= sgn(αK ′) (which has a Chern number
ν = ±1 and thereby a nonzero Hall conductivity) as the “Hall
phase” and to the electronic phase with sgn(αK ) = sgn(αK ′ )
(which has vanishing Chern number ν = 0 and vanishing static
Hall conductivity) as the “insulating phase.”

B. Haldane model in a 2DEG

Next, we outline how the Haldane model may be im-
plemented by modifying the “artificial graphene” structure
proposed in [39]. The main objective is to give some visu-
alization of the system under study and at the same time
obtain an estimate for the Haldane’s tight-binding Hamiltonian
parameters.

Artificial graphene consists of a 2DEG under the influence
of a periodic electrostatic potential V (r) with the honeycomb
symmetry. As demonstrated in [39,40] such a system is fully
equivalent to graphene in the sense that near the Dirac points
the electrons are described by a massless Dirac Hamiltonian
with a linear energy dispersion. Therefore, by breaking the
TRS and/or the IS it should be possible to emulate the Haldane
model in this platform.

Following Haldane’s idea, a broken IS is implemented by
considering different scattering centers for each of the sub-
lattices of the artificial graphene. In our model, the scattering
centers are characterized by constant potentials V1 and V2,
and are depicted in Fig. 1(a) as circles with different colors.
The region outside the circles has V = 0. The broken TRS
is achieved with a zero mean-value static magnetic field B.
The corresponding magnetic potential A, defined such that
B = ∇ × A, is supposed to yield a nontrivial flux

∫
A · dl

when the starting and ending points of the integration path are
next-nearest neighbors, and a trivial flux when the starting and
ending points are nearest neighbors. As illustrated in Fig. 1(a),
a magnetic vector potential A of the form

A(r) = 3B0a
2

16π2
{b1 sin(b1 · R) + b2 sin(b2 · R) +

(b1 + b2) sin([b1 + b2] · R)} × ẑ (5)

fulfills such requirements. Here B0 is the peak magnetic
field amplitude in Tesla, R = r − rc where rc determines the
coordinates of the honeycomb cell’s center [Fig. 1(a)], and the
bi’s with i = 1,2 are the reciprocal lattice primitive vectors.
Both A and B are represented in the honeycomb lattice in
Fig. 1(a). Note that the magnetic field is directed along the
z direction, perpendicular to the 2D electron gas. Similar to
Ref. [40], it is supposed that the nearest-neighbors distance is
a = 150 nm and that the radius R0 of the scattering centers
satisfies R0/a = 0.35. Even though challenging, in principle
the required magnetic field distribution can be created at the
nanoscale by nanostructuring permanent magnets.

165128-2



LINK BETWEEN THE PHOTONIC AND ELECTRONIC … PHYSICAL REVIEW B 97, 165128 (2018)

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

-1.5 -1 -0.5 0 0.5 1 1.5

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

-1.5 -1 -0.5 0 0.5 1 1.5

fit

numerical results

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.1

-0.05

0

0.05

0.1

-1.5 -1 -0.5 0 0.5 1 1.5

-0.02

-0.01

0

0.01

0.02

numerical results

fit

FIG. 1. (a) Density plot of the magnetic field B (color scale) and of the magnetic vector potential A (arrows) used to break the TRS. The
scattering centers (green and pink circles, associated with the electrostatic potentials V1 and V2, respectively), as well as the lattice primitive
vectors are represented on the top of the fields. (b) Variation of the tight-binding energies t1 and t2 (in meV) obtained from first-principles
calculations as a function of the magnetic field’s magnitude B0 for V1 = V2 = −0.8 meV. (c) Variation of the parameter φ obtained from a
first-principles calculations as a function of B0 for V1 = V2 = −0.8 meV. (d) Phase diagram giving the electronic Chern number ν as a function
of B0 and M/t2 (or equivalently δV ) for the lower energy band. The boundaries between the different topological phases were obtained by
interpolation of the first-principles numerical results (red crosses).

The tight-binding parameters depend on V1, V2, and B0.
They are numerically found from first-principles calculations
using the effective medium formalism for electron waves
developed in [42] and extended to artificial graphene in [40]
(we use the expression first principles in a broad sense with
the meaning that the tight-binding parameters are found from a
microscopic model). The first step of the method is to solve the
Schrödinger equation governing the electron wave propagation
in the 2DEG, starting from the “microscopic” Hamiltonian

Ĥmic = 1

2mb

[p̂ + eA(r)]2 + V (r), (6)

where −e is the electron charge, V (r) = V1(r) + V2(r) is the
periodic electrostatic potential, A is given by (5), and the
electron effective mass mb is as in Ref. [39]: mb = 0.067m,
with m the electron rest mass. In the spirit of Haldane’s work,
the spin interaction is neglected. The Schrödinger equation
is numerically solved with the finite differences method [40].
Next, following the homogenization process detailed in [40],
we obtain a 2 × 2 effective Hamiltonian that determines the
stationary states and the energy dispersion. A detailed analysis
(not shown) of the energy diagrams obtained for different

values of V1,V2, andB0 shows that the Haldane model correctly
describes the physics of the 2DEG near the Dirac points.
Furthermore, the tight-binding parameters can be calculated
from a Taylor expansion of the effective Hamiltonian near
the Dirac points [40], which is found to be of the forms (1a)
and (1b).

