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Reexamination of the Abraham-Minkowski dilemma
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Here the Abraham-Minkowski controversy on the correct definition of the light momentum in a macroscopic
medium is revisited with the purpose to highlight that an effective medium formalism necessarily restricts the
available information on the internal state of a system, and that this is ultimately the reason why the dilemma has
no universal solution. Despite these difficulties, it is demonstrated that in the limit of no material absorption and
under steady-state conditions, the time-averaged light (kinetic) momentum may be unambiguously determined by
the Abraham result, both for bodies at rest and for circulatory flows of matter. The implications of these findings
are discussed in the context of quantum optics of moving media, and we examine in detail the fundamental role
of the Minkowski momentum in such a context.
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I. INTRODUCTION

The definition of the electromagnetic field momentum
in a macroscopic material body is a fascinating problem,
and is perhaps the longest standing quandary in classical
electrodynamics [1,2]. The two main rival theories for the
momentum of light were introduced more than 100 years
ago by Minkowski and Abraham [1,2]. Compelling and
elegant gedanken experiments related to the center of mass
energy favor Abraham’s result [3,4]. Other powerful arguments
related to light diffraction and to Heisenberg’s uncertainty
principle appear to favor Minkowski’s momentum [5]. A few
now classical experiments attempted to settle the dispute
(e.g., [6–8]) and their results at first sight suggest that
Minkowski’s momentum gives the correct answer. However,
careful consideration of all the forces acting on the relevant
material bodies show that the experimental results are fully
compatible with Abraham’s momentum [9,10]. A seminal
experiment was performed by Walker [1,11] and verified the
so-called Abraham component of the Lorentz force, thereby
providing rather strong experimental evidence in favor of
Abraham’s theory. The uncertainty in the definition of the
macroscopic momentum extends to the angular momentum of
light [12–14].

Significant progress has been made in the last decade on the
solution of the problem [2,15,16]. It is now well understood
that there are two relevant momenta: a “canonical” momentum
and a “kinetic” momentum [16]. The two light momenta are
equally significant, and when combined with their material
counterparts give the total momentum of the system. The
existence of two momenta is rooted in the fact that in a
Lagrangian formalism the canonical momentum of charged
matter usually differs from the kinetic momentum. The
distinction between the canonical and the kinetic momentum
of matter (or of light) is rather fundamental and occurs both in
macroscopic and microscopic approaches. In Ref. [16], Barnett
showed that the Abraham and Minkowski momenta may be
understood as the kinetic and the canonical momenta of light
in a macroscopic medium, respectively. This interpretation
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solves some of the difficulties of the century old controversy
and underlines the importance of both the Abraham and of the
Minkowski proposals.

Another influential article is that of Pfeifer et al. [2],
which highlights that a framework based on Abraham’s
momentum is fully equivalent to a formulation relying on
Minkowski’s momentum, being the adopted approach a matter
of personal choice. The central argument is that the division
of the total energy-momentum tensor into light and matter
components is entirely arbitrary [4]. In fact, provided the
total energy-momentum tensor is the same for two different
frameworks (e.g., as in Eqs. (40)–(43) of Ref. [2]), then the
optical (Lorentz) force acting on a given macroscopic material
element, and thereby the associated kinematics, is independent
of the adopted light momentum formula. Thus, the Minkowski
and Abraham forms of the light momentum can be reconciled
by choosing suitable material parts of the energy-momentum
tensor that guarantee that the dynamics of a light-matter system
is effectively independent of the formalism. Specifically, in
Ref. [2] the material part of the energy-momentum tensor
is chosen in such a way that the momentum of matter
is given by the standard kinetic momentum in Abraham’s
formalism, whereas in Minkowski’s formalism it corresponds
to a canonical momentum. In agreement with the theory of
Barnett, the sum of the Abraham momentum and the kinetic
momentum of matter is precisely the same as the sum of
the Minkowski momentum and the canonical momentum of
matter [2].

Despite these recent advancements, we feel that there
are few aspects of the conundrum that are not necessarily
settled. For example, can the Abraham momentum be really
understood as a universal kinetic light momentum such
that when combined with the matter kinetic momentum
yields the total momentum (ptot) of a macroscopic material
element? Specifically, consider the problem of writing the
total momentum of a given material element in terms of
the matter kinetic momentum (pkin) and of the instantaneous
macroscopic electromagnetic fields. As previously discussed,
the answer provided by Eqs. (40)–(43) of Ref. [2] is ptot =
pkin + pEM with pEM = 1

c2

∫
material E×HdV , independent of

the adopted (Abraham or Minkowski) formalism. However, in
our perspective, the second term (pEM) of the total momentum,
i.e., the kinetic momentum of light, is not necessarily settled,
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and may be challenged by future experiments. Indeed, pkin

can be unambiguously measured and the total momentum
transferred to a material body can also be determined, as further
discussed later.

In our view, the difficulty in the determination of the
momentum of light is rather fundamental and results mainly
from limitations inherent to macroscopic electrodynamics.
These limitations have been previously discussed in the
literature [1,2,4]. In the words of Brevik [1], the “problem
has no unique solution,” or quoting Pfeifer et al. the difficulty
in writing the total momentum in terms of the macroscopic
fields is due to “our (incomplete) understanding of material
science” [2]. The key idea that guides the present research is
that expressing either the kinetic or canonical light momenta
in terms of the macroscopic fields remains an open problem.
This difficulty is at the heart of the Abraham-Minkowski
controversy, which has thereby its origin in the incomplete
picture provided by an effective medium formalism. The
central question under analysis in this article is how to write
pEM in terms of the macroscopic fields, ensuring that the result
is consistent with a microscopic theory.

We find that despite the above discussed difficulties,
under steady-state conditions and for dispersive media with
negligible absorption loss the standard theory of macroscopic
electrodynamics may provide enough information about the
microscopic degrees of freedom to enable us to unambiguously
determine the kinetic momentum of light (pEM) in a material
body. It is shown that in a transient regime things are not
as straightforward due to an incomplete knowledge of the
microscopic state of the system, and generally it may not
be feasible to exactly determine the light momentum without
further information about the internal degrees of freedom of
the material. Finally, we discuss the formula for the light
momentum in systems with moving parts, and the implications
of our findings in the context of quantum optics.

