
PHYSICAL REVIEW B 97, 115146 (2018)

Topological classification of Chern-type insulators by means of the photonic Green function
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The Chern topological numbers of a material system are traditionally written in terms of the Berry curvature
which depends explicitly on the material band structure and on the Bloch eigenwaves. Here, we demonstrate that
it is possible to calculate the gap Chern numbers of a photonic platform without having any detailed knowledge of
its band structure, relying simply on the system photonic Green function. It is shown that the gap Chern number
is given by an integral of the photonic Green function along a line of the complex frequency plane parallel to the
imaginary axis. Our theory applies to arbitrary frequency dispersive fully three-dimensional photonic crystals, as
well as to the case of electromagnetic continua with no intrinsic periodicity.
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I. INTRODUCTION

The last decades have witnessed a flurry of interest in
topological matter. Starting with the pioneering discovery of
a quantized Hall conductivity [1], it has been shown that the
topology of the electronic band structure may influence de-
cisively the electronic transport [2–5]. Remarkably, insulating
materials can be organized into different classes of equivalence,
each class being characterized by a topological invariant (an
integer), which is absolutely insensitive to weak modifications
of the microstructure.

Furthermore, it has been shown that topological ideas can
also be extended to photonics [6,7], and in particular several
works have highlighted that optical systems may have a topo-
logical nature [8–13]. Rather extraordinarily, an interface of
two topologically distinct photonic insulators (i.e., structures
with a complete electromagnetic band gap) supports unidirec-
tional scattering-immune edge states [10]. Hence, topological
materials may enable a more efficient light transport weakly
sensitive to imperfections, defects, and deformations of the
propagation path.

In this work, we focus on systems with a broken time-
reversal symmetry. Usually, the topological classification of
such materials is done using Chern invariants. The foundations
of the theory of Chern-type photonic insulators were laid by
Raghu and Haldane [2,3], and more recently were extended
to general bianisotropic platforms and to electromagnetic
continua, i.e., systems with no intrinsic periodicity [11].
Similarly to electronics, the Chern invariant is determined
by the photonic band structure and by the Bloch eigenstates.
Specifically, the Chern number is written in terms of a
rather abstract gauge-dependent Berry potential, which relies
explicitly on the normal modes of the system. A nontrivial
Chern number indicates the impossibility of finding a globally
defined smooth gauge of eigenfunctions. From a computational
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point of view, the problem of calculating the Chern invariants
is rather complex: it generally requires finding the photonic
band structure and all the Bloch states in the Brillouin zone.
The problem is especially challenging in the case of periodic
systems (nonreciprocal photonic crystals).

Remarkably, in this article it is shown that there is an
unsuspected link between the system photonic Green function
and the Chern invariants. We prove that the gap Chern numbers
(i.e., the sum of the individual Chern numbers for the bands
lying below a certain band gap) can be written in terms of the
photonic Green function without any detailed knowledge of
the band structure or of the Bloch eigenstates. The gap Chern
number is given by an integral of the photonic Green function
over a line parallel to the imaginary axis in the complex
frequency plane.

It should be mentioned that a somewhat related result is
known to hold in the electronic case [14,15], but its general-
ization to photonics is not evident due to the complications
stemming from the dispersive response of photonic materials.
Furthermore, the structure of the formula reported in Ref. [14]
is different from the result derived here. Indeed, our formula
is not an extension of the electronic case and its derivation
appears to be unrelated to that of the electronic case.

The article is organized as follows: Section II presents an
overview of the theory of Ref. [11], which provides for a
Hermitian formulation of the electrodynamics of dispersive
media. In Sec. III, we develop a theory of modal expan-
sions in dispersive photonic platforms and use it to obtain
a decomposition of the system Green function in terms of
eigenmodes. In Sec. IV, a few useful formulas related to the
notions of Berry potential, Berry curvature, and Chern number
are presented. The link between the gap Chern number and
the photonic Green function is demonstrated in Sec. V. In
Sec. VI, we apply the developed concepts to the particular case
of electromagnetic continua. The relation between the Chern
number and the Green function is numerically demonstrated
for a magnetized electric plasma. A brief summary of the main
findings is given in Sec. VII.
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II. HERMITIAN FORMULATION OF THE
ELECTRODYNAMICS OF DISPERSIVE MEDIA

In what follows, we present a brief overview of the theory of
Ref. [11], which enables characterizing the time evolution of
arbitrary bianisotropic and possibly nonreciprocal and lossless
systems with a Schrödinger-type formalism. Furthermore, we
extend the theory to the case of inhomogeneous (in space)
photonic platforms (e.g., a photonic crystal), and hence allow
the material parameters to vary in space arbitrarily.

The electromagnetic response of a generic linear system can
be described by a 6 × 6 material matrix M, which relates the
frequency domain electromagnetic fields as follows:

g(r,ω) = M(r,ω) · f(r,ω), with M =
(

ε0ε
1
c
ξ̄

1
c
ζ̄ μ0μ̄

)
. (1)

Here, ε̄ is the relative permittivity, μ̄ is the relative permeability,
and the tensors ξ̄ ,ζ̄ determine the magnetoelectric (bian-
isotropic) response [16,17]. Except where explicitly stated
otherwise (Sec. VI B), the material response is assumed local
(no spatial dispersion). We use six-vector notations with f =
(E H)T , g = (D B)T , where E,H are the electric and
magnetic fields, D,B are the electric displacement and the
induction fields, and the matrix transposition operation is
denoted with the superscript T. The electrodynamics of the
system is determined by the time-domain Maxwell equations
which read

N̂ · f(r,t) = i

[
∂g
∂t

(r,t) + j(r,t)
]
, (2)

with j = (je jm)T the electric and magnetic current densities.
The differential operator N̂ is defined as

N̂ =
(

0 i∇ × 13×3

−i∇ × 13×3 0

)
, (3)

with 13×3 the identity matrix of dimension three. For simplicity,
we use the same symbols to denote both the frequency domain
and the time domain fields.

In Ref. [11] it was shown that the electrodynamics predicted
by the time-domain Maxwell equations is formally equivalent
to the dynamics predicted by an augmented time-evolution
problem described by a Hermitian operator. This result re-
quires that M be a meromorphic function in the complex
plane subject to the constraints M(ω) = M∗(−ω∗) (reality
condition), M(r,ω) = M†(r,ω) for ω real-valued (lossless
condition), and ∂

∂ω
[ωM(r,ω)] > 0 for ω real-valued (stored

energy is non-negative). In such a case, the material matrix has
a partial-fraction expansion of the form [11]

M(r,ω) = M∞ −
∑

α

sgn(ωp,α)

ω − ωp,α

A2
α. (4)

Here, sgn = ± is the sign function, M∞ = limω→∞M(ω)
gives the asymptotic high-frequency response of the ma-
terial, ωp,α are the (real-valued) poles of M, and Aα =
[−sgn(ωp,α)(ResM)α]1/2, with (ResM)α the residue of the pole
ωp,α . The matrix Aα is a positive (semi)definite Hermitian
matrix (Aα � 0). Evidently, in a inhomogeneous system, ωp,α ,
Aα , and M∞ are functions of r. The sum in Eq. (4) is over all
poles, including the negative frequency poles.

The augmented generalized problem describes the
time evolution of a state vector of the form Q =
(f Q(1) ... Q(α) ...)T . Each component of Q is a six-
component vector, and the number of components depends
on the number of poles of the material matrix [11]. The first
component of the state vector, f , gives the electromagnetic
fields. The remaining components, Q(α), describe the internal
degrees of freedom of the material response [8,11,18–20].

The time evolution of the state vector is determined by a
differential equation, L̂ · Q(r,t) = i ∂

∂t
Mg · Q(r,t) + ijg(r,t),

which may be spelled out as [11]

⎛
⎜⎜⎜⎝

N̂ +∑
α sgn(ωp,α)A2

α |ωp,1|1/2A1 |ωp,2|1/2A2 ...

|ωp,1|1/2A1 ωp,11 0 ...

|ωp,2|1/2A2 0 ωp,21 ...

... ... ... ...

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
L̂

·

⎛
⎜⎝

f
Q(1)

Q(2)

...

⎞
⎟⎠

︸ ︷︷ ︸
Q

= i
∂

∂t

⎛
⎜⎝

M∞ 0 0 ...

0 1 0 ...

0 0 1 ...

... ... ... ...

⎞
⎟⎠

︸ ︷︷ ︸
Mg

·

⎛
⎜⎝

f
Q(1)

Q(2)

...

⎞
⎟⎠+ i

⎛
⎜⎝

j
0
0
...