The numerically calculated tight-binding parameters are
represented in Figs. 1(b) and 1(c) as a function of the magnetic
field intensity for V1 = V2 = −0.8 meV. Note that when V1 =
V2 the mass parameter vanishes (M = 0). Curiously, unlike
in graphene, in our system |t2| > |t1|. The hopping constant
t1 has a value comparable with that found in [40]. More
interestingly, it can be seen that the parameter φ obtained
from the first-principles simulations is a periodic function
of B0 and hence is bounded. This feature is not present in
the Haldane model wherein φ is regarded as an arbitrary
real-valued number proportional to B0. The peak value of φ

found here implies that the maximum energy gap 6
√

3t2 sin(φ),
due to the applied magnetic field, is on the order of 0.156 · t2.
The peak φ is reached for B0 ≈ 0.64 T, which may be difficult
to create considering that the magnetic field varies at the
nanoscale.

165128-3



SYLVAIN LANNEBÈRE AND MÁRIO G. SILVEIRINHA PHYSICAL REVIEW B 97, 165128 (2018)

To characterize the topology of the 2DEG, we numerically
found the combination of parameters B0 and δV for which the
band gap closes at one of the Dirac points, taking V1 = −0.8
meV and V2 = V1 + δV . A nontrivial δV implies a nonzero
tight-binding mass parameterM . The calculated phase diagram
is represented in Fig. 1(d) and shows the combination of
parameters M and B0 for which the band gap closes. Consistent
with [36], we find that when a band gap closes and reopens
there is a topological phase transition and the electronic Chern
number changes by one unity. The Chern numbers associated
with the energy band |−〉 are indicated in Fig. 1(d). The
electronic Chern number determines the static Hall conduc-
tivity in the limit of a zero temperature when the Fermi
level is in the band gap [43,44]. The calculated phase dia-
gram agrees perfectly with Haldane’s theory [36], since the
periodicity of φ with B0 induces also a periodicity in the phase
diagram. Thus, similar to [36], the broken IS phase corresponds
to a trivial electronic Chern number ν = 0, whereas the broken
TRS phase corresponds to a phase with ν �= 0.

As a partial summary, we outlined a physical realization
of the abstract notions developed in [36], relying on “artifi-
cial graphene” and on the periodic magnetic field potential
distribution (5). Our study gives the tight-binding parameters
obtained from first-principles calculations. In the simulations it
was assumed that a = 150 nm but the design parameters can be
renormalized to other values of a through a simple dimensional
analysis (e.g., a reduction of a by a factor of 2 implies an
increase of all the involved energies and of B0 by a factor of
4). Even though the practical implementation of the Haldane
model in a 2DEG is admittedly very challenging, our study
provides a simple visualization of the concepts introduced
in [36]. In the rest of the article we use the tight-binding
parameters obtained in this section and it is assumed that the
relation between B0 and φ corresponds to the fit of Fig. 1(c):
φ = −0.015 sin ( 2πB0

2.56 ), with B0 in Tesla.

III. DYNAMIC CONDUCTIVITY
OF HALDANE GRAPHENE

In order to characterize the photonic properties of “Haldane
graphene,” next we derive its dynamic conductivity with
Kubo’s linear response theory [45]. It is assumed that the
valence band |−〉 is completely filled (the chemical potential
μ is in the gap) and that the temperature satisfies kBT � Eg ,
with kB the Boltzmann constant and Eg = 2 min(|αK |,|αK ′ |)
the gap energy. In these conditions, the Hall conductivity in
the static limit is determined by the electronic Chern number.
Furthermore, the intraband conductivity term vanishes and
thereby the dynamic conductivity is given by [46–48]

σ gr(ω) = ie2h̄

(2π )2

∑
m�=n

∫ ∫
f (Emk) − f (Enk)

(Emk − Enk − h̄ω)(Emk − Enk)

×〈nk|v̂ |mk〉 〈mk|v̂ |nk〉 d2k, (7)

where f is the Fermi distribution function, v̂ = 1
h̄

∂Ĥ
∂k is the

velocity operator, and the sum is over the different bands |+〉
and |−〉. It is implicit that the contributions of both Dirac points
are included. Somewhat lengthy but otherwise straightforward
calculations based on the continuum version of the Haldane

model show that when thermal effects are negligible (kBT �
Eg) the dynamic conductivity is of the form