Our analysis relies on simple energy and momentum
conservation laws and on the assumption that the effective
medium theory is sufficiently accurate so that outside the
relevant materials the macroscopic and microscopic fields are
coincident. Thus, we do not make any a priori assumptions
about the microstructure of the materials, constitutive rela-
tions, the Lagrangian of the macroscopic system, or about the
formulas of the light momenta and Lorentz force in the medium
when written in terms of the macroscopic fields. In these rather
general conditions, it is found that the macroscopic kinetic light
momentum in steady-state conditions may be unequivocally
determined when the materials are nondissipative. It should
be noted that the use of conservation laws in the context of
Abraham-Minkowski dilemma has a long history (see Ref. [2]
and the references therein).

We do not attempt to characterize the macroscopic canon-
ical momentum of light in this article. As previously dis-
cussed, the canonical momentum emerges naturally from the
Lagrangian formalism, and it does not seem possible to find
the canonical momentum directly from the energy-momentum
conservation laws. The Lagrangians used in macroscopic
electrodynamics are to some extent phenomenological and to
the best of our knowledge there is no consensual form for the
Lagrangian (especially, when the motion of matter is taken into
account: compare Refs. [17,18]). Of course, for a particular

Lagrangian there is no difficulty to find the corresponding
canonical and kinetic momenta of light and matter [17–19].
We note in passing that the canonical momentum is not
gauge invariant in a fully microscopic description of matter.
Of course, usually matter is treated macroscopically as a
collection of dipoles, and in the dipole approximation the
canonical momentum does not depend on the field potentials
[20].

II. THE ABRAHAM-MINKOWSKI CONTROVERSY

A. The dilemma

The Abraham-Minkowski controversy is a century old
dilemma on the correct form of the electromagnetic momen-
tum in a macroscopic medium. Abraham proposed that the
macroscopic momentum density is given by

gAb
EM = 1

c2
E × H, (1a)

whereas Minkowski defended the alternative form

gMi
EM = D × B. (1b)

In the modern literature it is well understood that the nature
of the Abraham and Minkowski momenta is different, and the
former is usually regarded as the kinetic light momentum while
the latter is regarded as a canonical light momentum [2,16]. As
such, both momenta have an unquestionable physical meaning.

The light momentum appears in classical electromagnetism
in connection with the stress-tensor theorem, which establishes
that the Lorentz force acting on a set of (microscopic) charged
particles enclosed by some volume V and surrounded by air
is given by [21]

Fmic
L = − d

dt
pmic

EM +
∫

∂V

n̂ · Tds. (2)

Here ∂V represents the boundary surface, T is
the microscopic stress-tensor, T = ε0e ⊗ e + μ−1

0 b ⊗ b −
( 1

2ε0e · e + 1
2μ−1

0 b · b)1, and pmic
EM is the (kinetic) momentum

of the fields in the volume V :

pmic
EM =

∫
V

ε0e × bdV . (3)

The microscopic (macroscopic) fields are denoted with
lower (upper) case letters. The puzzle is that in an effective
medium framework, when the material is regarded as a
continuum, it is not obvious how to write pmic

EM in terms of
the macroscopic fields. The solution of this problem is the
central objective of this work.

Fortunately, there are no similar difficulties in calculating
the second term of the Lorentz force (

∫
∂V

n̂ · Tds). Indeed,
the stress tensor T is evaluated in the air region, and in this
region the microscopic fields may be assumed identical to the
macroscopic fields. In particular, one sees that in a stationary
regime (e.g., for any periodic in time excitation) one has

〈
Fmic

L

〉
T

=
∫

∂V

n̂ · 〈T〉T ds. (4)
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where 〈· · · 〉T represents time averaging in one period of oscil-
lation. Thus, the time-averaged Lorentz force is independent
of the electromagnetic momentum: it is simply determined
by the stress tensor at the material boundary, which has an
unequivocal form in the air region, even in the framework of
macroscopic electromagnetism. In fact, the light-momentum
conundrum has relevant physical consequences mainly in the
context of transient phenomena [9,11], and this explains some
of the difficulties in settling the dilemma experimentally in
the early years. Indeed, pmic

EM determines the time dynamics of
the Lorentz force. Without knowing pmic

EM, it is impossible to
predict exactly the motion of a polarizable material body in a
transient regime.

The point of view of this article is that the macroscopic
kinetic electromagnetic momentum density gEM should ideally
be some function of the macroscopic fields that when inte-
grated over some generic region V of space gives a momentum
that agrees with the microscopic theory:

pEM ≡
∫

V

gEMdV =
∫

V

ε0e × bdV . (5)

Thus, when pEM is combined with the kinetic momentum
of the material particles one obtains the total momentum
inside V .

B. Decompositions of energy and momentum

We are interested in the interactions between polarizable
material bodies and the electromagnetic field. Since an exact
relativistic treatment seems to be a hopeless task in the general
context of macroscopic electrodynamics, in our theory any
relativistic corrections in the formulas of physical quantities,
such as energy, momentum, etc., on the order of v2

α/c2 are
neglected. Here vα is a generic velocity, for example the
velocity of a generic microscopic charged particle.

Within a o(v2
α/c2) approximation [o(· · · ) represents a quan-

tity with magnitude on the order of the term in parentheses], the
total kinetic momentum of a set of charged particles (with rest
mass mα and velocity vα) is given by pmic

kin = ∑
α mαvα = Mv,

where M is the total mass and v is the center of mass velocity.
The total momentum in a generic volume V can be written as
the sum of the electromagnetic momentum and the kinetic
momentum (here it is supposed for simplicity that all the
particles are associated with the same material body) [2]:

pmic
tot = pmic

EM + pmic
kin = pmic

EM + Mv. (6)

The time derivative of the kinetic momentum is determined
by Newton’s law

dpmic
kin

dt
= M

dv
dt

= Fmic
L + Fmic

ext , (7)

where Fmic
ext represents the sum of possible external forces (e.g.,

mechanical forces) acting on the body, and Fmic
L is Lorentz’s

force [Eq. (2)].
On the other hand, the total energy in volume V is the

sum of the electromagnetic, the kinetic, and the rest mass
energies, Ẽmic

tot = Emic
EM + Emic

kin + Mc2. The rest mass energy is
included for a matter of consistency. The kinetic energy can be
conveniently decomposed as the center of mass energy ( 1

