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Light tunneling anomaly in interlaced metallic wire meshes
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For long wavelengths, three-dimensional connected metallic wire meshes are impenetrable by light and have
an electromagnetic response similar to that of an electron gas below the plasma frequency. Surprisingly, here
it is shown that when two opaque metallic meshes are spatially interlaced, the combined structure enables an
anomalous light tunneling in the long wavelength regime. The effect is due to the destructive interference of the
waves scattered by the two wire meshes, which leads to a Fano-type resonance. The Fano resonance occurs when
the longitudinal (plasmon) mode satisfies the Fabry-Pérot condition.
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I. INTRODUCTION

Metallic grids block the propagation of light when the
electric field is aligned with the metal strips [1–8]. This
property is explored in many applications, such as in light
polarizers and frequency selective surfaces. For example, a
regular array of thin parallel metallic wires is typically used as
a linear polarizer since only the light oscillations perpendicular
to the wires can go through the structure.

When the wire grid spans the three directions of space—the
so-called three-dimensional (3D) connected wire medium
[9–13]—the corresponding photonic crystal does not support
light states in the long wavelength regime. Indeed, a 3D
connected wire metamaterial is completely opaque to light
propagation and has an electromagnetic response analogous
to that of a free-electron gas [11,12]. Hence, intuitively one
may expect that when two 3D wire meshes are spatially
interlaced [Fig. 1(a)], the full structure should be a better
reflector and should scatter light more strongly than the
individual components. In fact, common sense suggests that
the effects of the individual wire meshes should be additive and
that the interlaced wire structure should, accordingly, block
the light propagation more effectively. Surprisingly, here we
theoretically demonstrate that even though each individual
wire mesh exhibits an almost zero transmission for low
frequencies, the interlaced meshes can be nearly transparent to
electromagnetic waves. The light tunneling anomaly is due to a
Fano resonance that occurs when a longitudinal wave satisfies
the Fabry-Pérot (FP) condition.

II. LIGHT TUNNELING

To unveil the physical mechanisms that enable the anoma-
lous light tunneling, first we computed the photonic band
diagram of the interlaced wire meshes [Fig. 1(b)] using
the eigenmode solver of CST Microwave Studio [16]. For
simplicity, we provide results only for the case where the wave
vector is directed along the �X direction. Each wire mesh is
formed by a 3D array of connected metallic wires with lattice
constant a. The two wire meshes (A and B) are disconnected
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and separated by a distance of a/2 along the directions
parallel to the coordinate axes [see the inset of Fig. 1(b)].
For now, the wires are assumed perfect electric conductors
(PEC). The host dielectric is air (εh = 1), and the radii of
the wires is rw,A = 0.001a for mesh A and rw,B = 0.05a for
mesh B.

Strikingly, Fig. 1(b) shows that the interlaced wire medium
supports an electromagnetic mode for arbitrarily low fre-
quencies. In contrast, it is shown in the Appendix that the
individual meshes A and B do not support light states in the
long wavelength regime. The emergence of low frequency
modes in metallic wire arrays with disconnected components
was noticed in several previous works [11,15,17–20], and,
in particular, Ref. [15] demonstrated that the number of
modes supported by a generic 3D wire mesh with N metallic
components is identical to N − 1. Importantly, as shown in
Fig. 1(ci), the low-frequency mode supported by the interlaced
wire medium is longitudinal such that on average the electric
field has the same orientation as the wave vector k [15]. The
interlaced wire medium also supports three high frequency
modes, specifically two degenerate transverse electromagnetic
(TEM) modes and an additional longitudinal mode. The field
profiles of these modes are shown in Figs. 1(ciii) and 1(cii),
respectively. The high frequency modes propagate only above
an effective plasma frequency given by ωp, ef ≈ 2.3 c/a, and
their dispersion and polarization is consistent with what is
expected of a (spatially dispersive) 3D electron gas [11].

Clearly, the coupling between the two wire meshes leads
to the emergence of a longitudinal propagating state in the
low frequency limit. Can this mode, however, be excited by
an incoming plane wave propagating in air? To answer this
question, we used CST Microwave Studio to find the reflection
and transmission coefficients for an incident plane wave with
magnetic field directed along x [transverse magnetic (TM)
polarization] as a function of the incidence angle. The plane of
incidence is the yoz plane and the geometry of the scattering
problem is sketched in the inset of Fig. 2(a).