σ gr(ω) = σt1t − σH ẑ × 1t , (8a)

where 1t = x̂x̂ + ŷŷ. Thus, in general the material response is
gyrotropic, with the antidiagonal elements of the conductivity
tensor given by σxy = −σyx = σH and the diagonal elements
determined by σxx = σyy = σt . For ω real valued with h̄|ω| <

Eg the conductivity elements are given by

σt = −iσ0
sgn(ω)

4

(
G(
K ) + G(
K ′) + G(
K ) − |
K |


2
K

+ G(
K ′) − |
K ′ |

2

K ′

)
, (8b)

σH = σ0

2

(
G(
K ′)


K ′
− G(
K )


K

)
. (8c)

In the above, 
i = h̄|ω|/(2αi) is a normalized frequency (i =
K,K ′), G(
i) = tanh−1 (|
i |), and σ0 = e2

h
. Remarkably,

when kBT /Eg → 0 the conductivity is independent of the
nearest neighbor hopping energy t1. In the spirit of the Haldane
model, it was supposed in the conductivity calculation that the
Hamiltonian describes some particular (nondegenerate) elec-
tron spin. We note that the conductivity (8a) is calculated for
a system with no boundaries. In practice, the material sample
has a finite size and this may lead to corrections to the bulk
conductivity. These corrections will depend on an additional
length scale related to the size of the sample. Considering
such corrections would require a more sophisticated analysis
which is out of the intended scope of our study.

A direct inspection of Eq. (8c) reveals that in the absence of
a magnetic field (φ = 0), i.e., when the parameters 
K and 
K ′

are equal, the Hall conductivity is precisely zero. In contrast,
for a nonzero magnetic field two distinct situations can occur
depending on which broken symmetry is prevalent. Indeed,
for relatively low frequencies (h̄ω � Eg) the function G may

be approximated by G(
i) ≈ |
i | + |
i |3
3 . In these conditions,

the conductivities (8b) and (8c) reduce to

σt ≈ −iσ0
ω

ω0
, (9a)

σH ≈ σ0

2
[sgn(αK ′) − sgn(αK )] = −σ0ν, (9b)

with ω−1
0 = h̄

6

(
1

|αK | + 1
|αK′ |

)
. Equation (9b) confirms that the

Hall conductivity in the static limit is quantized and is deter-
mined by the electronic Chern number ν given by (4), which
is the TKNN result [43,44]. Thus, consistent with Haldane’s
work, we find that the insulating phase has a trivial conductivity
in the static limit, whereas the Hall phase has a quantized Hall
conductivity. Furthermore, near ω = 0 the diagonal term σt is
a linear function of the frequency with slope ω−1

0 .
The evolution of the Haldane graphene conductivity as a

function of frequency for the insulating and Hall phases is
represented in Fig. 2. In agreement with the phase diagram of
Fig. 1(d) and with Eq. (9b), it is seen that the Hall conductivity
at ω = 0 is determined by the Chern number and is nontrivial
only in the Hall phase. Perhaps the most striking feature that
discriminates the two different phases is the magnitude ratio
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FIG. 2. (a) and (b) Plot of the normalized conductivity of Haldane graphene for frequencies ω smaller than the gap frequency Eg/h̄ in (a) the
insulating phase B0 = 0.075 T corresponding to αK/h̄ ≈ 9.76 GHz and αK ′/h̄ ≈ 5.43 GHz and (b) the Hall phase B0 = 0.64 T corresponding
to αK/h̄ ≈ 19.5 GHz and αK ′/h̄ ≈ −4.24 GHz. (c) and (d) Ratio |σt |/|σH | for the conductivities depicted in (a) and (b), respectively. In the
plots M = 5 × 10−3 meV, t1 = −0.02 meV, and t2 = 0.1 meV.

|σt |/|σH |, represented in Figs. 2(c) and 2(d). Remarkably, it
is much greater than unity for the insulating phase and near
zero for the Hall phase. The singularities in the conductivity
components near electronic band gap frequency are of
logarithmic type.

Figure 3 represents the parameter ω−1
0 and the static Hall

conductivity σH as a function of the peak magnetic field B0

for a mass parameter M/t2 = 0.05. By comparison with the
phase diagram of Fig. 1(d), it is seen that the Hall conductivity
σH experiences discontinuous jumps at the topological phase
transitions, whereas the component σt remains continuous
in the quasistatic limit. It is worth pointing out that the

tight-binding parameters used in Fig. 2 (which will be adopted
in the rest of the article) yield values for ω−1

0 that are
comparable for both phases.