2Mv2)
and a vibrational energy (Emic

vib ≡ Emic
kin − Mv2/2), which for

our purposes is determined by charge oscillations (e.g., dipole
oscillations). Hence, it is possible to write the total kinetic and
electromagnetic energies Emic

tot ≡ Ẽmic
tot − Mc2 as

Emic
tot = Emic

EM + Emic
vib + 1

2Mv2. (8)

In a few instances, we shall be interested in massive material
bodies at rest with a mass that can be assumed infinitely
large (M → ∞) from the point of view of light interactions,
so that the center of mass position can be regarded as time
independent and the center of mass velocity is near zero, v ≈ 0,
at all time instants. Importantly, in the described conditions
the kinetic momentum pmic

kin = Mv is generally finite and
cannot be neglected (note that v ≈ 0 but M ≈ ∞). In contrast,
the center of mass kinetic energy can be safely disregarded
( 1

2Mv2 = 1
2 pmic

kin · v ≈ 0). For example, a mirror illuminated
by an optical beam feels an unceasing radiation pressure,
and hence its kinetic momentum increases linearly with time.
Nevertheless, if the mirror is sufficiently massive its position
is nearly time independent and v ≈ 0.

For future reference, we note that for a closed system (in
the absence of external forces or of dissipation) the following
conservation law is necessarily satisfied at the microscopic
level:

∇ · Smic
tot + dW̃mic

tot

dt
= 0. (9)

Here Smic
tot = e × b/μ0 + Smic

mat is the total microscopic en-
ergy density flux and W̃mic

tot is the total energy density at the
microscopic level (including the rest mass energy) [2]. The
energy density flux has a light component (e × b/μ0) and a
matter component (Smic

mat). The matter component Smic
mat describes

the energy flux determined by the flow of material particles,
i.e., the flow of the rest mass energy and of the kinetic energy.
It can be written as Smic

mat = ρmat(c2 + v2
mic/2)vmic, where ρmat

is the mass density and vmic is the microscopic velocity of the
particles at point r.

Within the o(v2
α/c2) approximation, the relativistic relation

between the energy and the momentum of a single particle
(p = Ev/c2) is only satisfied with an accuracy of o(v2

α/c2).
As a consequence, the relation between the matter momentum
density (gmic

mat) and the matter energy density flux is gmic
mat =

Smic
mat/c

2 only with a precision of o(v2
α/c2). Indeed, within the

previously discussed approximations one has gmic
mat = ρmatvmic

and therefore gmic
mat = Smic

mat/c
2 + o(v2

mic/c
2). For this reason, the

total momentum density (of light and matter) also satisfies
gmic

tot = Smic
tot /c2 + o(v2

mic/c
2).

C. Limitations of macroscopic electrodynamics

Macroscopic electrodynamics is a tremendously successful
theory that reduces light-matter interaction problems of great
complexity to simpler problems that are analytically (or
numerically) tractable. This is done by averaging out the spatial
fluctuations of the microscopic fields [21]. The increased
simplicity necessarily implies that some information about the
material is lost in the homogenization process. Nevertheless,
effective medium theories are rather powerful and often enable
us to predict with great accuracy the electrodynamics of
complex systems. It is useful to revisit why this is so and
highlight some limitations of macroscopic electrodynamics.
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Let us suppose again that some material body is enclosed
in a volume V surrounded by air (or by a vacuum). It is
assumed that the material response can be characterized in the
framework of some effective medium theory that determines
the time dynamics of the macroscopic fields (E,B). The only
thing we need to assume for now is that the effective medium
theory is good enough so that, for a given excitation, the
macroscopic fields (E,B) agree in the air regions with the
microscopic fields (e,b) determined by the same excitation.
This property implies that with the macroscopic theory it is
possible to determine both the Poynting vector and the stress
tensor in the air region, and that the corresponding formulas
agree with the microscopic theory results. Hence, using simply
the universal conservation laws for energy and momentum (and
supposing that no material particles cross the boundary ∂V in
the time interval of interest) it possible to guarantee that∫

∂V

S0 · n̂ds = −dEmic
tot

dt
− pmic

d , (10a)

∫
∂V

T0 · n̂ds = d

dt

(
pmic

kin + pmic
EM

) − Fmic
ext , (10b)

with S0 = E × B
μ0

and T0 = ε0E ⊗ E + μ−1
0 B ⊗ B −

( 1
2ε0E · E + 1

2μ−1
0 B · B)1. In the above, Emic

tot represents
the total energy (of light and matter) enclosed by the
volume V , and pmic

kin is the kinetic momentum of the material
particles in V . Generally, the system may be open and
interact with the exterior so that pmic

d represents the power
dissipated (e.g., in the form of heat) and Fmic

ext represents
the total force due to interactions with the exterior. All the
quantities on the right-hand side of Eq. (10) are inherently
microscopic, whereas the left-hand side is written in terms of
the macroscopic electromagnetic fields.

In the following, we focus on the case where there is
no dissipation (pmic

d = 0, Fmic
ext = 0). Then, it is clear from

(10) that it is possible within the framework of macroscopic
electrodynamics to determine exactly how much is the total
energy and total momentum stored in the material body.
Note that both the energy and the momentum have light and
matter components. For example, one may write (apart from
a constant) Emic

tot = − ∫ t

−∞
∫
∂V

S0 · n̂dtds. Usually one can
do better than this. Often, in the framework of macroscopic
electrodynamics it is possible for lossless systems to derive an
energy conservation law of the form (this is possible even for
dispersive systems, see Refs. [22–25])

∇ · Smac + d

dt
Wmac = 0, (11)

where Smac and Wmac are some functions of the macroscopic
fields (and possibly of other additional state variables that
determine the macroscopic response of the medium), such that
Smac = S0 in the air region. Note that the conservation law is
supposed to hold everywhere in V , including at the boundaries
between different regions. In that case, Eq. (10a) implies that
Emic

tot can be written in terms of the macroscopic fields as (apart
from an irrelevant constant)