⎞
⎟⎠

︸ ︷︷ ︸
jg

(5)

with 1 ≡ 16×6 the identity matrix. The result (5) was originally
derived for an electromagnetic continuum, but a straightfor-
ward modification of the original derivation shows that it also
applies when the material parameters vary in space in an
arbitrary way [18], for example, in case of a photonic crystal.
For inhomogeneous systems, both L̂ (which is a differential
operator) and Mg depend explicitly on the spatial coordinates.
Furthermore, since both L̂ and Mg are Hermitian with respect
to the canonical inner product, the operator Ĥg = M−1

g · L̂ is
Hermitian with respect to the weighted inner product:

〈QB |QA〉 ≡
∫

V

1

2
Q∗

B · Mg(r) · QAd3r. (6)

Here, V is the volume of interest and it is implicit that
the boundary conditions (e.g., periodic boundary conditions)
ensure that Ĥg is indeed Hermitian. In particular, without
an external excitation (jg = 0), the augmented system (5)
reduces to Ĥg · Q = i ∂

∂t
Q, which is formally equivalent to the

Schrödinger equation with h̄ = 1.
For future reference, we note that the frequency domain

Q(α) component of the state vector is related to the frequency
domain electromagnetic fields as

Q(α)(r,ω) = |ωp,α|1/2

(ω − ωp,α)
Aα · f(r,ω). (7)

This formula holds even when the electromagnetic excitation
j is nontrivial.
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III. THE PHOTONIC GREEN FUNCTION

Given some photonic system, we introduce a frequency
domain Green function Ḡ(r,r′,ω) defined as the solution of
[21,22]

N̂ · Ḡ(r,r′,ω) = ωM(r,ω) · Ḡ(r,r′,ω) + i1δ(r − r′), (8)

with 1 ≡ 16×6. The Green function is a 6 × 6 tensor and may
be decomposed into electric and magnetic terms as follows:

Ḡ =
(

GEE GEM

GME GMM

)
. (9)

When the magnetic response is trivial (μ̄ = 13×3, ξ̄ =
ζ̄ = 0) the electric component of the Green function (GEE)
can be written as GEE = iωμ0G, where G is the standard
electric Green function that satisfies ∇ × ∇ × G − ω2

c2 ε̄ · G =
13×3δ(r − r′). In the following, we obtain a formal expansion
for the Green function in terms of the electromagnetic modes of
a dispersive material system. The following derivation extends

the results of Ref. [21], which assume that the observation point
lies in a free-space region.

A. Scalar product of two time-harmonic fields

As previously mentioned, it is possible to introduce in a nat-
ural way a weighted scalar product [Eq. (6)] in the augmented
space wherein the state vector Q is defined. Interestingly, it was
shown in Ref. [11] that in some conditions the inner product
of two state vectors may be simply expressed in terms of the
corresponding electromagnetic components. Specifically, let
QA(r,t) = Q̃A(r)e−iωAt and QB(r,t) = Q̃B(r)e−iωB t be two
generic time-harmonic solutions of the generalized problem
(5), with a time variation of the form e−iωt . Furthermore, let
fA(r,t) = FA(r)e−iωAt and fB(r,t) = FB(r)e−iωB t be the corre-
sponding solutions of the time-harmonic Maxwell equations,
which thereby satisfy

N̂ · f = ωM(r,ω) · f + ij. (10)

Then, it is possible to show that [11,18]

〈
Q̃B

∣∣ Q̃A

〉 =
{

1
2

∫
V

d3r F∗
B(r) · [ωBM(r,ωB )−ωAM(r,ωA)

ωB−ωA

] · FA(r), if ωA 	= ωB,

1
2

∫
V

d3r F∗
B(r) · ∂

∂ω
[ωM(r,ω)] · FA(r), if ωA = ωB ≡ ω,

(11)

so that the weighted scalar product is written directly in terms
of the electromagnetic field “time envelopes.” It is underlined
that the system parameters may vary in space. Furthermore, the
scalar product of a time-harmonic solution of (5) with itself,
〈Q|Q〉, gives precisely the energy stored in the volume V.

B. Modal expansions

Let us consider now a set of natural modes of oscillation
(fn) of the considered photonic system, i.e., the solutions of

N̂ · fn = ωnM(r,ωn) · fn, (12)

where ωn are the eigenfrequencies of the problem. It is shown
in Appendix A that the eigenmodes may be chosen such that the
following generalized orthogonality conditions are satisfied:

1

2

∫
V

d3r f∗
n (r) · ∂

∂ω
[ωM(r,ω)]ω=ωn

· fm(r)

= δn,m, if ωn = ωm, (13a)

1

2

∫
V

d3r f∗
n (r) ·

[
ωnM(r,ωn) − ωmM(r,ωm)

ωn − ωm

]
· fm(r)

= 0, if ωn 	= ωm. (13b)

Moreover, with this normalization the eigenmodes satisfy
the completeness relation:

δ(r − r′)M−1
∞ (r′) = 1

2

∑
n

fn(r) ⊗ f∗
n (r′). (14)

Thus, it is always possible to expand an arbitrary electro-
magnetic field distribution f in terms of the eigenmodes fn,
so that f(r) = ∑

n fn(r)cn. Remarkably, as further highlighted
in Appendix A, in a dispersive system the coefficients of the
expansion cn are not unique. In brief, the reason is that the

modal expansions are unique only in the augmented space
wherein the state vector Q is defined, but not in the “projection”
electromagnetic space. In Appendix A, it is proven that when
f(r) is some solution of the time-harmonic problem (10), it
may be expanded in terms of the eigenmodes as follows:

f(r) =
∑

n

fn(r)cn, with cn = 1

2

∫
V

d3r
f∗
n · ij

ωn − ω
. (15)

C. Modal expansion of the Green function

Applying the result (15) to the solution of (8), it is readily
found that in the limit of vanishing material loss the Green
function has the modal expansion

Ḡ(r,r′,ω) = i

2

∑
n

1

ωn − ω
fn(r) ⊗ f∗

n (r′). (16)

It is stressed that the electromagnetic modes must be normal-
ized as in Eq. (13). Using the completeness relation (14), it
is possible to restrict the summation to “transverse” modes
with ωn 	= 0, so that Ḡ = i

2

∑
ωn 	=0

ωn

(ωn−ω)ω fn(r) ⊗ f∗
n (r′) −

i
ω
δ(r − r′)M−1

∞ (r′). Note that the summation includes both
positive and negative frequency modes. It is underscored
that the developed theory applies to general nonuniform,
bianisotropic, and possibly nonreciprocal material platforms.

IV. BERRY CURVATURE AND CHERN NUMBER

Typically, the topological classification of physical systems
relies on the spectrum (band structure) of some Hermitian oper-
ator [23]. Usually photonic systems are formed by dispersive
materials, and hence their topological classification must be
done using the eigenmodes of the generalized (homogeneous)
problem (5) [8,9,11].
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FIG. 1. Representative geometry: the system is periodic [e.g.,
M(x,y,z) = M(x + ax,y,z) and M(x,y,z) = M(x,y + ay,z), with
ax,ay the spatial periods along x and y, respectively] and is elec-
tromagnetically closed so that the energy can flow only in directions
parallel to the xoy plane.

For periodic systems (as well as for electromagnetic con-
tinua [11]) the modes of the augmented problem are Bloch
waves, i.e., solutions of the form Qnk(r)eik·r, where the
periodic “spatial envelope” satisfies

Ĥg(r, − i∇ + k) · Qnk = ωnkQnk. (17)

Note that the Hermitian operator Ĥg = M−1
g · L̂ is of the

form Ĥg(r, − i∇) = M−1
g (r) · L̂(r, − i∇), where L̂ depends

on −i∇ only through the differential operator N̂ . Assuming
the normalization 〈Qnk|Qnk〉 = 1, the gauge-dependent Berry
potential is defined as

Ank = i〈Qnk|∂kQnk〉, (18)

where ∂k = ∂
∂kx

x̂ + ∂
∂ky

ŷ, and it is implicit that the system is
closed along the z direction, so that propagation is only allowed
along directions parallel to the xoy plane (see Fig. 1). It is
highlighted that the system may be fully three-dimensional: the
only restrictions are the periodicity in the xoy plane and that the
energy must flow along directions parallel to the same plane.
For example, the system may be a generic periodic waveg-
uide covered with two opaque plates [e.g., perfectly electric
conducting (PEC)] placed at z = 0 and z = d (bottom and top
walls, respectively). We note in passing that the Berry potential
can be directly written in terms of the electromagnetic field
envelope fnk, defined so that Qnk = (fnk Q(1)

nk ...)T (see
Refs. [8,9,11] for more details).

The Berry curvature is given by Fnk = ẑ · ∇ × Ank, or
equivalently [23]

Fnk = i[〈∂1Qnk|∂2Qnk〉 − 〈∂2Qnk|∂1Qnk〉], (19)

where ∂i = ∂/∂ki (i = 1,2) with k1 = kx and k2 = ky . For
a given complete photonic band gap, the Chern number is
defined by

C = 1

2π

∫∫
B.Z.

d2k
∑
n∈F

Fnk. (20)

The integration region is the first Brillouin zone of the photonic
crystal. The summation is over all the “filled” photonic bands
(F) below the gap, i.e., modes with ωnk < ωgap (including
negative frequency modes), with ωgap some frequency in the
band gap. The Chern number is an integer insensitive to

weak deformations of the material structure, and thereby has
a topological nature. Note that the eigenfunctions and the
band gaps are determined not only by the periodic material
structures, but also by the top and bottom waveguide walls.