To conclude, it is highlighted that Haldane graphene in the
Hall phase has a quasistatic conductivity response analogous
to that of a magnetized plasma. Indeed, in the limit ω →
0 a lossless magnetized plasma is also characterized by a
purely imaginary σt that vanishes in the static limit and by
a nonzero (but not quantized) σH [49]. However, the two
systems are generically rather different. While a decrease of
the magnetic field amplitude B0 transforms Haldane graphene
into an insulating material (σω=0 = 0), the conductivity of
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FIG. 3. (a) Slope ω−1
0 of σt in the quasistatic limit as a function of the magnetic field B0. (b) Normalized static Hall conductivity −σ s

H and
electronic Chern number ν as a function of the magnetic field B0. The plot also depicts the (positive frequency branch) photonic Chern number
C for the structure of Fig. 4. In both panels t1 = −0.02 meV, t2 = 0.1 meV, M = 5 × 10−3 meV. The two black crosses mark the values of B0

used in the plots of Fig. 2.
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FIG. 4. The system under study: a periodic arrangement of Hal-
dane graphene sheets with periodicity d is embedded in a dielectric
with permittivity εd . The electromagnetic modes of this structure
are the direct sum of the modes supported by a Haldane graphene
sheet embedded in (a) a PMC-walls waveguide and (b) a PEC-walls
waveguide, with walls located at z = ±d/2.

an electron gas is always nontrivial even when B0 is set
identical to zero because the free-electron concentration is
finite. Thus, the physical platform discussed in this article has
quite unique properties, and generically behaves differently
from a 2D magnetized plasma, particularly when the time-
reversal symmetry is preserved.

IV. PHOTONIC TOPOLOGICAL PROPERTIES

Next, we characterize the photonic topological properties
of the Haldane graphene. In particular, we study the low-
frequency photonic phase transition induced by an electronic
transition between the insulating and Hall phases, and highlight
the relation between the nontrivial electronic and photonic
topologies.

The rigorous definition of Chern numbers is only possible
for an electromagnetically closed system, and thereby an
isolated Haldane graphene sheet does not provide a suitable
platform to observe a photonic topological phase transition.
This problem can be circumvented by placing the Haldane
graphene in some sort of waveguide environment that re-
stricts the energy flow to directions parallel to the xoy plane
[50]. However, the topological properties of such a quasi-2D
waveguide may depend not only on the Haldane graphene
but also on the waveguide top and bottom walls. To avoid
such a problem, we consider instead a periodic arrangement
of Haldane graphene sheets separated by a distance d and
embedded in a dielectric with permittivity εd , as shown in
Fig. 4. With this solution the topological properties of the
system are determined only by the Haldane graphene.

As mentioned, we are interested in waves with energy
flows restricted to directions parallel to the xoy plane. Due to
symmetry reasons the electromagnetic modes (periodic in z)
of the periodic system can be split into two subsets depending
on the parity of the fields with respect to the plane z = −d/2:
the modes of a waveguide with perfect magnetic conducting
(PMC) walls (with Hz even and Ez odd) and the modes of a
waveguide with perfect electric conducting (PEC) walls (with
Hz odd and Ez even) as illustrated in Fig. 4. Note that the
designations even and odd are used here with respect to a
reference system with origin in the plane z = −d/2. It is
highlighted that the PEC and PMC boundary conditions are

not imposed arbitrarily, but rather emerge naturally from the
geometry of the periodic array.

Importantly, it can be shown that for a waveguide with
PEC walls [system of Fig. 4(b)] all the modes that interact
with the Haldane graphene are cut off at low frequencies.
This means that to study the low frequency modes of the
periodic arrangement of Haldane graphene sheets it is enough
to consider the system of Fig. 4(a), being implicit that the
excitation should respect the indicated parity symmetry of the
fields. For this reason, in the rest of this paper we will restrict
our attention to the system with PMC walls of Fig. 4(a).

A. Natural modes

Next, we derive the natural (guided) modes supported by
the structure of Fig. 4(a). Because the system is invariant to
translations along the x and y directions, the guided waves
depend on the x and y coordinates as eiq·r with q = qx x̂ + qy ŷ
the (transverse) wave vector. Furthermore, in the dielectric
regions the guided modes are superposition of plane waves.
The modes may be split into modes with Hz even and modes
with Hz odd (here the designations even and odd are with
respect to the z = 0 plane). The modes with Hz odd do not
interact with the Haldane graphene sheet, and hence are not
interesting to us. They have a dispersion of the form ωodd

nq =
c√
εd

√
q2 + [(2n + 1)π

d
]2 , with n = 0,1,2, . . . , and hence are

cut off for low frequencies.
As to the modes with Hz even, a straightforward

analysis shows that the electromagnetic field distribution
that satisfies the PMC boundary conditions (ẑ × Hz=−d/2 =
ẑ × Hz=d/2 = 0) and ensures the continuity of the tangential
electric field at the graphene-dielectric interface is of the form

H(r) = eiq·r
{

sgn(z) sinh

(
γ0

[
d

2
− |z|

])
(C1q × ẑ + C2q)

+ i
q2

γ0
C2 cosh

(
γ0

[
d

2
− |z|

])
ẑ
}
, (10a)

E(r) = ieiq·r

ωε0εd

{
cosh

(
γ0

[
d

2
− |z|

])

×
[
−γ0C1q + C2

(
γ0 − q2

γ0

)
q × ẑ

]