Emic
tot =

∫
V

WmacdV . (12)

Thus, Wmac can be regarded as the macroscopic stored
energy density and Smac as the macroscopic Poynting vector.
As an example, let us consider the case of a rigid material
body characterized by some permittivity and permeability
with negligible frequency variation. The body is assumed to
be sufficiently massive (M → ∞) so that its center of mass
position is time independent and v ≈ 0. In that case, as is well
known, Wmac = 1

2 (D · E + B · H) and Smac = E × H satisfy
our requirements. Hence, Wmac determines the macroscopic
energy density associated with the electromagnetic energy
and with the vibrational degrees of freedom of the material
(i.e., with the dipole oscillations) such that in this example
Emic

tot = Emic
EM + Emic

vib [26].
The situation changes completely in the presence of

material dissipation. Indeed, in such a case the right-hand side
of Eq. (10a) has two terms, and even though their sum can be
unequivocally determined with macroscopic electrodynamics,
the individual parcels cannot. Indeed, in dissipative media it is
impossible to determine unambiguously the electromagnetic
energy stored in a medium using a purely macroscopic
theory, i.e., with no detailed knowledge of the microscopic
mechanisms that lead to the dissipation [27]. Note that if
one can find some decomposition of the type ∇ · Smac +
d
dt

Wmac + qmac = 0 (Smac, Wmac, qmac being some functions
of the macroscopic fields, and Smac = S0 in the air region) then
one may write d

dt
Emic

tot + pmic
d = d

dt

∫
V

WmacdV + ∫
V

qmacdV .
However, in general it is abusive and incorrect to identify
pmic

d = ∫
V

qmacdV and Emic
tot = ∫

V
WmacdV . Indeed, the first

objection is that Smac, Wmac, qmac may not be uniquely
defined and that one may find alternative S′mac, W ′mac, q ′mac

that lead to different expressions for the stored energy and
dissipated power. A more serious argument that demonstrates
the impossibility of writing Emic

tot in terms of the macroscopic
fields is illustrated by the following example.

Consider some artificial material (metamaterial) formed
by an array of loaded dipoles. It is supposed that each
inclusion is formed by two metallic cylinders joined by a
lumped load (similar to a short dipole antenna with a load
at the terminals). For long wavelengths, the metamaterial
response can be described using effective medium methods
(see, e.g., [28]). We consider two possibilities for the load:
(i) a simple resistor R and (ii) the Vainshtein circuit [27].
The Vainshtein circuit consists of two branches connected
in parallel. The first branch is the series of a resistor R

with an inductor L, and the second branch is the series
of another resistor R with a capacitor C, with L/C = R2.
Interestingly, the input impedance of the Vainshtein circuit,
defined consistently with 1

Zin
= 1

R−iωL
+ 1

R+1/(−iωC) , is simply
R for all frequencies. Clearly, the metamaterial interacts with
an external excitation exactly in the same way independent if
the load is (i) or (ii), and thus the effective medium response
is independent whether the load is a simple resistor R or
the corresponding Vainshtein circuit. However, the two loads
are fundamentally different: one is purely dissipative and
the other is able to store electromagnetic energy within it.
Clearly, an effective medium theory is not able to distin-
guish between the two cases, and hence it is fundamentally
impossible to determine the instantaneous stored energy or
the instantaneous dissipation rate with macroscopic electrody-
namics in the presence of material losses. Thus, macroscopic
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theories have intrinsic limitations, and that is the inevitable
penalty that comes with a simplified description of wave
phenomena.

These problems are partially alleviated in a time-
harmonic regime. In such a case, integrating d

dt
Emic

tot + pmic
d =

d
dt

∫
V

WmacdV + ∫
V

qmacdV over one time period gives
〈pmic

d 〉T = ∫
V

〈qmac〉T dV . Hence, the time-averaged dissipa-
tion rate can be determined unequivocally using macroscopic
electrodynamics [27,29,30].

III. THE ELECTROMAGNETIC MOMENTUM

A. Link between the light momentum
and the macroscopic fields

Unfortunately, Eq. (10b) does not help in any way to decide
which is the correct form of the (kinetic) electromagnetic
momentum, even for a closed system (Fmic

ext = 0). In short,
the problem is that within a macroscopic formalism one
knows the total instantaneous momentum that is transferred
to the material (pmic

kin + pmic
EM) but it is impossible to tell

(with no further assumptions) which part of the transferred
momentum goes to the optical field in the material and
which part goes to the kinetic momentum of the material
particles. Note that this limitation applies as well to massive
bodies (M → ∞) at rest, because as discussed previously
the transferred kinetic momentum cannot be ignored even
if the center of mass position is assumed time independent.
In contrast, as demonstrated in Sec. II C, in the absence of
dissipation Eq. (10a) allows one to precisely determine the
instantaneous value of the energy Emic

EM + Emic
vib because for

massive bodies the center of mass kinetic energy ( 1
2Mv2) is

negligible. Clearly, macroscopic electrodynamics has more
severe limitations in the context of the momentum problem
than in the stored energy problem.

Remarkably, the energy conservation law (9) can shed some
light on the resolution of the puzzle. Let us suppose again that
the material is lossless so that the microscopic conservation
law (9) holds. Furthermore, let Smac be some function of
the macroscopic fields with Smac = S0 in the air regions and
such that Smac satisfies Eq. (11) for some function of the
macroscopic fields Wmac. Supposing again that in the air region
the macroscopic fields can be identified with the microscopic
fields and that no material particles cross the volume boundary,
it is possible to write

1

c2

∫
∂V

r(Smac · n̂)ds = 1

c2

∫
∂V

r
(

e × b
μ0

)
· n̂ds

= 1

c2

∫
∂V

r
(
Smic

tot · n̂
)
ds, (13)

where r = (x,y,z) is the position vector. But from the
divergence theorem and Eqs. (9) and (11) one finds that

1

c2

∫
V

Stot
micdV = 1

c2

∫
V

SmacdV + d�̃

dt
, (14)

where we introduced

�̃ = 1

c2

∫
V

r
(
W̃mic

tot − Wmac
)
dV . (15)