For the purposes of this study, it is convenient to write
the Chern number as a discrete summation rather than as an
integral. In Appendix B, it is proven that the gap Chern number
can be expressed as

C = 2π

Atot

∑
m∈E,

n∈F

i
1

(ωn − ωm)2

× [〈Qn|∂1Ĥg|Qm〉〈Qm|∂2Ĥg|Qn〉 − 1 ↔ 2], (21)

where ∂iĤg is the derivative of Ĥg(r, − i∇ + k)
with respect to ki and “1 ↔ 2” stands for the term
〈Qn|∂2Ĥg|Qm〉〈Qm|∂1Ĥg|Qn〉, i.e., the term with indices
“1” and “2” interchanged. Note that a similar formula holds in
the electronic case [23], with the difference that in electronics
∂iĤg depends explicitly on the wave vector. In Eq. (21)
the summation in n is over the “filled” bands (modes with
ωn < ωgap) and the summation in m is over the “empty” (E)
bands (modes with ωn > ωgap). Furthermore, it is implicit that
the volume V contains a finite number Nx × Ny of unit cells
and is terminated with periodic boundaries. The transverse
area of V is denoted by Atot and the identity in (21) is strictly
valid when Nx,Ny → ∞. Moreover, in Eq. (21) {Qn}n=1,2,...

may be understood as the “full” modes of the cavity V [i.e., the
solutions of Ĥg(r, − i∇)Qn = ωnQn], rather than the “spatial
envelopes.” This is so because 〈Qn|∂iĤg|Qm〉 is nonzero only
for modes with the same wave vector, and hence it is irrelevant
if the propagation factor eik·r is included or suppressed.

V. LINK BETWEEN THE GREEN FUNCTION AND THE
GAP CHERN NUMBER

We are finally ready to establish a link between the gap
Chern number [Eq. (21)] and the photonic Green function
[Eq. (16)].

A. Chern number as an integral in the complex frequency plane

The first step of the proof is to show that the Chern number
can be written as an integral in the complex frequency plane
along the line Re(ω) = ωgap parallel to the complex imaginary
axis. Here, ωgap is any frequency in the relevant photonic band
gap. To this end, we note that for ωm 	= ωn

1

(ω − ωm)2

1

ω − ωn

= 1

(ω − ωm)2

1

ωm − ωn

+ 1

(ωm − ωn)2

×
[

1

ω − ωn

− 1

ω − ωm

]
. (22)

The line Re(ω) = ωgap splits the complex frequency plane
into two semiplanes (Fig. 2). From Cauchy’s residue theorem
the integral of 1

(ω−ωm)2
1

ω−ωn
over the line Re(ω) = ωgap vanishes

if ωm,ωn are on the same semiplane (note that the integration
contour may be closed with a semicircle with infinite radius
that does not contribute to the integral). Evidently, the same
property holds when ωm = ωn. On the other hand, when the
two poles lie in different semiplanes (e.g., if ωn < ωgap and
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EF

i

FIG. 2. Complex frequency plane showing the integration path
Re(ω) = ωgap in the band gap region and the semiplanes associated
with the filled bands (natural modes with ωn < ωgap) and empty bands
(natural modes with ωn > ωgap). The red crosses in the real-frequency
axis illustrate possible locations for the eigenfrequencies ωn.

ωm > ωgap) the residue theorem gives∫ ωgap+i∞

ωgap−i∞
dω

1

(ω − ωm)2

1

ω − ωn

= 2πi

(ωm − ωn)2 sgn(ωgap − ωn). (23)

Noting that in Eq. (21) the two sets E and F lie in different
semiplanes of the complex plane (see Fig. 2), the previous
formula enables us to express the Chern number as

C = 1

Atot

∑
m∈E,

n∈F

∫ ωgap+i∞

ωgap−i∞
dω

1

(ω − ωm)2

1

ω − ωn

× [〈Qn|∂1Ĥg|Qm〉〈Qm|∂2Ĥg|Qn〉 − 1 ↔ 2]. (24)

To proceed further, we use the fact that the Chern num-
ber can also be written as C = − 2π

Atot

∑
m∈F,

n∈E
(...), where the

generic term of summation is the same as in Eq. (21) (see
Appendix B). Hence, using again Eq. (23) it follows that
C = 1

Atot

∑
m∈F,

n∈E
(...) with the summation term identical to that

in Eq. (24). By averaging the two formulas one finds that
C = 1

2Atot
[
∑

m∈E,

n∈F
... +∑

m∈F,

n∈E
...]. However, because the inte-

gral of
∫ ωgap+i∞
ωgap−i∞ dω 1

(ω−ωm)2
1

ω−ωn
vanishes when the poles are

in the same semiplane, the summations over m and n can be
unconstrained, so that

C = 1

2Atot

∑
m,n

∫ ωgap+i∞

ωgap−i∞
dω

1

(ω − ωm)2

1

ω − ωn

× [〈Qn|∂1Ĥg|Qm〉〈Qm|∂2Ĥg|Qn〉 − 1 ↔ 2]. (25)

Using Eq. (B3) and the definition of the weighted inner product
[Eq. (6)] we finally obtain

C = 1

8Atot

∑
m,n

∫ ωgap+i∞

ωgap−i∞
dω

1

(ω − ωm)2

1

ω − ωn

×
∫∫

dV dV ′[f∗
n (r) · ∂1N̂

·fm(r)f∗
m(r′) · ∂2N̂ · fn(r′) − 1 ↔ 2], (26)

where ∂iN̂ is defined as in Eq. (B3) and fn is the electromag-
netic component of the mode Qn. The modes fn are normalized
as in Eq. (13) because 〈Qn|Qn〉 = 1.

B. Link with the Green function

To establish a link between the gap Chern number and the
Green function we note that from the modal expansion (16) it
follows that

tr{∂2N̂ · Ḡ(r,r′,ω) · ∂1N̂ · ∂ωḠ(r′,r,ω)}
= 1

4

∑
m,n

−i

ω − ωn

+i

(ω − ωm)2 tr[∂2N̂ · fn(r) ⊗ f∗
n (r′)

·∂1N̂ · fm(r′) ⊗ f∗
m(r)]

= 1

4

∑
m,n

1

ω − ωn

1

(ω − ωm)2 f∗
m(r) · ∂2N̂

·fn(r)f∗
n (r′) · ∂1N̂ · fm(r′), (27)

where “tr” stands for the trace of a tensor and ∂ω ≡ ∂/∂ω.
Substituting this result into Eq. (26) we find that [note that the
normalization of the modes is the same in Eqs. (16) and (26)]

C = 1

2Atot

∫ ωgap+i∞

ωgap−i∞
dω

∫∫
dV dV ′[tr{∂2N̂ · Ḡ(r,r′,ω)

·∂1N̂ · ∂ωḠ(r′,r,ω)} − 1 ↔ 2]. (28)

Furthermore, integrating by parts in ω the term “1 ↔ 2” and
using the cyclic property of the trace (tr{A · B} = tr{B · A})
one finds that the two terms inside the rectangular brackets are
identical so that

C = 1

Atot

∫ ωgap+i∞

ωgap−i∞
dω

∫∫
dV dV ′[tr{∂2N̂ · Ḡ(r,r′,ω)

·∂1N̂ · ∂ωḠ(r′,r,ω)}]. (29)

This is the main result of the article. It establishes that
the gap Chern number, i.e., the sum of all Chern numbers of
photonic bands with ωn < ωgap (including negative frequency
bands) can be written in terms of an integral of the photonic
Green function along a straight line parallel to the complex
imaginary axis. The photonic Green function is the solution
of Eq. (8). The identity (29) holds in the limit Atot → ∞,
i.e., when the considered volumetric region V (terminated with
periodic boundaries along x and y) becomes the entire space
(unbounded photonic crystal). We recall that the definition
of the Chern number assumes that V is electromagnetically
closed so that the energy is forced to flow along directions
parallel to the xoy plane (Fig. 1). The simplest case is when
the system is uniform along the z direction and the condition
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∂/∂z = 0 is enforced to constrain the wave propagation to the
xoy plane. In such a scenario, the electromagnetic problem and
the associated Green function are effectively two-dimensional.
This case is further discussed in Sec. V C.

Equation (29) is manifestly gauge invariant because it is
written solely in terms of the Green function and its frequency
derivative in the complex frequency plane. Note that the Green
function is free of singularities along the integration path
because its poles (the eigenfrequencies) lie outside the band
gap region. More importantly, it is highlighted that since
Eq. (30) is fully independent of any specific gauge, it avoids the
usual troubles of particular gauges not being globally defined
in the wave vector space [11,23].