− iC1sgn(z)q2 sinh

(
γ0

[
d

2
− |z|

])
ẑ
}
, (10b)

where γ0 =
√

q2 − εdω2/c2, q =
√

q2
x + q2

y , and C1, C2 are
(unknown) complex-valued coefficients. Using the boundary
condition for the tangential component of the magnetic field
at the graphene-dielectric interface ẑ × (Hz=0+ − Hz=0− ) =
σ gr · 1t · E, one obtains the following homogeneous system
of equations:⎛

⎝ 2iωε0εd

γ0
− σtcoth

(
γ0

d
2

) −σH coth
(
γ0

d
2

)( γ 2
0 −q2

γ 2
0

)
σH coth

(
γ0

d
2

)( γ 2
0

γ 2
0 −q2

)
−σtcoth

(
γ0

d
2

) + −2iγ0

ωμ0

⎞
⎠(

C1

C2

)

= 0, (11)

whose nontrivial solutions give the natural modes of oscillation
of the system. The dispersion equation is obtained by setting

165128-6



LINK BETWEEN THE PHOTONIC AND ELECTRONIC … PHYSICAL REVIEW B 97, 165128 (2018)

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

FIG. 5. Dispersion diagram of the lowest (positive and negative) frequency modes for εd = 1 and (a) d = 2 cm corresponding to ωBG ≈ 0.22
GHz and (b) d = 1 mm corresponding to ωBG ≈ 4.38 GHz. The curves associated with the insulating phase were obtained with the conductivity
of Fig. 2(a) and the curves associated with the Hall phase with the conductivity of Fig. 2(b). The curves labeled by σH = −σ0 correspond to the
analytical solution (14) for the simplified conductivity model σt = 0 and σH = −σ0. The photonic Chern number C for each dispersion branch
is given in the insets.

the determinant of the matrix identical to zero[
2i

ωε0εd

γ0
− σtcoth

(
γ0

d

2

)][
− σtcoth

(
γ0

d

2

)

+ 2i
γ0

−ωμ0

]
+ σ 2

H coth2

(
γ0

d

2

)
= 0. (12)

The solutions ω = ωnq of the above equation determine the
photonic band diagram. It is interesting to note that the limit
γ0d → ∞ yields the standard dispersion equation of magne-
toplasmons [47,51,52] (with no PMC walls). Furthermore, a
similar analysis shows that the dispersion of a waveguide with
PEC walls is given by a similar expression with “tanh” in the
place of “coth.”

The electromagnetic modes Enq, Hnq associated with a
given ωnq, are obtained from Eqs. (10a) and (10b) with the
coefficients C1 and C2 given by [see Eq. (11)]

C1 = σH coth

(
γ0,nq

d

2

)(
γ 2

0,nq − q2

γ 2
0,nq

)
, (13a)

C2 = 2i
ωnqε0εd

γ0,nq
− σtcoth

(
γ0,nq

d

2

)
, (13b)

and γ0,nq =
√

q2 − εdω2
nq/c

2.

It is useful to analyze the solutions of the dispersion equation
(12) for a conductivity model with σt = 0 and a constant (fre-
quency independent) σH . For σH = ±σ0 this model reduces to
the static conductivity of Haldane graphene in the Hall phase.
It yields the modal dispersion:

ωeven
nq ≈ c√

εd

√
q2 +

[
2

d
arctan

(√
μ0

ε0εd

σH

2

)
+ 2πn

d

]2

,

(14)

with n = 0,1, . . . . The modes with n � 1 are evidently cut
off for low frequencies, and hence in the following we
focus on the mode with n = 0. In the limit σH = 0 this
mode follows the light line, and is clearly a transverse

electromagnetic (TEM) wave with magnetic field along z

and electric field parallel to the plates. For a finite σH , the
n = 0 mode interacts with the Haldane graphene sheet and
this opens a band gap in the dispersion diagram, with a

cut-off frequency ωBG ≡ 2c
d
√

εd
arctan

(√
μ0

ε0εd

σH

2

)
. The cut-off

frequency is inversely proportional to the distance between
the waveguide walls and approaches zero when σH → 0. The
attenuation factor in the direction normal to the graphene plane

is γ0,q = 2i
d

arctan
(√

μ0

ε0εd

σH

2

)
, and hence it is pure imaginary

for σH �= 0 implying that the natural mode is not guided by the
2D material but rather by the waveguide walls.

In the case of a quantized Hall conductivity σH = σ0,
the cut-off frequency can be expressed in terms of the fine
structure constant α: ωBG = 2c

d
√

εd
arctan

(
α√
εd

)
and the asso-

ciated wavelength (in host dielectric) at the gap edge is well
approximated by λgap ≈ π

√
εdd

α
≈ 430.5

√
εdd. Thus, for this

small value of σH the distance d is ultrasubwavelength at the
cut-off frequency.