As discussed in the end of Sec. II B, Smic
tot /c2 coincides with

the total microscopic momentum density. In particular, we can
write pmic

tot = 1
c2

∫
V

Smic
tot ds with pmic

tot = pmic
EM + Mv [see Eq. (6)]

with an accuracy of o(v2
α/c2). It is also useful to decompose

the total energy density as W̃mic
tot = Wmic

tot + c2ρmat, such that
the second term is the contribution of the rest mass energy.
Taking into account that d

dt

∫
V

rρmatdV = Mv, we obtain the
key result:

pmic
EM = 1

c2

∫
V

SmacdV + d�

dt
, (16)

where

� = 1

c2

∫
V

r
(
Wmic

tot − Wmac
)
dV . (17)

Note that Wmic
tot stands for the total energy density excluding

the rest mass energy. We would like to highlight that the
unique hypotheses used in the derivation of Eq. (16) are (i) the
microscopic and macroscopic fields agree outside the material
system and (ii) the conservation of energy (material is lossless).

B. Steady-state regime

The first term on the right-hand side of Eq. (16) depends
exclusively on the macroscopic fields. Unfortunately, the
second term depends on both the macroscopic fields and on
the unknown microscopic fields. In many physical situations
one can assume that the system is in a stationary state. The
simplest example is when the electromagnetic excitation is
periodic in time (e.g., time harmonic excitation) and all the
material bodies are at rest, e.g., they are very massive so
that their center of mass positions are time independent and
v ≈ 0. As discussed in Sec. II B, in the M → ∞ limit the
kinetic momentum pmic

kin = Mv is finite and may vary with
time to account for the momentum transferred by the Lorentz
force, but the center of mass kinetic energy is negligibly small
1
2 pmic

kin · v ≈ 0. In the outlined scenario, both Wmic
tot and Wmac

are periodic in time and hence the time average of the second
term in Eq. (18) vanishes. Thus, it follows that〈

pmic
EM

〉
T

= 1

c2

∫
V

〈Smac〉T dV . (18)

Therefore, the time-averaged electromagnetic momentum can
be exactly calculated using macroscopic electrodynamics
when v ≈ 0. In the particular case of local media (e.g., for any
lossless dispersive bianisotropic material modeled by local in
space constitutive relations, see Ref. [22]) it is well known that
Eq. (11) is satisfied with Smac = E × H. Thus, for local media
one has 〈

pmic
EM

〉
T

=
∫

V

〈
gAb

EM

〉
T
dV (local materials). (19)

Thus, in the enunciated conditions the time-averaged (kinetic)
electromagnetic momentum agrees exactly with the Abraham
form. These arguments enable us to reject the Minkowski
momentum as a valid kinetic electromagnetic momentum
for light (in the sense that it cannot predict

∫
V

ε0e × bdV ).
This conclusion is consistent with the modern understanding
that the Minkowski momentum is instead the canonical light
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momentum [16]. However, Eq. (18) also demonstrates that
the Abraham form cannot be universal. Indeed, it is well
known that for nonlocal materials in general the macroscopic
Poynting vector Smac cannot be identified with E × H [27] (see
Ref. [24] for a specific example). Thus, the Abraham form of
the electromagnetic momentum is only acceptable in local
media (i.e., media that have a local response in the co-moving
frame). Crucially, the results (18) and (19) agree exactly with
what was found for a bulk medium in Refs. [29,30] using a
particular first-principles homogenization theory, and which
was verified with extensive numerical simulations.

C. Transient regime

Even though Eq. (18) is an important step forward in the un-
derstanding of the problem, it is not the final word. Indeed, the
instantaneous Lorentz force depends on the detailed variation
in time of pmic

EM [see Eq. (2)], which is given by Eq. (16), and
relies on the unknown microscopic fields through the � vector
function. Here we note that the integral that determines � is
independent of the origin of the coordinate system because
from Eq. (12) one has

∫
V

(Wmic
tot − Wmac)dV = 0.

Unfortunately, without further knowledge of the mi-
crostructure, it does not seem possible to write � using
only the macroscopic fields. This appears to be another
intrinsic limitation of macroscopic electrodynamics. So it is
not surprising that the light-momentum controversy has lasted
for over a century: it seems that without further assumptions
the time dynamics of pmic

EM cannot be exactly predicted within
the realm of macroscopic electrodynamics.

Nevertheless, one can decompose the volume V into its
elementary basic cells (it is supposed without loss of generality
that the material has a crystalline structure; the mth cell is
denoted by �m) to obtain

� = 1

c2

∑
m

∫
�m

r
(
Wmic

tot − Wmac
)
dV

= 1

c2

∑
m

rm

∫
�m

(
Wmic

tot − Wmac
)
dV

+ 1

c2

∑
m

∫
�m

δrm

(
Wmic

tot − Wmac
)
dV, (20)

rm being the center of the mth cell and δrm = r − rm.
Any reasonable homogenization theory should ensure that
when the material body is at rest

∫
�m

(Wmic
tot − Wmac)dV ≈

0, i.e., it should guarantee that inside the material Wmac

corresponds to the spatially averaged microscopic energy
density [29,30]. Thus, it is possible to estimate that � ≈
1
c2

∑
m

∫
�m

δrm(Wmic
tot − Wmac)dV so that from Schwarz’s in-

equality a generic (lth) component of � satisfies

|�l| � a

c2

√
V

12

∫
V

(
Wmic

tot − Wmac
)2

dV , (21)

where V = ∫
V

dV is the volume of the relevant body. To obtain
the upper bound it was assumed for simplicity that the lattice is
cubic and has a period a. From this result, we can very roughly
estimate (taking Wmic

tot − Wmac ∼ Smac/c and considering Smac

uniform within the material) that the relative difference of the

magnitudes of second and first terms of Eq. (16) is on the order
of ωmaxa/c. Here ωmax is the maximum frequency of interest,
i.e., it determines the largest frequency of the electromagnetic
signal spectrum. Therefore, these arguments indicate that for
material bodies at rest:

pmic
EM =

(
1

c2

∫
V

SmacdV

)[
1 + o

(
ωmaxa

c

)]
. (22)

Thus, it seems that albeit nonzero, the vector d�/dt may
be negligible as compared to the first term in Eq. (16).
The approximation d�/dt ≈ 0 is expected to be particularly
good for local media and when the lattice constant is deeply
subwavelength as in natural materials.