It can be verified that for a reciprocal system the
Green function satisfies Ḡ(r,r′,ω) = σ z · ḠT (r′,r,ω) · σ z,
σ z = (13×3 0

0 −13×3

)
being a generalization of the Pauli matrix

to six dimensions [see Ref. [24], Eq. (83)]. The reciprocity
constraint holds also for complex-valued frequencies. From
Eq. (B3) we know that σ z · (∂iN̂ )T · σ z = −∂iN̂ . Hence,
taking into account that for generic matrices A,B the trace
has the properties tr{A} = tr{AT } and tr{A · B} = tr{B · A} it
can be shown that tr{∂2N̂ · Ḡ(r,r′,ω) · ∂1N̂ · ∂ωḠ(r′,r,ω)} =
tr{∂1N̂ · Ḡ(r′,r,ω) · ∂2N̂ · ∂ωḠ(r,r′,ω)}. Using this result in
Eq. (28) one readily finds that for reciprocal (time-reversal
invariant) systems the gap Chern number vanishes, as it should
[8,9,11].

Equation (29) depends on the Green function values along
a contour that is partially contained in the lower half frequency
plane. The derivation of (29) implicitly assumes that it is
possible to continue analytically the integrand to the lower half
frequency plane in such a manner that it vanishes for ωgap ±
i∞. In Sec. VI, we numerically verify that for electromagnetic
continua that is indeed the case. Next, we show that the Chern
number may also be written in terms of an integral with
the integration path completely contained in the upper half
frequency plane.

To this end, first we note that the term inside the rectangular
brackets in Eq. (25) is purely imaginary. Hence, it is simple
to check that the integration contour may be restricted to the
semistraight line that joins ωgap and ωgap + i∞ in the upper

half plane, so that C = 1
Atot

Re
∑

m,n

∫ ωgap+i∞
ωgap

dω..., with the
integrand the same as in Eq. (25). Here, “Re” stands for the
real part of a complex number. Hence, following the same steps
as before it is found that [compare with Eq. (28)]

C = 1

Atot
Re
∫ ωgap+i∞

ωgap

dω

∫∫
dV dV ′[tr{∂2N̂ · Ḡ(r,r′,ω)

·∂1N̂ · ∂ωḠ(r′,r,ω)} − 1 ↔ 2], (30)

which gives the Chern number as an integral in the upper half
frequency plane.

C. Two-dimensional systems

Next, we focus our attention in 2D systems so that the
electromagnetic modes are independent of z. These systems
may be regarded as the limit of a 3D waveguide with periodic
boundary conditions enforced on the top and bottom walls
(z = 0,d) and the height of the cavity arbitrarily small, d → 0

(see Fig. 1). In such limit, the δ distribution in Eq. (8) may be
replaced δ(r − r′) → 1

d
δ(x − x ′)δ(y − y ′) so that the Green

function approaches Ḡ(r,r′,ω) → 1
d

Ḡ(r,r′,ω) where Ḡ is now
the two-dimensional Green function that satisfies N̂ · Ḡ =
ωM · Ḡ + i1δ(x − x ′)δ(y − y ′) with ∂/∂z = 0. Hence, from
Eq. (29) the Chern number of 2D systems is given by

C = 1

Atot

∫ ωgap+i∞

ωgap−i∞
dω

∫∫
dSdS ′[tr{∂2N̂ · Ḡ(r,r′,ω)

·∂1N̂ · ∂ωḠ(r′,r,ω)}], (31)

with dS = dxdy, dS ′ = dx ′dy ′ and it is implicit that r and r′
have now only two components [e.g., r = (x,y)].

Furthermore, for 2D problems often one wishes to restrict
the wave polarization to either transverse electric (TE) or
transverse magnetic (TM) modes. This can be easily done
noting that, for example, TM waves (with Ez = 0 and Hx =
Hy = 0) stay invariant under the action of the projection
operator 1TM = diag{1,1,0,0,0,1}, where 1TM is a 6 × 6 tensor
with the indicated diagonal entries. Hence, the gap Chern
number associated exclusively with TM waves can be calcu-
lated using Eq. (31) with the Green function defined as the
solution of

N̂ · Ḡ = ωM · Ḡ + i1TMδ(x − x ′)δ(y − y ′), with ∂/∂z = 0.

(32)

VI. ELECTROMAGNETIC CONTINUUM

Up to now, the analysis of the article is completely gen-
eral and is valid for a completely generic three-dimensional
periodic photonic crystal. To illustrate the application of the
developed theory, in the following we specialize it to electro-
magnetic continua with no intrinsic periodicity [11,24,25]. It
was shown in Refs. [11,25] that such material systems may
be regarded as topological, provided the nonreciprocal part
of the electromagnetic response has a high-frequency spatial
cutoff. The introduction of a spatial cutoff frequency requires
modifying the material response so that it becomes spatially
dispersive [11,25]. To avoid dealing immediately with such
complications, in a first stage we consider only materials with
a local response (Sec. VI A). In a second stage, we further
generalize the analysis to materials with a wave vector cutoff
(Sec. VI B). We apply the derived formulas to a magnetized
plasma (Sec. VI C), i.e., to an electric gyrotropic material.

A. Local material response

The ideas introduced in Sec. V apply with no modifica-
tions to electromagnetic continua with no spatial dispersion.
For a continuum the Green function is translation invariant
and therefore Ḡ(r,r′,ω) = Ḡ(r − r′,ω). Hence, replacing this
result into Eq. (31) and letting Atot → ∞ it is found that

C =
∫ ωgap+i∞

ωgap−i∞
dω

∫
dS[tr{∂2N̂

·Ḡ(r,ω) · ∂1N̂ · ∂ωḠ(−r,ω)}]. (33)
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In this section, we restrict our attention to TM-polarized waves so that it is implicit that the problem is effectively 2D and
that the Green function satisfies Eq. (32). The Green tensor may be formally decomposed as in Eq. (9). For TM-polarized
waves, the Green tensor components (3 × 3 matrices) are of the form GEE = Ee1 ⊗ x̂ + Ee2 ⊗ ŷ, GME = He1ẑ ⊗ x̂ + He2ẑ ⊗ ŷ,
GEM = Em ⊗ ẑ, and GMM = Hmẑ ⊗ ẑ. Here, Ee,i and He,i ẑ are respectively the electric and magnetic fields due to an in-plane
electric excitation with je = δ(x)δ(y)ûi (i = 1,2), whereas Em and Hmẑ are the electric and magnetic fields due to an out-of-plane
magnetic excitation with jm = δ(x)δ(y)ẑ.

In practice, for a continuum it is simpler to work in the spectral (Fourier transform in space) domain. Applying the Parseval’s
theorem to Eq. (33) it is found that

C = 1

(2π )2

∫ ωgap+i∞

ωgap−i∞
dω

∫
d2k[tr{∂2N̂ · Ḡ(k,ω) · ∂1N̂ · ∂ωḠ(k,ω)}], (34)

where Ḡ(k,ω) is the Fourier transform of the 2D Green function, which may be formally written as

Ḡ(k,ω) = i[N̂ (k) − ωM(ω)]−1 · 1TM, with N̂ (k) =
(

0 −k × 13×3

k × 13×3 0

)
, (35)

and k = kx x̂ + ky ŷ. Equations (34) and (35) can be applied in a rather straightforward way to any nonreciprocal material without
any detailed knowledge of its band structure or eigenfunctions, providing a remarkable simplification as compared to the direct
calculation of Chern numbers relying on a gauge-dependent Berry potential.

The gap Chern number can also be formally expressed in terms of the fields Ee,i , He,i ẑ, Em, Hmẑ introduced previously as
follows:

C = 1

(2π)2

∫ ωgap+i∞

ωgap−i∞
dω

∫
d2k[−H̃ e2∂ωH̃ e1 − H̃mŷ · ∂ωẼe1 − x̂ · Ẽe2∂ωH̃m − x̂ · Ẽmŷ · ∂ωẼm]. (36)

The tilde hat indicates the fields are Fourier transformed in space.
To consider a specific example, let us suppose that the material response is electric gyrotropic, so that the relative permittivity

tensor is of the form

ε̄ = εt1t + iεg ẑ × 1t + εa ẑ ⊗ ẑ, (37)

with 1t = x̂ ⊗ x̂ + ŷ ⊗ ŷ and the elements ε12 = −ε21 = −iεg and ε11 = ε22 = εt (the ε33 = εa component is irrelevant for
TM-polarized waves). Furthermore, it is supposed that the magnetic response is trivial, μ̄ = 13×3, and that ξ̄ = ζ̄ = 0 (no
bianisotropy). The Green function elements (Ee,i , He,i ẑ, Em, Hmẑ) are explicitly evaluated in Appendix C. Substituting (the
Fourier transform of) Eq. (C6) into Eq. (36) it is found after integration by parts in frequency of a few terms that

C = 1

(2π)2

∫ ωgap+i∞

ωgap−i∞
dω

∫
d2k

2iεg

εt


̃
[
k2∂ω
̃ + ω

c2
∂ω(ωεef 
̃)

]
, (38)

with 
̃ = 1/[k2 − (ω/c)2εef (ω)], k2 = k2
x + k2

y , and εef = (ε2
t − ε2

g)/εt . Using polar coordinates in the k plane and writing
ω = ωgap + iξ one obtains the final result:

C = −1

π

∫ ∞

−∞
dξ

∫ ∞

0
dk k

εg

εt


̃
[
k2∂ω
̃ + ω

c2
∂ω(ωεef 
̃)

]
ω=ωgap+iξ

. (39)

It is manifest from the formula that the Chern number can be nonzero only when the material response is nonreciprocal, i.e.,
when εg 	= 0.