B. Band diagrams and photonic Chern numbers

Figure 5 shows the low-frequency photonic band diagram
for the different electronic topological phases of Haldane
graphene and two values of the distance d. In this calculation
we used the conductivity responses of Fig. 2. Note that the
photonic band diagram shows both positive and negative
frequency solutions.

Consistent with Sec. IV A, the band diagrams reveal (for
both values of d) that the dispersions induced by the distinct
electronic phases are different: in the insulating phase the
dispersions follow closely the light line, whereas in the Hall
phase the diagram has a low-frequency band gap. The modes
in the insulating phase lie outside the light cone and hence
are guided by the graphene sheet. In contrast, in the Hall
phase the dispersion lies inside the light cone and the wave
is—as predicted by the static conductivity model—guided by
the waveguide walls. Furthermore, as seen in Fig. 2 the static
conductivity model with σt = 0 and σH = −σ0 gives overall
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a fairly good approximation of the modal dispersion. The
approximation is better for larger values of d, when ωBG �
ωmax with ωmax = Eg/h̄ the interband absorption threshold.

From the eigenmodes expressions (10a) and (10b) it is
possible to compute the Chern number for each photonic band.
The calculation details are given in Appendix B. The approach
is based on an extension to layered structures of the theory of
[10,41].

The values of the photonic Chern number for each branch
are depicted as insets in Fig. 5. The photonic Chern number of
the bands associated with the electronic insulating phase van-
ishes because of the time-reversal symmetry of the system. We
note in passing that the Chern number of a set of touching bands
has always an unambiguous value, even though generically the
Chern number of the individual bands may be ill-defined when
there are band-crossing points. In contrast, the Chern numbers
of the Hall phase are nontrivial with values C = ±1. Thus,
the electronic topological transition from the insulating to the
Hall phase (see Fig. 3) induces the band-gap opening at ω = 0
accompanied by the exchange of photonic Chern numbers
between the positive and negative frequency bands, and thereby
a photonic topological phase transition. As expected [53], the
total Chern number for each phase is conserved throughout this
transition. Remarkably, the topological photonic properties of
the material are directly linked to its electronic counterparts
such that the electronic Chern number of the valence band is
equal to the photonic Chern number of the positive frequency
branch: C = ν = −σ s

H/σ0, as shown in Fig. 3(b). This result
proves that a magnetic field bias with a vanishing flux enables
a nontrivial photonic topology, similar to the Haldane result
for the electronic case.

C. Unidirectional edge states

According to the bulk-edge correspondence [10], one may
expect that an interface of the Hall phase of Haldane graphene
and a trivial photonic insulator may support topologically
protected edge states that span the entire common band gap.
The existence of such unidirectional topologically protected
edge states is demonstrated next with full wave simulations.
The trivial photonic insulator is implemented with the same

waveguide but with a PEC plate in the place of the Haldane
graphene. It may be checked that the modes supported by such
a structure are cut off in the long wavelength limit.

We used CST Microwave Studio [54] to demonstrate the
emergence of the topological edge states. The optical response
of a 2D material sheet with 2D conductivity σ gr can be
emulated with an equivalent 3D material with thickness h0 and
an equivalent permittivity ε/ε0 = 1 + i σ gr

h0ωε0
. The thickness h0

must be much smaller than the wavelengths of interest and
in addition h0 � d. It was taken equal to h0 = d/10 in the
numerical study.

The Haldane graphene conductivity in the Hall phase is as
shown in Fig. 2(b). The waveguide height is d = 400 μm. The
structure is excited with a small dipole antenna (polarized along
the x direction) located in the close proximity of the interface
of the two waveguide regions, with the oscillation frequency
in the band gap (ω < ωBG).

A time snapshot of the z component of the magnetic field is
represented in Fig. 6(a) for ω ≈ 0.62ωBG. As seen, a unidirec-
tional edge state propagating along the +y direction is excited
in the bottom region at the interface between the PEC material
and Haldane graphene. A time animation of the magnetic field
is available in the Supplemental Material [55] and further
highlights that this edge state propagates along the interface,
regardless of the sharp corners, before reaching an absorber on
the right side region. By fitting the wavelength of the guided
modes we numerically determined the dispersion of the edge
states depicted in Fig. 6(b). Due to numerical limitations the
dispersion of the edge mode is only represented in the band-gap
frequency range. As seen, the edge modes span the entire
band gap. Curiously, they follow closely the bulk dispersion
of the insulating photonic phase of the Haldane graphene. The
low frequency part of the curve was obtained by interpolation
because the guided wavelength approaches infinity.