In rigor our theory only applies to nondissipative materials.
Evidently, if the Abraham expression of the light momentum
is assumed generally valid (e.g., for local media this seems
to be a reasonable approximation) the electromagnetic theory
becomes complete and can be used to fully characterize arbi-
trary light-matter interactions even in presence of dissipation
(see for example Ref. [31]).

D. Quantum optics

It is interesting to discuss the consequences of our findings
in the context of quantum optics. To this end, let us consider
that the state of the relevant material system is stationary, i.e.,
it is an eigenstate of the Hamiltonian. The results of Sec. III B
demonstrate unequivocally that in the framework of macro-
scopic electrodynamics the (kinetic) light momentum of a sta-
tionary state is determined by the operator (the “hat” indicates
that the relevant symbol should be regarded as an operator):

p̂mic
EM = 1

2c2

∫
V

Ê × Ĥ − Ĥ × ÊdV (stationary state). (23)

The above result applies to dispersive (possibly inhomogene-
ous) local media at rest with negligible material absorption.
We used the fact that the expectation of d�̂

dt
vanishes when the

system is in an energy stationary state. The quantization of
dispersive and nondispersive material platforms is discussed
in Refs. [32–36].

One of the arguments typically enunciated in the literature
in favor of the Minkowski momentum is that for a photon, i.e.,
for a light quantum, it predicts that the light momentum is h̄k
[2,5,14]. To analyze in detail this idea let us consider some
closed system invariant to translations along the x direction.
For definiteness, it may be a cavity formed by nondispersive
material slabs (stacked along the z direction) and terminated
with periodic boundaries in the walls perpendicular to the x

direction. When the system is invariant to translations along
x it is well known that kx is a good quantum number. For
nondispersive materials the Minkowski momentum operator
p̂w = 1

2

∫
D̂ × B̂ − B̂ × D̂ dV (here the integration is over the

entire cavity) has an expectation such that〈
mkx

∣∣x̂ · p̂w

∣∣mkx

〉 = h̄kx

(
m + 1

2

)
, (24)

where |mkx
〉 is an energy state with m quanta in the field

mode with label kx ([26], Appendix B). Hence, when a single
quantum is created the Minkowski momentum along the x

direction increases by the amount h̄kx . Evidently, because
p̂w �= p̂mic

EM the momentum “h̄kx” cannot be understood as the
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“kinetic” momentum of a photon. The reason is simple to
understand: due to the light-matter interactions the field quanta
are “dressed” particles (quasiparticles) corresponding to the
hybridization of the elementary light and matter degrees of
freedom [35]. In other words, in a material a light quantum
has a matter component [35].

To further elaborate on this idea, let us consider the general
formula (2) for the Lorentz force. When the system is invariant
to translations along the x direction it is possible to show that∫
∂V

n̂ · T · x̂ ds = x̂ · dpw
dt

([37], Appendix A). Therefore, the
(x component) of the Lorentz force operator acting on the ith
material slab in the cavity is

F̂ mic
L,i = −x̂ · d

dt
p̂mic

EM,i + x̂ · d

dt
p̂w,i . (25)

The right side of the equation is often referred to as the
Abraham force [2,11]. It is implicit that the momentum
operators are associated with integrals over the volume Vi of
the ith material slab. Here we adopt the Schrödinger picture so

that it is implicit that
dp̂w,i

dt
stands for the operator 1

ih̄
[p̂w,i ,Ĥ ],

Ĥ being the Hamiltonian of the system. Evidently, for an
energy eigenstate the expectation of the Lorentz force along
x vanishes. Let us imagine a situation wherein the system is
initially (t < 0) in a stationary state, let us say in the quantum
vacuum state |i〉 = |0〉, then during some period of time is
externally excited [e.g., with some current source so that
Ĥ = Ĥ (t)], and then the excitation is switched off so that
for t > t0 the system is left in the final |f 〉 = |1kx

〉 state. The
total kinetic momentum transferred to the ith material slab by
the excitation is

δpkin,i ≡
∫ t0

0
F̂ mic

L,i dt

= 〈f |x̂ · (
p̂w,i − p̂mic

EM,i

)|f 〉 − 〈i|x̂ · (
p̂w,i − p̂mic

EM,i

)|i〉
= 〈f |x̂ · p̂ps,i |f 〉 − 〈i|x̂ · p̂ps,i |i〉. (26)

In the above, p̂ps,i = 1
2

∫
Vi

(D̂ × B̂ − 1
c2 Ê × Ĥ)dV + H.c.

is the so-called pseudomomentum operator associated with
the ith material slab [17], and in the second identity we
used the fact that the microscopic electromagnetic momentum
is determined by the Abraham (macroscopic) momentum
for the initial and final states because they are stationary
[Eq. (23)]. Hence, the excitation of the quantum system
leads to a change in the kinetic momentum of the ith slab
(δpkin,i) that is uniquely determined by the expectation of
the pseudomomentum in the final and initial states, and
quite remarkably is totally independent of the details of the
excitation. It is now simple to verify that Eqs. (24) and (26)
imply that h̄kx = ∑

i δpkin,i + 〈f |x̂ · p̂mic
EM|f 〉 − 〈i|x̂ · p̂mic

EM|i〉,
where x̂ · p̂mic

EM stands for the operator associated with the
total (kinetic) electromagnetic momentum of the cavity. This
confirms that the Minkowski (canonical) momentum (h̄kx)
has both light and matter components, and that the state |1kx

〉
is indeed associated with a quasiparticle. It is underscored
that our result relies exclusively on the simple assumptions
enunciated in the end of Sec. III A.

IV. MOVING MEDIA

The case of moving material bodies with an arbitrary
shape is considerably more difficult because usually it is
not simple to find a conservation law of the form (11) in
the framework of macroscopic electromagnetism (i.e., with
Wmac,Smac functions only of the macroscopic fields). The
reason is that the light-matter interactions usually originate
the conversion of kinetic energy into light, and vice versa. In
particular, a moving material can gain (or lose) kinetic energy
due to the optical forces, and from an electromagnetic point of
view this corresponds to a form of dissipation (or gain).