The normalized frequency is ωa/c = 1.32 and the thickness
of the interlaced wire medium slab is L ≈ 6a. Counterin-
tuitively, the full wave simulations [discrete green symbols
in Fig. 2(a)] reveal that the transmission level increases
with the incidence angle. Furthermore, startlingly, there is
sharp transmission peak near θ inc = 80◦, corresponding to an
anomalous light tunneling through the metal wire meshes.
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FIG. 1. (a) Geometry of the interlaced wire meshes. The wires of each network are spaced by a distance a along the coordinate axes. The
distance between the two nonconnected networks is a/2. (b) Band diagram of the electromagnetic modes along the direction �X. Solid lines:
analytical model; discrete symbols: full wave simulations. The inset shows the cubic unit cell of the structure. The wires are PEC and are
embedded in a dielectric with permittivity εh = 1; the radii of the wires are rw,A = 0.001a and rw,B = 0.05a. (c) Electric field profile for (i)
Low-frequency longitudinal mode at ωa/c = 0.20, (ii) high-frequency longitudinal mode at ωa/c = 2.30, (iii) one of the degenerate TEM
modes at ωa/c = 2.32. The modes are marked with green stars in (b).

For comparison, we provide in the Appendix the trans-
mission characteristic of the individual meshes A and B
at the same oscillation frequency. As expected, the indi-
vidual metallic meshes block very effectively the incoming
radiation.

III. ANALYTICAL MODEL

We developed an analytical model to uncover the physical
principles underlying the light tunneling anomaly. Following
Refs. [11,12,14], for long wavelengths a 3D metallic network
can be modeled as an effective medium with dielectric

(a) (b)

FIG. 2. (a) Amplitude of the transmission coefficient as function of the incidence angle for the normalized frequency ωa/c = 1.32 and
normalized thickness L/a ≈ 6. The remaining structural parameters are as in Fig. 1. The inset shows the geometry of the problem. (b) Amplitude
of the transmission coefficient as a function of the normalized thickness for the fixed frequency ωa/c = 1.32 and incidence angle 80°. The
solid lines represent the analytical results, and the discrete symbols represent the full wave simulations results.
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function:

ε

ε0
= εt (ω)

(
1 − k ⊗ k

k2

)
+ εl(ω, k)

k ⊗ k
k2

, (1)

where 1 is the identity dyadic, ⊗ denotes the tensor product,
εt (ω) is the transverse permittivity, and εl(ω, k) is the longi-
tudinal permittivity. The dielectric function depends explicitly
on the wave vector k = −i∇, and hence the effective medium
response is spatially dispersive. Evidently, the dielectric
function has contributions from both networks A and B. Under
the hypothesis that the two networks interact with one another
as homogenized media, the two individual responses can be
additively combined [11,14,21]. This approximation is more
accurate when the physical distance between the two networks
is larger; in this paper, the distance between the networks is
the largest possible (a/2). Then, from Ref. [12, Eq. (32)] it is
possible to write (supposing without loss of generality that the
host medium is air):

εt (ω) = 1 +
∑

i=A,B

(
1

εm, i − 1

1

fV, i

− ω2

c2k2
p, i

)−1

, (2a)

εl(ω, k)=1+
∑

i=A,B

(
k2

l0, ik
2
p, i

+ 1

εm, i − 1

1

fV, i

− ω2

c2k2
p, i

)−1

.

(2b)

In the above, εm, i = εm, i(ω) (i = A,B) is the relative
permittivity of the metal for the ith wire mesh, fV, i =
πr2

w,i/a
2 is the volume fraction of the wires, kp, i =

2π
a

[ln( a
2π rw,i

) + 0.5275]−1/2 is the effective plasma wave num-

ber, and l0, i = 3/(1 + 2k2
p, i/β

2
1, i) is a dimensionless slow wave

factor that determines the strength of the nonlocal response
[11,12]. The slow wave factor is typically on the order of
l0, i ∼ 2 and is written in terms of a parameter β1, i , whose
definition can be found in Refs. [11] and [12]. Note that a
local response would require l0, i → ∞; the small value of l0, i

highlights that the effective medium is strongly nonlocal.
Note that, provided the meshes are not identical (e.g., if

the wire radii are different), the sublattices responses are not
blended in the homogenization model. Indeed, in such a case
the effective dielectric function [Eq. (2a)] is the sum of two
terms with different dependences on the wave vector. This
property allows the two components of the structure to be
distinguished in the homogenization model, and we will make
use of this feature when enforcing boundary conditions.