In the waveguide environment, the edge state is topolog-
ically protected against the scattering by an arbitrary three-
dimensional defect, and in particular it is protected against
sideways scattering [56]. The same property holds (for the
relevant wave polarization, i.e., for quasitransverse magnetic
waves) in a periodic array of Haldane graphene sheets, but in
this case only for two-dimensional defects uniform along the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−1 −0.5 0 0.5 1

light−line

Edge−modes

FIG. 6. (a) Time snapshot of the magnetic field Hz radiated by a short dipole antenna with ω = 0.62ωBG showing the excitation of the
topological edge state. (b) Dispersion of the unidirectional edge modes supported by the system (discrete points joined by a solid line obtained
by interpolation). The band structure of the bulk material in the Hall and insulating phases is also represented in the figure. In the plots the
dielectric host is air (εd = 1) and the distance between the waveguide plates is d = 400 μm.
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z direction. Indeed, for a periodic material there are additional
radiation channels, for example, the modes that propagate
off-plane or the TEM wave with electric field normal to
the graphene plane. Note that the constraint on the defects
geometry and wave polarization also applies to conventional
designs based on gyrotropic media [56].

In the numerical simulations the response of the Haldane
graphene was assumed lossless (consistent with the theoretical
model); we checked that the presence of moderate loss does not
affect significantly the edge state propagation in the simulation
(not shown).

V. CONCLUSIONS

The work developed in this article is divided into two parts.
In the first part we verified using a first-principles mean field
theory the validity of the Haldane model for a honeycomb
lattice with broken TRS and IS. We proposed a magnetic field
distribution that mimics the main features of Haldane’s theory,
and found the dependence of the tight-binding parameters
on the magnetic field in artificial graphene. The electronic
phase diagram showing the range of parameters for which the
magnetized artificial graphene is topologically nontrivial and
the quantized Hall conductivity is nonzero was determined.

In the second part, we investigated the optical response of
the 2D topological material. The dynamic electric conductivity
of Haldane graphene was found with the Kubo formula for
a filled valence band. Using this result, we determined the
guided modes and the (low-frequency) photonic band diagram
of a periodic stack of Haldane graphene sheets. As a fingerprint
of the quantized conductivity, the cut-off frequency of the
low-frequency band gap is written in terms of the fine structure
constant.

Furthermore, our analysis reveals that the electronic phase
transition between the insulating and Hall phases induces a
photonic phase transition through the opening of a band gap at
ω = 0 and an exchange of Chern numbers between the positive
and negative frequency bands. Interestingly, the electronic and
photonic topological properties of this system are intimately
related, and we find that the electronic and photonic Chern
numbers are identical. In particular, our results imply that a
biasing magnetic field with zero net flux can induce a nontrivial
topological photonic response. Finally, in agreement with the
bulk-edge correspondence, it was shown that the nontrivial
photonic phase of Haldane graphene supports topologically
protected unidirectional edge states at the interface with an
ordinary photonic insulator.
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APPENDIX A: THE ELECTRONIC CHERN NUMBER

In the framework of the exact Haldane Hamiltonian, the
electronic Chern number of the nth band is given by

νn = 1

2π

∫
BZ

∫
d2k ẑ · ∇ × Ank, (A1)

where Ank is the Berry potential and the integration is over the
entire Brillouin zone. The Berry potential is written in terms of
the energy eigenfunctions. A suitable globally defined gauge
of eigenfunctions for the valence band |−〉 is

ψk =
( −h12(k)

h11(k) − E−(k)

)
. (A2)

In the above, hij with i,j = 1,2 represent the elements of
the exact Haldane Hamiltonian and E− is the exact energy
dispersion of the valence band (see Eq. (1) of Ref. [36]). The
Berry potential of the valence band is given by

Ank = Re{iψ∗
k · ∂kψk}

ψ∗
k · ψk

. (A3)

It is evidently a smooth function of the wave vector, except
possibly at the points wherein the considered gauge vanishes,
i.e., at the points of the Brillouin zone for which h12(k) =
0 and h11(k) = E−(k). A straightforward analysis using the
analytical formula of h12 [36] reveals that the only possible
singularities are the high-symmetry points K and K ′. Hence,
using Stokes theorem it is possible to reduce the calculation
of the valence band Chern number to two contour integrals
surrounding the points K and K ′:

ν = − 1

2π

∑
i=K,K ′

∮
Ci

Ak · dl. (A4)

Here Ci stands for a circumference (with anticlockwise ori-
entation) of arbitrarily small radius centered at the point i =
K,K ′. Explicit calculations show that

1

2π

∮
Ci

Ak · dl = si

1

2
[1 − sgn(αi)], (A5)

with sK = 1 and sK ′ = −1. Substitution of this result into
Eq. (A4) yields the electronic Chern number (4).

APPENDIX B: THE PHOTONIC CHERN NUMBER

In this Appendix we present the derivation of the Berry
potential and photonic Chern number for the system of Fig. 4.
The derivation is an extension of the theory developed in
[41,50,57] to the case of z-stratified inhomogeneous closed
systems. For the sake of brevity, we reuse here the notations and
concepts introduced in [41]. For more information the reader
is referred to [41,50].