Nevertheless, for small velocities the corrections on the
electromagnetic momentum must be on the order of v/c, v
being the center of mass velocity of the relevant body. For
example, for a moving material with a deeply subwavelength
lattice period and a local response in the co-moving frame, it
follows from Eq. (22) that

pmic
EM = 1

c2

∫
V

E × HdV + o(v/c). (27)

From Eq. (2) the Lorentz force acting on the moving body
can also be determined with a similar accuracy:

Fmic
L = − 1

c2

d

dt

∫
V

E × HdV +
∫

∂V

n̂ · Tds + o(v/c). (28)

In the following, we shall prove that for nondispersive
moving media in steady-state conditions the previous results
can be made more precise.

A. Nondispersive moving media

Next, we consider conventional dielectric media with
negligible material dispersion, such that the permittivity ε

and the permeability μ are independent of frequency in the
co-moving frame wherein the material is at rest. It is well
known that in a generic inertial frame (e.g., the laboratory
frame) the material response is bianisotropic [38–41] and is
described by the following material matrix within a o(v2/c2)
approximation ([39], Sec. 76):

M =
(

ε0ε13×3
(εμ−1)

c2 v × 13×3

− (εμ−1)
c2 v × 13×3 μ0μ13×3

)
. (29)

The material matrix relates the electromagnetic fields in the
laboratory frame as (D

B) = M · (E
H). Here v is the velocity of the

moving dielectric with respect to the laboratory frame.
We will focus in the case wherein the material boundaries

do not change with time and the flow of matter is stationary
so that v = v(r) at a given point of space can be assumed time
independent. Thus, the matter flow can be depicted as a flow
in closed orbits, i.e., it corresponds to a “circulatory flow.” The
simplest example is the case of a rigid cylindrical body under
a rotational motion about the symmetry axis. However the
notion of circulatory flow is more general and does not have
to be associated with a rotation of a rigid body, for example
it applies as well to fluids. Note that if the flow of matter is
stationary in laboratory frame it follows that the center of mass
velocity vanishes.
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FIG. 1. (a) A generic circulatory flow of polarizable neutral matter. (b) Simplified mathematical model for the circulatory flow, where the
end effects are modeled with periodic boundaries. (c) A cavity formed by two interacting systems A and B separated by a distance d . The
system B is at rest, while the system A corresponds to a circulatory flow of polarizable neutral matter.

B. Electromagnetic momentum

The analysis of Sec. III A remains rigorously valid when
applied to a generic nondispersive circulatory flow. In particu-
lar Eq. (16) still holds in the present context. For nondispersive
media [such that ∇ × E = −∂tB and ∇ × H = ∂tD, with the
electromagnetic fields linked by a symmetric material matrix
M = M(r) defined as in Eq. (29)], it is easy to check that the
macroscopic fields satisfy

∇ · (E × H) + d

dt
Ww = 0, (30)

where Ww = 1
2 (D · E + B · H) is the wave energy den-

sity whose physical meaning in moving media is further
discussed in the Appendix. The above equation has the
same structure as Eq. (11) and holds in all space (includ-
ing at the boundaries). Hence, it follows from Eq. (16)
that for a circulatory flow the electromagnetic momen-
tum is given by pmic

EM = 1
c2

∫
V

E × HdV + d�
dt

with � =
1
c2

∫
V

r(Wmic
tot − Ww)dV . Then, in a stationary regime (e.g., for

time harmonic excitation) the time averaged electromagnetic
momentum is rigorously determined by the Abraham momen-
tum density [up to corrections on the order of o(v2

α/c2)]:

〈
pmic

EM

〉
T

= 1

c2

∫
V

〈E × H〉T dV (circulatory flow). (31)

Therefore, quite remarkably, for nondispersive circulatory
flows the Abraham momentum also determines exactly the
light momentum in steady-state conditions. Note that it is
implicit that in the stationary regime the time variation of the
velocity v(r) is negligible, and in particular the center of mass
velocity remains approximately zero. For the same reasons as

in Sec. III A, the changes in the kinetic momentum cannot be
neglected.

Unfortunately, it is not obvious how to generalize Eq. (30)
and thereby Eq. (31) to the case of dispersive media (at
least in a general case). The problem is that the response
of a dispersive dielectric depends on its past history, and
when the material is moving this implies that the response
depends on the trajectory traveled by the material elements. In
other words, the response is spatially dispersive. Besides that,
lossless dispersive media in motion are generically “unstable”
in the sense that a stationary state may be impossible to attain.
Indeed, a dispersive moving system generically supports
electromagnetic instabilities that lead to the spontaneous
conversion of kinetic energy into electromagnetic energy. For
more details the reader is referred to Refs. [36,37,42–45].

C. Quantum optics in moving systems

To illustrate the consequences of Eq. (31) in the context of
quantum optics, first we note that it implies that the electromag-
netic momentum of an energy eigenstate can be determined
with the operator (23), exactly as when all the materials are at
rest. The quantization of the electromagnetic field in moving
material platforms is discussed in Refs. [26,37,40].

The result (31) holds rigorously for a circulatory flow of
matter, but may be extended to the case of material slabs
with a constant velocity. To show this, we start with the
configuration of Fig. 1(a), which corresponds to a generic
circulatory flow and for which Eq. (23) holds. If the end effects
are neglected [corresponding to the regions where the velocity
v = v(r) changes continuously from v = vx̂ to v = −vx̂] it
seems reasonable to replace the original configuration by that
of Fig. 1(b) where the lateral walls (perpendicular to the x
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direction) are taken as periodic boundaries, so that the system
becomes invariant to translations along the x direction. Thus,
the geometry of Fig. 1(b) may be regarded as a simpler
mathematical model of the circulatory flow, and with that
understanding it is acceptable to use Eq. (23) in the scenario of
Fig. 1(b). Note that the two dielectrics with velocities v = vx̂
and v = −vx̂ may be separated by an arbitrary material system
at rest, for example by a metal plate, and in that case the top and
bottom regions are effectively screened and do not interact.