B. Materials with a high-frequency spatial cutoff

The application of topological concepts to electromagnetic continua in general requires the introduction of a high-frequency
spatial cutoff kmax, such that for k  kmax the material response becomes reciprocal [11,25]. Conventional material models do
not include such an explicit cutoff, but it is physically justified by the fact that real materials have a granular (discrete) nature.
One way to mimic a physical spatial cutoff is to modify a given local material response Mloc(ω) in the following manner [11,25]:

M(k,ω) = M∞ + 1

1 + k2/k2
max

[Mloc(ω) − M∞], (40)

so that for k � kmax the material response is essentially unchanged, whereas for k  kmax it becomes M(k,ω) ≈ M∞, i.e.,
asymptotically the same as that of a reciprocal material. As before, M∞ stands for M∞ = limω→∞Mloc(ω), which typically gives
the response of the vacuum.

In Appendices D and E, we generalize the theory of the previous subsection to media with a nonlocal response of the form (40).
It is shown that as before the Chern number is determined by the photonic Green function in the nonlocal material. Specifically,
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for a continuum with a cutoff, Eq. (34) becomes C = C1 + C2 with

C1 = 1

(2π )2

∫ ωgap+i∞

ωgap−i∞
dω

∫
d2k

(
1 + 2k2

k2 + k2
max

)
tr{∂2N̂ · Ḡ(k,ω) · ∂1N̂ · ∂ωḠ(k,ω)}, (41a)

C2 = −1

(2π )2

∫
d2k

1

k2 + k2
max

∫ ωgap+i∞

ωgap−i∞
dω ω{k1[−tr(M∞ · Ḡ · ∂2N̂ · ∂ωḠ)

+ tr(∂2N̂ · Ḡ · M∞ · ∂ωḠ)] + k2[−tr(∂1N̂ · Ḡ · M∞ · ∂ωḠ) + tr(M∞ · Ḡ · ∂1N̂ · ∂ωḠ)]}. (41b)

In the above, Ḡ(k,ω) = i[N̂ (k) − ωM(k,ω)]−1 · 1TM is the spectral 2D Green function for TM-polarized waves (see
Appendix F).

For the gyrotropic medium with response (37) the corresponding material with a wave vector cutoff is characterized by a
gyrotropic permittivity tensor, ε̄(k,ω) = εt (k,ω)13×3 + iεg(k,ω)ẑ × 13×3, with components

εt (k,ω) = 1 + 1

1 + k2/k2
max

[εt,loc(ω) − 1], εg(k,ω) = εg,loc(ω)

1 + k2/k2
max

, (42)

where for simplicity it was assumed that εt,loc(∞) = 1. Hence, the formula for Ḡ(k,ω) is the same as in the local case, except that
all the permittivity components become wave vector dependent. Hence, using the results of Appendix C in Eq. (41) it is found
after some lengthy but otherwise straightforward calculations that

C1 = −1

π

∫ ∞

−∞
dξ

∫ ∞

0
dk k

(
1 + 2k2

k2 + k2
max

)
εg

εt


̃

[
k2∂ω
̃ + ω

c2
∂ω(ωεef 
̃)

]
ω=ωgap+iξ

, (43a)

C2 = −1

π

∫ ∞

0
dk

∫ ∞

−∞
dξ

k3ω

k2 + k2
max

{
1

ε2
ef ω2

(
εg

εt

)2[
ωεef 
̃∂ω

(
εg

εt

)
− εg

εt

∂ω(ωεef 
̃)

]

+ 1

c2

̃2

[
2
εg

εt

+
(

εg

εt

)2

∂ω

(
ω

εg

εt

)
+ ωεef ∂ω

(
εg

εt

)
− εg

εt

∂ω(ωεef ) + c2

ε2
ef ω2

k2∂ω

(
ωεef

εg

εt

)]}
ω=ωgap+iξ

, (43b)

where 
̃ = 1/[k2 − (ω/c)2εef (k,ω)], εef = (ε2
t − ε2

g)/εt , and εt ,εg must be understood as functions of the wave vector defined
as in Eq. (42).

C. Magnetized electric plasma

To illustrate the application of the developed concepts,
we consider as an example a magnetized electric plasma.
The material has a gyrotropic response as in Eq. (37) with
permittivity elements

εt = 1 − ω2
p

ω2 − ω2
0

, εg = 1

ω

ω2
pω0

ω2
0 − ω2

. (44)

Here, ω0 = −qB0/m is the cyclotron frequency determined
by the bias magnetic field B0 = B0ẑ, q = −e is the negative
charge of the electrons, m is the effective mass, and ωp is the
plasma frequency [26].

The band diagrams for propagation in the xoy plane are de-
termined from k2 = εef ω2/c2, and hence the dispersion char-
acteristic has rotational symmetry in the xoy plane [11,27,28].
Figures 3(a) and 3(b) show the calculated band structures for
the local model [Eq. (44)] and the corresponding nonlocal
model [Eq. (42)], respectively, considering a plasma with ω0 =
0.8ωp. Note that both the positive and the negative frequency
bands are represented in Fig. 3. As seen, there are 3 distinct
complete band gaps (2 complete band gaps if one considers
only positive frequency branches). The two positive frequency
branches may be regarded as the result of the perturbation

(by the bias magnetic field) of the transverse and longitudinal
wave branches characteristic of a standard nonmagnetized
plasma with a Drude-type response, ε = 1 − ω2

p/ω2. The bias
magnetic field opens a band gap in between these two branches.
The local and nonlocal dispersions are nearly coincident for
k � kmax = 5ωp/c. However, in the nonlocal model the waves
associated with the low positive frequency branch become
backward for k > kmax and asymptotically, as k → ∞, this
branch approaches |ω0|/c [dashed green line in Fig. 3(b)].

The individual Chern numbers associated with each band
(δC) can be found directly from the electromagnetic eigen-
states using the formalism of Ref. [11]. They are indicated
as insets in Fig. 3. As seen, consistent with Ref. [11],
without a spatial cutoff [Fig. 3(a)] the Chern numbers may
be noninteger. For example, the Chern number of the low

positive frequency branch is δC = 1 + 1/

√
1 + ω2

p/ω2
0 [27].

Indeed, the topological classification of a continuum is strictly
valid only in the presence of the spatial cutoff. The Chern
numbers of the negative frequency bands differ always by
a minus sign from the Chern numbers of the corresponding
positive frequency bands. Furthermore, the Chern numbers
flip sign when the direction of the bias magnetic field is
reversed.
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FIG. 3. Band diagram (ω vs ki , i = x,y) of a magnetized electric plasma with ω0 = 0.8ωp for (a) local material response and (b) material
response with the spatial cutoff kmax = 5ωp/c. The shaded areas indicate the electromagnetic band gaps. The Chern numbers (δC) of the
individual bands are given in the insets and were calculated using the theory of Ref. [11]. The gap Chern numbers (Cgap) determined by the
photonic Green function using Eqs. (39) (in the local case) and (43) (in the nonlocal case) are also indicated in the figure, and agree with the
sum of the individual Chern numbers of the bands below the gap.

It is interesting to note that the sum of all positive frequency
band Chern numbers is nonzero (+1) when the spatial cutoff is
enforced. This property remains true for any ω0 > 0, i.e., any
positive bias magnetic field. For |ω0| � ωp, the low-frequency
band gap is determined by −|ω0| < ω < |ω0|. Hence, in the
limit ω0 → 0+ this band gap closes and there is an interaction
between the positive and negative frequency branches resulting
in an exchange of topological charge, such that for ω0 =
0 (reciprocal response) the Chern numbers of the positive
frequency branches are precisely zero, as they should be. A
similar topological interaction between the positive and neg-
ative frequency branches has been discussed in Refs. [29,30],
but typically the role of the negative frequency modes is
overlooked in the literature.

Using Eqs. (39) and (43) for the local and nonlocal cases,
respectively, it is straightforward to evaluate the gap Chern
numbers for each of the band gaps. The result of the calcula-
tions is indicated in the insets of Fig. 3, and agrees perfectly
with what is found by explicitly summing the individual
Chern number contributions (Cgap = ∑

low−freq
bands

δCi). Note that
this property holds even in the local case (without spatial
cutoff) when the Chern number is not necessarily an integer.
This result validates the theory developed here.