The dispersion of the transverse (TEM) modes is deter-
mined by k2 = (ω/c)2 εt (ω). The TEM modes are doubly
degenerate and have electromagnetic fields perpendicular
to the wave vector. In the particular case of PEC wires
(εm, i = −∞), the TEM modes propagate only above the
plasma frequency ωp, ef = c

√
k2
p,A + k2

p,B, which is thereby
larger than the plasma frequencies of the individual wire
networks (ωp, i = ckp,i , i = A, B). This is consistent with
the heuristic idea that the interlaced wire meshes block more
effectively the radiation than each individual wire network
on its own. On the other hand, the longitudinal waves have
a vanishing magnetic field and electric field directed along
the wave vector. The dispersion of the longitudinal modes is
determined by εl(ω, k) = 0, and, provided the two networks
are different (e.g., if rw,A 
= rw,B), it can be reduced to a
quadratic polynomial equation in the variable k2. This means
that the interlaced wire medium supports two longitudinal
modes. Figure 1(b) shows that overall, good agreement occurs
between the analytical model (solid lines) and the full wave
numerical results (discrete points). Furthermore, consistent
with the numerically simulated photonic band structure and
with Ref. [15], one of the longitudinal modes predicted by our
analytical model has no cutoff and propagates for arbitrarily
low frequencies.

We build on ideas from our previous works [12,14,21,22]
to characterize with the analytical model the scattering of an
incident plane wave by a finite thickness metamaterial slab.
The total magnetic field (H = Hx x̂) can be expanded in plane
waves in all regions of space as follows [see the geometry in
the inset of Fig. 2(a)]:

Hx = H inc
0 ei kyy ×

⎧⎪⎨
⎪⎩

eik0
z z + Re−ik0

z z, z � 0

A+
T eik

(T )
z z + A−

T e−ik
(T )
z z, 0 � z � L

T eik0
z (z−L), z � L

,

(3)

where H inc
0 is the complex amplitude of the incident wave,

R and T are the reflection and transmission coefficients,
A±

T are the unknown amplitudes of the transverse mode

in the wire medium, and k(T )
z =

√
(ω/c)2 εt (ω) − k2

y is the
propagation constant along z of the transverse wave in the
wire medium. The incident wave vector is k+

0 = ky ŷ + k0
z ẑ,

with ky = (ω/c) sin θ inc and k0
z =

√
(ω/c)2 − k2

y . Note that the
longitudinal modes have a vanishing magnetic field, and hence
H depends only on the transverse mode in the interlaced wire
medium.

In contrast, the electric field depends on both the transverse
and longitudinal fields inside the wire medium and is given by

E = H inc
0

ωε0
eikyy ×

⎧⎪⎪⎨
⎪⎪⎩

x̂ × k+
0 eik0

z z + x̂ × k−
0 R e−ik0

z z, z � 0∑
±

(
B±

L,1k±
L, 1e

±ik
(L, 1)
z z + B±

L,2k±
L, 2e

±ik
(L, 2)
z z + 1

εt
x̂ × k±

T A±
T e±ik

(T )
z z

)
, 0 � z � L

x̂ × k+
0 T eik0

z (z−L), z � L

, (4)

where k
(L,j )
z (j = 1,2) are the z-propagation constants of

the two longitudinal modes [which are found by solving
εl(ω, k) = 0 with respect to kz] and B±

L,j (j = 1, 2) are the
unknown complex amplitudes of the longitudinal modes for
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the ± directions of propagation with respect to the z axis.
Furthermore, we defined k±

0 = ky ŷ ± k0
z ẑ, k±

T = ky ŷ ± k(T )
z ẑ,

and k±
L,j = ky ŷ ± k

(L,j )
z ẑ. Note that the transverse part of the

electric field can be obtained from the magnetic field using
ET = 1

−iωε0εt
∇ × H.