Let us now concentrate on the scenario of Fig. 1(c) where
a nondispersive dielectric slab at rest (system B) is separated
by a nondispersive circulatory flow (system A) by a vacuum
gap with thickness d. It is implicit that the cavity walls normal
to the x direction are terminated with periodic boundaries,
similar to Fig. 1(b).

Importantly, in the described scenario the (x component)
of the Lorentz force operator is still determined by Eq. (25)
(see Ref. [26] for the expression of the quantized field
operators), because for moving media it remains true that∫
∂V

n̂ · T · x̂ ds = x̂ · dpw
dt

([37], Appendix A). In particular, for
an energy stationary state the expectation of the Lorentz force
vanishes and there is no quantum friction, i.e., the expectation
of the lateral optical force vanishes [46]. This conclusion is
valid as long as the system state is truly stationary; as discussed
in the Appendix, this is possible only if the relative velocity
between the material bodies does not exceed a threshold limit.

Remarkably, if the quantum system is perturbed somehow
the expectation of the lateral force can be nonzero, and the
kinetic momentum transferred to the materials during the
perturbation can be calculated using the pseudomomentum
operator [Eq. (26)]. To illustrate this, let us consider the
scenario where the distance between the dielectric slab at rest
and the material body associated with the circulatory flow
is initially very large d → ∞. Supposing that the quantum
system is in the ground state it is clear that by symmetry
〈i|x̂ · p̂ps,l|i〉 = 0 in this initial state (l = A,B). Let us consider
that the perturbation is such that the subsystems A and B

are brought together (e.g., by a mechanical force directed
along z) so that in the final state the distance d is finite. The
process is assumed adiabatic so that the quantum system is
brought from the initial to the final state through the parametric
ground state |0d〉 (the ground state depends on the distance d

between the bodies). Then, according to Eq. (26) in this process
there is a kinetic momentum transfer determined by δpkin,l =
〈f |x̂ · p̂ps,l|f 〉 for each subsystem (l = A,B). The described
phenomenon is some kind of quantum Hall effect, because the
external force is applied along z but it induces a lateral optical
force along x. This theory was developed in detail in Ref. [26]
where it was demonstrated that δpkin,l can be numerically
determined using the zero-point Casimir interaction energy.
Furthermore, it was shown that δpkin,A + δpkin,B = 0, i.e., the
total change in the kinetic momentum is zero, so that the
effect corresponds to an exchange of kinetic momentum by two
material systems induced by the quantum fluctuations of the
vacuum. Note that for sufficiently massive bodies the kinetic
energy transfer has negligible consequences in the center of
mass position of each subsystem. It is relevant to mention that
the described effect may lead to a circulation of the quantum
vacuum momentum in closed orbits, an effect that recently
raised some attention in the literature [47,48].

V. CONCLUSION

In summary, we revisited the Abraham-Minkowski contro-
versy on the definition of the light momentum in a macroscopic
material. Our point of view, which we feel is not sufficiently
highlighted in the most influential articles of the recent
literature, is that the dilemma has no universal resolution due
to the intrinsic limitations of macroscopic electrodynamics. It
was emphasized that the use of effective medium theories
requires an inevitable compromise between simplicity and
rigor, and invariably implies some loss of information about
the state of the system, e.g., on the stored energy and on the
stored momentum. Despite these fundamental limitations, it
was shown that provided (i) the material absorption is negli-
gible and (ii) the macroscopic theory accurately predicts the
dynamics of the electromagnetic fields in the air regions, then
the kinetic light momentum can be determined unequivocally
under steady-state conditions for either material bodies at rest
or for circulatory flows of neutral matter. In particular, it was
shown that for local media the kinetic light momentum is
determined by the Abraham result in steady-state conditions.
In transient regime it seems impossible to determine exactly
the stored light momentum in general conditions, but for
local media with ultrasubwavelength nanoscopic constituents
the Abraham result is expected to approximate well the
instantaneous microscopic kinetic light momentum. Finally,
we discussed the implications of our findings in the context of
quantum optics, highlighting that for energy stationary states
the expectation of the kinetic electromagnetic momentum is
exactly determined by the Abraham formula. Furthermore,
it was illustrated with a simple example that the canonical
momentum of a light quantum in a medium (h̄k) has a matter
component.
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APPENDIX: THE WAVE ENERGY IN MOVING MEDIA

In this Appendix we discuss the physical meaning of the
wave energy Ww = 1

2 (D · E + B · H) in moving media. As
mentioned in Sec. II C, for media at rest it can be regarded as
the stored energy density associated with the electromagnetic
field and with the vibrational kinetic energies (Emic

EM + Emic
vib ).

Next, we refer to the energy density determined by Emic
EM +

Emic
vib as WEM+vib. It was shown in Ref. [42] (Appendix A)

that for moving media WEM+vib �= Ww. The correct relation is
WEM+vib = Ww − v · gps where

gps = D × B − 1

c2
E × H (A1)

is the pseudomomentum density. To better illustrate the
concept, let us consider the geometry of Fig. 1(c). Integrating
the wave energy density over the top moving slab of subsystem
A (with velocity v = +vx̂) it is found that Emic

EM,A + Emic
vib,A =

Ew,A − v · pps,A. Thus, for moving nondispersive materials
the stored energy is determined by both the wave energy
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and the pseudomomentum [37,42]. In particular, the wave
energy is not required to be positive, i.e., the wave energy
can be negative, even though Emic

EM + Emic
vib is always positive

for moving dielectrics [37,42]. Indeed, in can be checked that
the material matrix M in Eq. (29) becomes indefinite when
the velocity exceeds the Cherenkov threshold [more precisely
when |v| > c/(n − 1/n) with n = √

εμ the refractive index in
the co-moving frame]. In these conditions, the material system

can become electromagnetic unstable and the wave energy
may be negative. Two interacting material slabs with a relative
velocity exceeding roughly two times the Cherenkov threshold
may develop wave instabilities due to the spontaneous conver-
sion of kinetic energy into light [37,42–44]. These instabilities
typically result in a quantum friction force [49] determined by
the Abraham component of the Lorentz force, i.e., by Eq. (25)
[37,42].
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