We would like to highlight that it is absolutely essential to
consider the contribution of the negative frequency branches
in the calculation of the gap Chern number. Indeed, a sum-
mation of Chern numbers restricted to positive frequency
bands would yield a gap Chern number equal to 0 for the
first (low-frequency) band gap, and +2, for the second (high-
frequency) gap. From the bulk-edge correspondence this would
imply that an interface between the magnetized plasma and a
trivial insulator should support 0 and 2 unidirectional edge
modes, in each of the band gaps. However, as illustrated in
Fig. 4 for the case of an interface with a perfect electric
conductor, the number of edge modes in each gap is precisely
1. This result agrees with the gap Chern numbers reported in

Fig. 3(b), and confirms the importance of taking into account
the contributions of the negative frequency bands. The edge
modes are calculated as explained in Refs. [11,25]. For the
limitations on the application of the bulk-edge correspondence
to electromagnetic continua the reader is referred to Ref. [25].

It is useful to give an idea of the asymptotic behavior of
the integrand of Eqs. (39) and (43) and thus of the Green
function behavior in the complex frequency plane. To this end,
we depict in Fig. 5 the dimensionless function G(ωgap + iξ ) as
a function of ξ , with G(ωgap + iξ ) defined such that Eq. (39)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
2

1

0

1

2

FIG. 4. Band diagram of the edge modes (dashed green lines)
supported by an interface (y = 0) between the gyrotropic material
with ω0 = 0.8ωp (region y > 0) and PEC material (region y < 0).
The edge modes propagate along the x direction. The solid blue
lines represent the band diagram of the bulk gyrotropic material. The
dispersion diagrams are obtained without an explicit spatial cutoff
(kmax → ∞).
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FIG. 5. Normalized integrand G(ωgap + iξ ) of the Chern number
integral [Eq. (39)] as a function of the imaginary part of the angular
frequency (ξ ) at (i) the low positive-frequency band gap (ωgap =
0.15ωp) and at (ii) the high positive-frequency band gap (ωgap =
1.3ωp). The cyclotron frequency is ω0 = 0.8ωp .

can be rewritten as C = ∫∞
−∞ dξ 1

ωp
Re {G(ωgap + iξ )}. As seen,

the integrand is peaked near ξ = 0 (real-valued frequency ω =
ωgap), and decays exponentially fast as ξ → ±∞, exhibiting
an even symmetry in this example. The integrand has no
singularities because the integration path lies in the band gap
and hence does not cross any poles. Clearly, the Chern number
is determined by the behavior of the photonic Green function
near the real frequency axis.

VII. SUMMARY

We established a link between the gap Chern number of a
generic bianisotropic inhomogeneous nonreciprocal periodic
optical platform and the photonic Green function. The devel-
oped theory applies to fully three-dimensional closed systems,
such that the energy can only flow along directions parallel to
the xoy plane. Furthermore, the formalism can also be applied
to electromagnetic continua with no intrinsic periodicity and
to electromagnetic continua with a spatial cutoff.

The main result of the article is given by Eq. (29) and
establishes that the gap Chern number can be written as an
integral in the complex frequency plane of the photonic Green
function and of its derivative in frequency. The integration
is along a path parallel to the imaginary frequency axis. The
Green function has no singularities in the integration path and
its asymptotic behavior ensures that the integral that gives
the Chern number decays exponentially fast. Furthermore,
our theory does not require any explicit knowledge of the
detailed photonic band structure or of the Bloch eigenstates.
Thus, Eq. (29) may be useful to compute the Chern numbers
of complex photonic platforms using numerical methods.
Note that the Green function in the complex frequency plane
can be numerically evaluated using standard finite difference
frequency domain approaches. Moreover, our theory highlights
the key role of negative frequency modes, which are often
disregarded in the calculation of gap Chern numbers.

Most of our derivation can be readily extended to electronic
systems (as mentioned in the introduction it is not equivalent to

that of Ref. [14]), but it is worth pointing out a little difference:
unlike in optics, in the electronic case the operators ∂iĤg

typically depend explicitly on the wave vector. Due to this
reason, Eq. (29) (written in terms of the spatial domain Green
function) does not hold in the electronic case. The electronic
gap Chern number can however be related to Bloch-periodic
Green functions, but a detailed discussion is out of the intended
scope of this study.

The deep link between the gap Chern number and the
photonic Green function raises intriguing questions about
the origin of the topological properties of photonic systems.
Furthermore, somewhat similarly to the zero-point energy of
a system [31,32], the Chern number is written in terms of an
integral over imaginary frequencies, and this suggests that it
may be related to the quantum expectation of some physical
quantity. These fundamental connections will be discussed
elsewhere [33].
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APPENDIX A: MODAL EXPANSIONS
IN DISPERSIVE MEDIA

The spectral theorem guarantees that an arbitrary state
vector Q(r) can be expanded in normal modes of oscillation
of the Hermitian operator Ĥg = M−1

g · L̂. Hence, if Q1,Q2,...

determine an orthogonal basis of eigenmodes of Ĥg associated
with the eigenfrequencies ω1,ω2,..., i.e., ĤgQn = ωnQn, it is
possible to write

Q(r) =
∑

n

Qn(r)cn with cn = 〈Qn|Q〉. (A1)

It is implicit that the eigenmodes are normalized such that
〈Qn|Qm〉 = δn,m. The completeness of the basis set implies
that

δ(r − r′)1g = 1

2

∑
n

Qn(r) ⊗ Q∗
n(r′) · Mg(r′), (A2)

where ⊗ represents the tensor product of two vectors, and
1g is the identity tensor with the same dimension as Mg .
Let fn be the electromagnetic field component of Qn, so
that Qn = (fn Q(1)

n ...)T . Then, the result (11) and the
normalization condition 〈Qn|Qm〉 = δn,m show that the modes
fn are normalized as in Eq. (13) of the main text. Furthermore,
Eq. (A2) implies that the electromagnetic modes satisfy the
completeness relation (14). In particular, by multiplying both
sides of Eq. (14) by a generic electromagnetic field distribution
f(r) and integrating the resulting equation over r′, we obtain
the modal expansion:

f(r) =
∑

n

fn(r)cn, with

cn = 1

2

∫
V

d3r′ f∗
n (r′) · M∞(r′) · f(r′). (A3)

Crucially, in a dispersive system the expansion coefficients
cn are not unique; i.e., the same field distribution f(r) can be
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obtained with different sets of coefficients cn. To illustrate
this property, we take f(r) = fm(r) which evidently satisfies
f(r) = ∑

n fn(r)cn with cn = δn,m. However, for a dispersive
system the coefficients obtained from Eq. (A3) with f(r) =
fm(r) typically differ from cn = δn,m because the generalized
orthogonality conditions are as in Eq. (13). The lack of
uniqueness of the expansion coefficients may be understood
by noting that the {fn}n=1,2,... set is a projection of the original
{Qn}n=1,2,... basis of the augmented space, and thereby it “over”
spans the electromagnetic space. In contrast, modal expansions
[Eq. (A1)] in the augmented space are unique.

Let f(r) be some solution of the Maxwell equations (10)
with oscillation frequency ω, and let Q be the corresponding
solution of the generalized time-harmonic problem, L̂ · Q =
ωMg · Q + ijg . Then, using Eqs. (A1) and (11) it follows that
the expansion coefficients may be written as

cn = 1

2

∫
V

d3r f∗
n (r) ·

[
ωnM(r,ωn) − ωM(r,ω)

ωn − ω

]
· f(r)

= 1

2

∫
V

d3r
[N̂ fn]

∗ · f − f∗
n · (N̂ f − ij)

ωn − ω
. (A4)

In the second identity, we used Eq. (12) and M = M†. Noting
that the differential operator N̂ is Hermitian with respect to the
canonical scalar product, we readily conclude that cn may be
written as in Eq. (15), and thereby the electromagnetic field
has the expansion given in the same equation.

APPENDIX B: THE CHERN NUMBER
MODAL EXPANSION

In the following, we derive Eq. (21) of the main text. To this
end, first we note that because the eigenstates of the augmented
problem form a complete set, the Berry curvature [Eq. (19)]
can be rewritten as

Fnk =
∑

mk 	=nk

i[〈∂1Qnk|Qmk〉〈Qmk|∂2Qnk〉

− 〈∂2Qnk|Qmk〉〈Qmk|∂1Qnk〉]. (B1)

Furthermore, from Eq. (17) it is seen that ∂kĤg · Qnk +
Ĥg · ∂kQnk = ωnk∂kQnk + ∂kωnkQnk, so that for mk 	= nk
one has 〈Qmk|∂kĤg|Qnk〉 = (ωnk − ωmk)〈Qmk|∂kQnk〉. Thus,
it is possible to write [23]

Fnk =
∑

mk 	=nk

i

(ωnk − ωmk)2

× [〈Qnk|∂1Ĥg|Qmk〉〈Qmk|∂2Ĥg|Qnk〉 − 1 ↔ 2]. (B2)

The term “1 ↔ 2” is defined as in the main text. The operator
∂iĤg stands for ∂

∂ki
[Ĥg(r, − i∇ + k)]. Taking into account that

Ĥg = M−1
g · L̂ and the definitions of Eq. (5) it is simple to

check that ∂iĤg = M−1
g · ∂iL̂ with

∂iL̂ =
⎛
⎝∂iN̂ 0 ...

0 0 ...

... ... ...