The unknown coefficients (R, T , A±
T , B±

L,j ) are found by
imposing suitable boundary conditions at the z = 0 and z = L

interfaces. As usual, we require the continuity of the tangential
electromagnetic fields (Hx and Ey) at the interfaces. However,
due to the nonlocal response of the interlaced wire medium,
these Maxwellian boundary conditions are insufficient to
determine all the unknowns, and therefore one needs to enforce
additional boundary conditions (ABCs) [12,14,22–25]. The
standard (Pekar) ABC for a nonlocal plasma imposes that
the normal component of the polarization current due to the
drift charges (−iωPz) vanishes at the interfaces [12,26–28].
As shown in our previous works [19,21,22], this ABC can
be extended to different types of wire media with multiple
disconnected components. The idea is that the currents flowing
in the individual meshes (here A and B) are independent, and
therefore it is required that the contribution of each mesh to
the polarization vector vanishes separately at the interfaces:

Pz,i = 0, (i = A,B) at z = 0 and z = L. (5)

The polarization vector associated with the ith wire mesh
(i = A, B) is Pi = (εi − ε01) · E, εi = εi(ω,−i∇) being the
dielectric function of the ith wire mesh alone. The dielectric
function εi is defined as in Eqs. (1)–(2) except that the
summations in Eq. (2) are restricted to the relevant i-index.
Straightforward calculations show that Pz,i can be explicitly
written as follows:

Pz,i = H inc
0

ω
eikyy

∑
±

(
±k(L,1)

z

(
ε

(1)
l,i − 1

)
B±

L,1e
±ik

(L, 1)
z z

± k(L,2)
z

(
ε

(2)
l,i − 1

)
B±

L,2e
±ik

(L, 2)
z z + εt,i − 1

εt

kyA
±
T e±ik

(T )
z z

)
.

(6)

In the above, εt,i(ω) = 1 + (
1

εm, i−1
1

fV, i
− ω2

c2k2
p, i

)−1
is the

transverse permittivity of the ith mesh, and ε
(j )
l,i = 1 +( |kL,j |2

l0, i k
2
p, i

+ 1
εm, i−1

1
fV, i

− ω2

c2k2
p, i

)−1
is the corresponding longi-

tudinal permittivity (i = A, B; j = 1, 2). In summary, the

transmission and reflection coefficients can be found with the
effective medium formalism by imposing the continuity of the
tangential fields and two ABCs [Eq. (5)] per interface.

Using the outlined formalism, we calculated the transmis-
sion coefficient as a function of the incidence angle for the
example discussed earlier. As shown in Fig. 2(a), there is
a truly remarkable agreement between the analytical model
(solid line) and the CST full wave simulations. Figure 2(b)
shows the transmission coefficient as function of the normal-
ized thickness (L/a) for ωa/c = 1.32. The analytical results
(solid line) follow closely the full wave simulations (discrete
symbols), which further validates our effective medium model
and confirms the anomalous light tunneling. There are multiple
transmission resonances, even for thicknesses as large as
L/a ∼ 10. The position of the transmission peaks is accurately
predicted by the analytical model.

To study the impact of metallic loss on the tunneling
anomaly, it is supposed next that the wires have a finite
conductivity σi (i = A, B) and that the lattice constant is
a = 1 mm. Thus, the metal complex permittivity is taken equal
to εm, i = 1 + σi/(−iωε0). In general, the effect of metallic
loss in the wire networks is negligible provided that the radius
of the wires is a few times larger than the skin depth of the
metal (δ) [29]. Figures 3(a) and 3(b) show the amplitude of the
transmission coefficient for different values of the conductivity
σB of the wires in mesh B, considering that the wires in
mesh A are perfect conductors (σA = ∞). For the copper
case (σB,Cu = 5.96×107 S m−1) the loss effects are negligible,
which is expected because the metal skin depth at the con-
sidered frequency (δB = √

2/(ωμ0σB) = 0.26 μm) is much
smaller than the corresponding wire radius rw,B = 0.05 mm.
For the conductivity σB = 103 S m−1 (δB = 0.06 mm), the
transmission peaks are evidently damped because a significant
fraction of the fields energy can penetrate inside the lossy
metal. The transmission level remains significant if rw,i � δi ,
even when both wire meshes have a finite conductivity. This is
illustrated in Fig. 3(c) for the case of copper wires and a lattice
period a = 1 cm. Note that mesh A (with the thinner wires) is
more sensitive to the effect of loss.