The electromagnetic modes of the system satisfy the homo-
geneous Maxwell’s equations

N̂ · f = ωM · f, (B1)

where f = (E H)T is a six-vector whose components are the
electric and the magnetic fields. In the above, N̂ is a differential
operator

N̂ =
(

0 i∇ × 13×3

−i∇ × 13×3 0

)
, (B2)

and M is the material matrix. For the system of Fig. 4 with a
conductivity sheet centered at z = 0, the material matrix is of

165128-9



SYLVAIN LANNEBÈRE AND MÁRIO G. SILVEIRINHA PHYSICAL REVIEW B 97, 165128 (2018)

the form

M(r) = Md + δ(z)

( σ

−iω
0

0 0

)
, (B3)

where σ is the 2D conductivity and Md =(
ε0εd13×3 0

0 μ013×3

)
is the material matrix of the

surrounding dielectric. The topological classification of the
system is only possible if the conductivity is a meromorphic
function of frequency [41,50,57], and thereby here we use the
low-frequency conductivity model (9).

The electromagnetic fields are Bloch waves f(r) =
fnq(z)eiq·r, where the field envelope fnq depends only on the
z coordinate and q = qx x̂ + qy ŷ. The Berry potential Anq
is defined from the Hermitian formulation of the Maxwell
equations, and can be written as

Anq = i 〈Qnq|∂qQnq〉
〈Qnq|Qnq〉 , (B4)

where the Qnq’s are generalized state vectors (see [41]), 〈 | 〉
denotes a weighted inner product and ∂q ≡ ∂

∂q . In the case of a
z-stratified inhomogeneous system, the weighted inner product
may be defined such that

〈Qnq|Qnq〉 = 1

2

∫ d/2

−d/2
f∗
nq · ∂

∂ω
[ωM] · fnqdz. (B5)

Furthermore, it can be shown that the numerator of Eq. (B4)
satisfies

i 〈Qnq|∂qQnq〉 = Re

{
1

2

∫ d/2

−d/2
f∗
nq · ∂

∂ω
[ωM] · i

∂

∂q
fnqdz

}
.

(B6)

The previous results generalize Eqs. (10) and (14) of [41] to
the case of z-stratified closed systems. In particular, for the
geometry of Fig. 4, the Berry potential (B4) is given by

Anq =
Re

(
1
2

∫ d/2
−d/2 f∗

nq · ∂ω(ωMd )ωnq · i∂qfnqdz + 1
2 E∗

tan,q(z = 0) · ∂ω(iσ )ωnq · i∂qEtan,q(z = 0)
)

1
2

∫ d/2
−d/2 f∗

nq · ∂ω(ωMd )ωnq · fnqdz + 1
2 E∗

tan,q(z = 0) · ∂ω(iσ )ωnq · Etan,q(z = 0)
, (B7)

where Etan,q = 1t · Enq is the part of the electric field tangential
to the conductivity sheet and ∂ω ≡ ∂

∂ω
.

As explained in [41], for systems invariant under rotations
about the z axis the Chern number of a given band is simply

Cn = lim
q→∞(qAnq,ϕ) − lim

q→0+
(qAnq,ϕ), (B8)

where Anq,ϕ = Anq · ϕ̂ and ϕ̂ is the azimuthal unit vector
in a system of polar coordinates. Even though the 2D wave
vector space is unbounded, for a nondispersive dielectric host
and for the model (9) the Chern number is necessarily an
integer because for any band ωnq → ∞ in the q → ∞ limit,
and the response becomes reciprocal when ω → ∞ [41].
In general, the topological classification of a continuum is
only possible with the proper regularization of the material
response with a high-frequency spatial cut off [10,41] (see also
Ref. [58]). As further discussed in Ref. [41], when the material
response has a spatial cut off—such that it is asymptotically the
same as that of the electromagnetic vacuum—the equivalent
Hamiltonian is sufficiently “well behaved” in the q → ∞
limit (albeit not continuous) and the gap Chern numbers are

integers. It is worth to highlight that the well-behaved con-
dition is stronger than imposing that the relevant Hamilto-
nian becomes time-reversal invariant in the q → ∞ limit. In
particular, an extension of the theory of Ref. [41] to generic
physical systems (e.g., to some condensed matter platforms)
may require a suitable cut-off procedure that ensures that
the well-behaved condition is observed. A cut-off procedure
that only guarantees that the Hamiltonian is asymptotically
time-reversal invariant is generically inadequate.

It should be noted that the topological classification of
the photonic phase relies on the conductivity of the Haldane
graphene, which models the electron gas as a continuum, i.e., it
disregards its intrinsic periodicity. Thus, it relies on an effective
medium theory which, generally speaking, may be inadequate
the model the physics near the edges of the Brillouin zone.
Despite this limitation, our topological classification of the
photonic phase is still full of physical meaning: it enables
one to predict the “low” wave number edge states that can
be described by the “continuum” conductivity model. This is
evidently the case of the edge states found in Fig. 6(b), which
have dispersion near the light line.
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