⎞
⎠, where

∂iN̂ =
(

0 −ûi × 13×3

ûi × 13×3 0

)
, (B3)

and ûi is a unit vector along the ith direction. Hence, the term
〈Qmk|∂iĤg|Qnk〉 only depends on the electromagnetic field
component of the state vectors.

In order to write the Chern number (20) in terms of a discrete
summation, it is supposed without loss of generality that the
unit cell has dimensions ax × ay , so that the Brillouin zone
corresponds to the rectangular region [− π

ax
, π
ax

] × [− π
ay

, π
ay

].
Furthermore, we consider that V (the “cavity”) is a region with
Nx × Ny cells terminated laterally with periodic boundaries.

Then, we may write d2k ≈ (2π)2

Atot
with Atot = (axNx) × (ayNy)

the transverse area of the volume V, so that Eq. (20) becomes

C = lim
Atot→∞

2π

Atot

∑
n∈F

Fn, (B4)

where Fn is now given by [compare with Eq. (B2)]

Fn =
∑
m	=n

i
1

(ωn − ωm)2

× [〈Qn|∂1Ĥg|Qm〉〈Qm|∂2Ĥg|Qn〉 − 1 ↔ 2]. (B5)

The summation in Eq. (B4) is over the modes of the “cavity”
(the volume V) with ωn < ωgap, whereas the summation in (B5)
is over all the modes. As explained in the main text, {Qn}n=1,2,...

may be taken as the “full” modes of the cavity rather than the
spatial envelopes.

The Chern number (B4) can be decomposed into two
parcels, C = 2π

Atot

∑
m	=n,
n∈F
m∈F

θm,n + 2π
Atot

∑
n∈F

m∈E
θm,n, where the def-

inition of θm,n should be evident by inspection of Eq. (B5).
Clearly, the first term vanishes due to the antisymmetry of θm,n

with respect to interchanging the indices m and n. This proves
that the Chern number is due to the interaction of filled (F) and
empty (E) bands, and thus Eq. (21) of the main text follows.

To conclude we note that the antisymmetry of θm,n implies
that the total Chern number (i.e., the sum of the Chern numbers
of all the individual bands) must vanish: 0 = 2π

Atot

∑
m,n θm,n.

This identity shows that 0 = 2π
Atot

∑
n∈F

m∈E
θm,n + 2π

Atot

∑
n∈E

m∈F
θm,n

because as previously noted 0 = ∑
m	=n,
n∈F
m∈F

θm,n = ∑
m	=n,
n∈E
m∈E

θm,n.

Hence, the gap Chern number in Eq. (21) may also be expressed
as C = − 2π

Atot

∑
n∈E,

m∈F
(...), with the generic term of summation

the same as in Eq. (21).

APPENDIX C: THE 2D GREEN FUNCTION FOR A
GYROTROPIC MATERIAL

In this appendix, we obtain explicit expressions for the
2D Green function components (Ee,i , He,i ẑ, Em, and Hmẑ)
introduced in the main text for the case of an electric gyrotropic
material with permittivity tensor as in Eq. (37). These fields
can be found from the solution of the Maxwell equations:

∇ × H = −iωε0ε̄ · E + je0δ(r||),
(C1)∇ × E = iωμ0H − ẑ jm0δ(r||),

with ∂/∂z = 0 and δ(r||) = δ(x)δ(y). Specifically, Ee,i , He,i ẑ
are the electromagnetic fields for je0 = ûi (i = 1,2) and jm0 =
0, whereas Em and Hmẑ are the fields for je0 = 0 and jm0 = 1.
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For TM polarization H = Hzẑ, and thus the electric field excited by the sources is

−iωε0E = ε̄−1 · (∇Hz × ẑ) − ε̄−1 · je0δ(r||), (C2)

where ε̄−1 = 1
εef

(1t − i
εg

εt
ẑ × 1t ) + 1

εa
ẑ ⊗ ẑ is the inverse permittivity tensor and εef is defined as in the main text. Substituting

the above formula into Faraday’s equation it is found after some manipulations that Hz must satisfy

∇2Hz +
(ω

c

)2
εef Hz = ∇δ(r||) · [ẑ × εef ε̄−1 · je0] − iωε0εef jm0δ(r||). (C3)

The solution of this equation is

Hz = −∇
 · [ẑ × εef ε̄−1 · je0] + iωε0εef jm0
, (C4)

where 
 satisfies ∇2
 + ( ω
c

)2εef 
 = −δ(r||), and thereby may be explicitly written in terms of Hankel functions. From Eqs. (C2)
and (C4) it follows that the Green function components are

Hm

iωε0
= εef 
, Em = −εef ε̄−1 · (∇
 × ẑ), (C5a)

He,i = −∇
 · [ẑ × εef ε̄−1 · ûi], iωε0Ee,i = −ε̄−1 · [∇ × ∇ × (εef ε̄−1 · ûi
)] + ε̄−1 · ûiδ(r||). (C5b)

In particular, the terms that determine the Chern number in Eq. (36) are

Hm

iωε0
= εef 
,

{
x̂ · Em

ŷ · Em
=
{

−∂y
 + iεg

εt
∂x
,

+∂x
 + iεg

εt
∂y
,

(C6a)

{
He,1

He,2 =
{−∂y
 − iεg

εt
∂x
,

+∂x
 − iεg

εt
∂y
,

iωε0

{
ŷ · Ee,1

x̂ · Ee,2
= − 1

εt

∂x∂y
 ± iεg

εt

(ω

c

)2

. (C6b)

The field Fourier transforms are found with the usual rules ∂x → ikx , ∂y → iky , and 
 → 
̃ = 1/[k2 − (ω/c)2εef ].

APPENDIX D: ELECTROMAGNETIC CONTINUUM WITH A CUTOFF

Here, we generalize the theory of Sec. VI A to an electromagnetic continuum with a spatial cutoff. The system is assumed
uniform along the z direction. For a material with response as in Eq. (40), it was shown in Ref. [11] that the electromagnetic
modes (plane waves with propagation factor fnke

ik·r) can be found from the solution of an augmented problem of the form
Ĥnl(k) · Qnk = ωnkQnk with state vector Qnk = (fnk Q(1)

nk ...)T . Here, Ĥnl = M−1
g · L̂nl(k) with L̂nl given by

L̂nl =

⎛
⎜⎜⎜⎜⎝

N̂ (k) + 1
1+k2/k2

max

∑
α sgn(ωp,α)A2

α
1

(1+k2/k2
max)1/2 |ωp,1|1/2A1

1
(1+k2/k2

max)1/2 |ωp,2|1/2A2 ...

1
(1+k2/k2

max)1/2 |ωp,1|1/2A1 ωp,11 0 ...

1
(1+k2/k2

max)1/2 |ωp,2|1/2A2 0 ωp,21 ...

... ... ... ...

⎞
⎟⎟⎟⎟⎠ (D1)

where ωp,α and Aα are the same coefficients as in the local case. Furthermore, Mg is defined as in Eq. (5) and N̂ (k) as in Eq. (35).
For a fixed wave vector, the operator Ĥnl is Hermitian with respect to the weighted inner product (6). Hence, similarly to Sec. IV,
it is possible to introduce a Berry potential and a gap Chern number. The spatial cutoff ensures that the gap Chern number is an
integer [11].

Following the same sequence of steps as in Secs. IV and V, Eq. (25) may be generalized to the case of a continuum with a
spatial cutoff as follows:

C = 1

2Atot

∑
mk,nk

∫ ωgap+i∞

ωgap−i∞
dω

1

(ω − ωmk)2

1

ω − ωnk
[〈Q̃nk|∂1Ĥnl|Q̃mk〉〈Q̃mk|∂2Ĥnl|Q̃nk〉 − 1 ↔ 2]. (D2)

In the above, ∂iĤnl = ∂Ĥnl/∂ki is the derivative of the operator Ĥnl with respect to the wave vector. The modes are normalized
such that 〈Q̃nk|Q̃nk〉 = 1. Taking the limit Atot → ∞ and using the definition of the weighted inner product (6), we find

C = 1

8

1

(2π)2

∫
d2k

∑
m,n

∫ ωgap+i∞

ωgap−i∞
dω

1

(ω − ωmk)2

1

ω − ωnk
[Q∗

nk · ∂1L̂nl · QmkQ∗
mk · ∂2L̂nl · Qnk − 1 ↔ 2] (D3)
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with Qnk = Q̃nk
√

Vtot and Vtot the volume of the considered cavity. The modes Qnk satisfy the normalization condition 1
2 Q∗

nk ·
Mg · Qnk = 1. It is proven in Appendix E that

Q∗
nk · ∂iL̂nl · Qmk = f∗

nk · ∂iN̂ · fmk + 2ki

k2 + k2
max

{
f∗
nk ·

[
N̂ (k) − M∞

ωmk + ωnk

2

]
· fmk

}
. (D4)

Thus, the Chern number can be written simply as a function of the electromagnetic components (fnk) of the modes (Qnk) of the
augmented problem.