IV. PHYSICAL ORIGIN OF THE EFFECT

Figure 4(a) shows a density plot of the transmission
coefficient as a function of L and θ inc for PEC wires and

(a) (b) (c)

FIG. 3. (a), (b) Similar to Fig. 2(b) considering that the wires in mesh B have a finite conductivity and a = 1 mm. (c) Similar to (a)
considering that the wires in both meshes are made of copper and a = 1 cm. In all the panels, the solid lines represent the analytical results,
and the discrete symbols represent the full wave simulations results.
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(a) (b)

FIG. 4. (a) Density plot of the transmission coefficient amplitude as a function of the normalized thickness L/a and of the incidence angle
θ inc at the fixed frequency of ωa/c = 1.32. (b) Incidence angle θ inc as a function of L/a for the nth (n = 1, 2, . . .) Fabry-Pérot resonance of
the propagating longitudinal mode at ωa/c = 1.32.

ωa/c = 1.32. The density plot exhibits multiple sharp bright
lines. The transmission is typically negligible for small
incidence angles; in fact, for normal incidence the propagat-
ing longitudinal mode cannot be excited. The transmission
level becomes stronger for large incidence angles (grazing
incidence) and for specific values of the thickness.

To understand the origin of the sharp lines, we investigated
the FP condition for the propagating longitudinal mode
(k(L,1)

z L = nπ, n = 1, 2, 3, . . .). Figure 4(b) represents the
combination of parameters L and θ inc required to have a FP
resonance of order n for a fixed ω. Note that for a fixed
frequency, the propagation constant k(L,1)

z is a function of
the incidence angle. As seen, an obvious coincidence occurs
between the FP-resonance lines in Fig. 4(b) and the sharp
bright lines in Fig. 4(a). This clearly proves that the tunneling
anomaly is due to the FP resonance of the propagating
longitudinal mode.

Figure 5 shows results analogous to Fig. 4 but for a fixed slab
thickness (L/a ≈ 6) and for varying frequency and incidence
angle. The density plot of Fig. 5(a) is characterized by multiple

sharp lines, which are especially bright for large incidence
angles. Figure 5(b) identifies the combinations of parameters
ωa/c and θ inc associated with the nth order FP resonance of
the propagating longitudinal mode. Again, a precise matching
occurs between the FP-resonance lines in Fig. 5(b) and the
sharp bright lines in Fig. 5(a). Moreover, the results of Fig. 5
reveal that the tunneling anomaly can in principle occur for
extremely long wavelengths (ωa/c � 1). Indeed, for grazing
incidence and for the considered wire radii, the first resonance
occurs for ωL/c ∼ 2.6, approximately independent of the
value of L/a.

It is illuminating to see the profiles of the polarization
currents in each wire mesh obtained with the effective medium
model. Figure 6 depicts the profiles of Pz, A and Pz, B [see
Eq. (6)] for the first two peaks of the transmission coefficient in
Fig. 2(b). As expected, the field profiles are consistent with FP
resonances of first and second order, as well as with full wave
simulations of the electric current density [see Figs. 6(aii) and
6(bii)]. However, the most remarkable thing in Fig. 6 is that it
reveals that at the transmission resonances the polarization

(a) (b)

FIG. 5. (a) Density plot of the transmission coefficient amplitude as a function of the normalized frequency ωa/c and of the incidence angle
θ inc for the fixed slab thickness L/a ≈ 6. (b) Incidence angle θ inc as a function of the normalized frequency ωa/c for the nth (n = 1, 2, . . .)
Fabry-Pérot resonance of the propagating longitudinal mode and L/a ≈ 6.
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(ai) (bi)

(aii) (bii)

FIG. 6. (ai), (bi) Phase difference (black dashed lines) and normalized amplitude (blue and green lines) of the z component of the
macroscopic polarizations Pz,A and Pz,B [Eq. (6)] associated with the wire meshes A and B for (ai) the first FP resonance (L/a ≈ 2) and (bi)
the second FP resonance (L/a ≈ 4). The solid blue (dot-dashed green) line represents the contribution from the wire mesh A (wire mesh B).
The normalized frequency is ωa/c = 1.32, and the incidence angle is 80°. The remaining simulation parameters are as in Fig. 2(b). (aii), (bii)
Full wave simulation results of the microscopic current density for the scenarios (ai) (first FP resonance) and (bi) (second FP resonance),
respectively.

vectors Pz, A and Pz, B, and thereby the currents in the A
and B meshes, have nearly identical amplitudes and are 180°
phase shifted (φA − φB = 180◦). Thus, the tunneling anomaly
is made possible by a destructive interference of the fields
radiated by the two wire meshes. Indeed, for long wavelengths
the scattering by the interlaced wire medium is typically
dominated by a strongly radiative dipolar mode (bright mode)
due to the in-phase interference of the fields scattered by the
two wire meshes. This mode typically determines the overall
scattering of the structure. In particular, for low frequencies
it creates a scattered wave that cancels out the incoming
wave in the direction of propagation, leading to a near-zero
transmission. Crucially, because of the structural asymmetry of
the interlaced wire media (rw, A 
= rw, B), the currents excited in
meshes A and B may be different. This enables the formation of
a narrow antibonding mode (dark mode), such that the current
in one of the meshes flips sign for a narrow range of incident
angles, leading to a subradiant regime. Such a dark mode has a
precise resonant frequency determined by the FP condition
of the longitudinal mode, and it is therefore inherently a
discrete state. The excitation of the dark mode originates the
transmission peaks. Thus, the physical origin of the tunneling
anomaly is a Fano-type resonance [21,30–32] that enables
the cancellation of the scattering by the two subcomponents
of the interlaced wire medium. Remarkably, in our system
the two scatterers (i.e., the wire meshes) that create the Fano
resonance are infinitely extended in space. Hence, we provide
a rather unique example of scattering cancellation based on
the interference of two infinitely extended opaque objects.

V. CONCLUSION

In summary, we theoretically predict the counterintuitive
effect of light tunneling due to the destructive interference of

the scattering by two interlaced 3D wire meshes. The effect is
rooted in a subradiant Fano-type resonance and was explained
with an effective medium theory that models the interlaced
wire medium as a spatially dispersive continuum. It was shown
that the transmission peaks correspond to FP resonances of a
longitudinal propagating mode supported by the metamaterial.
It is underlined that the longitudinal mode can be excited by a
(slowly varying in space) plane wave only due to the structural
asymmetry of the wire meshes. The structural asymmetry is
mandatory in order that the currents in the two wire meshes
can be 180° out of phase. Since the transmission peaks are very
sensitive to changes of the incidence angle, frequency, and of
other structural parameters, the interlaced wire medium may
find interesting applications in sensing and angular filtering.
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APPENDIX: BAND STRUCTURE AND TRANSMISSION
CHARACTERISTICS OF THE INDIVIDUAL WIRE MESHES

We consider two independent 3D metallic wire meshes A
and B. The metal is assumed to be a PEC, and the host material
is air. As in the main text, the wire radius is rw,A = 0.001a for
the wire mesh A and rw,B = 0.05a for the wire mesh B, where a

is the lattice period. Figure 7 shows the photonic band structure
calculated with CST Microwave Studio (discrete symbols) and
with the analytical model (solid lines) of Refs. [11] and [12].
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FIG. 7. Band diagram of the electromagnetic modes along the
�X direction for each individual wire mesh. Solid lines: analytical
model; discrete symbols: full wave simulations [16]. The wires are
PEC and are embedded in air. The lattice period is a. Blue color:
wire mesh A with rw,A = 0.001a. Green color: wire mesh B with
rw,B = 0.05a.

As seen, the individual wire meshes do not support light states
in the long wavelength regime [11,12].

Next, we consider the case where a metamaterial slab
is excited by an incident plane wave polarized, as shown
in the inset of Fig. 8, with the incidence angle 80◦. The
oscillation frequency is fixed as ωa/c = 1.32. Figure 8 depicts
the amplitude of the transmission coefficient as function of
the normalized thickness L/a for each of the individual
wire meshes. As seen for a sufficiently thick metamaterial
slab, the transmission level is rather weak. Note that in this

FIG. 8. Amplitude of the transmission coefficient as function of
the normalized thickness for the fixed frequency ωa/c = 1.32 and
incidence angle 80◦. Blue color: wire mesh A with rw,A = 0.001a.
Green color: wire mesh B with rw,B = 0.05a. Solid lines: analytical
model [12]; discrete symbols: full wave simulations [16]. The inset
shows the geometry of the problem.

example ω is less than the effective plasma frequency for
mesh B (ωB

p,ef ≈ 1.93 c/a) but greater than the effective
plasma frequency for mesh A (ωA

p,ef ≈ 1.06 c/a). Even though
the mesh A supports propagating modes, the transmission
level is negligible because of the large incidence angle.
Indeed, a standard metallic mesh typically blocks very
effectively the incoming radiation for grazing incidence,
even when the frequency is larger than the effective plasma
frequency.
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