The next step is to write the Chern number using the spectral Green function Ḡ(k,ω) of the nonlocal problem, defined as

Ḡ(k,ω) = −i

2

∑
n

1

ω − ωnk
fnk ⊗ f∗

nk. (D5)

By substituting Eq. (D4) in Eq. (D3) it is found after some manipulations that the gap Chern number is C = C1 + C2 with

C1 = 1

2

1

(2π)2

∫
d2k

∫ ωgap+i∞

ωgap−i∞
dω

(
[tr(∂1N̂ · ∂ωḠ · ∂2N̂ · Ḡ) − 1 ↔ 2]

+
{

2k1

k2 + k2
max

tr[N̂ (k) · ∂ωḠ · ∂2N̂ · Ḡ] − 1 ↔ 2

}

+
{

2k2

k2 + k2
max

tr[∂1N̂ · ∂ωḠ · N̂ (k) · Ḡ] − 1 ↔ 2

})
, (D6a)

C2 = −1

2

1

(2π )2

∫
d2k

∫ ωgap+i∞

ωgap−i∞
dω

×
(

k1

k2 + k2
max

{tr[M∞ · ∂ω(ωḠ) · ∂2N̂ · Ḡ] + tr[M∞ · (∂ωḠ) · ∂2N̂ · (ωḠ)] + tr[(i∂ωḠ) · ∂2N̂ ] − 1 ↔ 2}

+ k2

k2 + k2
max

{tr[∂1N̂ · ∂ω(ωḠ) · M∞ · Ḡ] + tr[∂1N̂ · (∂ωḠ) · M∞ · (ωḠ)] + tr[∂1N̂ · (i∂ωḠ)] − 1 ↔ 2}
)

. (D6b)

To obtain this formula we used the auxiliary identity (F5) of Appendix F. Noting that
∫ ωgap+i∞
ωgap−i∞ dω ∂ωtr(Ḡ · ∂iN̂ ) = 0 and

integrating by parts in frequency some of the terms of Eq. (D6b) one obtains Eq. (41b). Furthermore, integrating by parts the integral∫ ωgap+i∞
ωgap−i∞ dω tr(∂iN̂ · ∂ωḠ · ∂j N̂ · Ḡ) it is seen that it is antisymmetric in the indices i and j . Thus, using N̂ (k) = k1∂1N̂ + k2∂2N̂

it is simple to verify that C1 may be rewritten as in Eq. (41a). In Appendix F, we show that Ḡ(k,ω) may be explicitly calculated
in terms of the nonlocal material matrix.

APPENDIX E: ENERGY DENSITY FLUX

In this appendix, we derive Eq. (D4). To begin with, we note that in the local case (kmax = ∞) it follows from Eq. (D1)
that 1

2 Q∗ · ∂iL̂nl · Q = 1
2 f∗ · ∂iN̂ · f = 1

2 ûi · (E × H∗ + E∗ × H), and hence 1
2 Q∗ · ∂iL̂nl · Q may be understood as the energy

density flux (Poynting vector). Later, we show that this interpretation is still valid when kmax is finite. Crossed terms of the form
Q∗

1 · ∂iL̂nl · Q2 appear when one evaluates the Poynting vector associated with a linear combination of two fields. Here, we want
to determine such crossed terms, Q∗

nk · ∂iL̂nl · Qmk, with Qnk,Qmk natural modes of Ĥnl.
To do this, we use Qnk = (fnk Q(1)

nk ...)T and Eq. (D1) to write

Q∗
nk · ∂iL̂nl · Qmk = f∗

nk ·
[
∂iN̂ + ∂i

(
1

1 + k2/k2
max

)∑
α

sgn(ωp,α)A2
α

]
· fmk

+f∗
nk ·

∑
α

∂i

(
1(

1 + k2/k2
max

)1/2

)
|ωp,α|1/2Aα · Q(α)

mk +
∑

α

Q(α),∗
nk · ∂i

(
1(

1 + k2/k2
max

)1/2

)
|ωp,α|1/2Aα · fmk.

(E1)

From Ĥnl · Qnk = ωnkQnk and from the definition of Ĥnl it is found that Q(α)
nk = 1

(1+k2/k2
max)1/2

|ωp,α |1/2

(ωnk−ωp,α) Aα · fnk [compare with

Eq. (7)]. Substituting this result into Eq. (E1) and using the Hermitian property of Aα , it is found after some simplifications that

Q∗
nk · ∂iL̂nl · Qmk = f∗

nk · ∂iN̂ · fmk − ∂i

(
1

1 + k2/k2
max

)

×
{

1

2
f∗
nk · [Mloc(ωmk) − M∞]ωmk · fmk + f∗

nk · ωnk
1

2
[Mloc(ωnk) − M∞] · fmk

}
, (E2)
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where Mloc is defined as in Eq. (4); i.e., it corresponds to the
material response in the kmax → ∞ limit [see Eq. (40)]. Using
now Eq. (40), N̂ (k) · fnk = ωnkM(k,ωnk) · fnk, and the fact
that the relevant operators are Hermitian, we readily obtain
the desired result [Eq. (D4)].

In the particular case n = m, Eq. (E2) is equivalent to 1
2 Q∗

nk ·
∂iL̂nl · Qnk = 1

2 f∗
nk · ∂iN̂ · fnk − 1

2ωnkf∗
nk · ∂iM(k,ωnk) · fnk.

The right-hand side of this expression gives precisely the
Poynting vector (for a complex-valued field) in a generic
spatially dispersive material [34–37]. This confirms that
1
2 Q∗ · ∂iL̂nl · Q may generally be understood as the Poynting
vector.

APPENDIX F: THE 2D GREEN FUNCTION IN THE
NONLOCAL CASE

In what follows, we show that the Green function Ḡ(k,ω)
defined as in Eq. (D5) satisfies

[N̂ (k) − ωM(k,ω)] · Ḡ(k,ω) = i1. (F1)

The proof follows a sequence of steps analogous to Appendix
A.

To begin with, first we note that the solution of
[N̂ (k) − ωM(k,ω)] · f = ij (with f,j constant vectors) can
be found from the solution of the corresponding augmented
problem L̂nl(k) · Q = ωMg · Q + ijg , with jg defined as in
Eq. (5) [11]. Furthermore, it was shown in Appendix B of
Ref. [11] that if fA and fB satisfy [N̂ (k) − ωM(k,ωl)] · fl = ijl
(l = A,B) and if QA and QB are the corresponding solutions
of the augmented problem, then

1

2
Q∗

A · Mg · QB

=
{ 1

2 f∗
A · ∂

∂ω
[ωM(k,ω)]ω=ωA

· fB, if ωA = ωB,

1
2 f∗

A · [ωAM(k,ωA)−ωBM(k,ωB )
ωA−ωB

] · fB, if ωA 	= ωB.
(F2)

As discussed in Appendix D, the operator Ĥnl = M−1
g ·

L̂nl(k) is Hermitian with respect to the weighted inner

product (6). For a continuum, it is more convenient to take
the inner product as 〈QA|QB〉co = 1

2 Q∗
A · Mg · QB . Let then

{Qnk}n=1,2,... be a basis of the relevant (finite dimension) vector
space, with elements normalized as 〈Qnk|Qmk〉co = δm,n, and
let fnk be the electromagnetic component of Qnk. The com-
pleteness of the basis implies that M−1

g = 1
2

∑
n Qnk ⊗ Q∗

nk.
Hence, by projection, the electromagnetic modes satisfy the
completeness relation:

M−1
∞ = 1

2

∑
n

fnk ⊗ f∗
nk. (F3)

To find the solution of L̂nl(k) · Q = ωMg · Q + ijg , the
state vector is expanded into modes Q = ∑

n cnQnk. Clearly,
cn = 1

2 Q∗
nk · Mg · Q which from Eq. (F2) may be written as

cn = 1

2
f∗
nk ·

[
ωnkM(k,ωnk) − ωM(k,ω)

ωnk − ω

]
· f

= 1

2
f∗
nk · ij

ωnk − ω
. (F4)

The second equality follows from [N̂ (k) − ωM(k,ω)] · f =
ij and N̂ (k) · fnk = ωnkM(k,ωnk) · fnk. By projecting Q =∑

n cnQnk into the electromagnetic subspace one finds f =∑
n cnfnk. Thus, from Eq. (F4) the solution of Eq. (F1) has

indeed the modal expansion (D5), as we wanted to show.
Furthermore, using the completeness relation (F3) in

Eq. (D5) it is found that

iωḠ(k,ω) − M−1
∞ = 1

2

∑
n

ωnk

ω − ωnk
fnk ⊗ f∗

nk. (F5)

To conclude, we note that the solution of Eq. (F1) may be
formally written as the inverse of a 6 × 6 matrix: Ḡ(k,ω) =
i[N̂ (k) − ωM(k,ω)]−1. If we restrict ourselves to the subspace
formed by TM-polarized waves [so that the summation in
Eq. (D5) only includes TM-polarized modes], then Ḡ(k,ω) =
i[N̂ (k) − ωM(k,ω)]−1 · 1TM. Note that 1TM may be regarded
as a projection operator into the subspace of TM waves.
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