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a b s t r a c t

This work introduces a parallel computing framework to characterize the propagation of electron waves
in graphene-based nanostructures. The electron wave dynamics is modeled using both ‘‘microscopic’’
and effective medium formalisms and the numerical solution of the two-dimensional massless Dirac
equation is determined using a Finite-Difference Time-Domain scheme. The propagation of electron
waves in graphene superlattices with localized scattering centers is studied, and the role of the symmetry
of themicroscopic potential in the electron velocity is discussed. The computationalmethodologies target
the parallel capabilities of heterogeneous multi-core CPU and multi-GPU environments and are built
with the OpenCL parallel programming framework which provides a portable, vendor agnostic and high
throughput-performance solution. The proposed heterogeneous multi-GPU implementation achieves
speedup ratios up to 75x when compared to multi-thread and multi-core CPU execution, reducing
simulation times from several hours to a couple of minutes.
Program summary

Program title: GslSim.
Program Files doi: http://dx.doi.org/10.17632/prmfv63nj6.1
Licensing provisions: GPLv3.
Programming language: C, OpenCL and Matlab for results analysis.
Nature of problem: Computing the time evolution of electron waves in graphene superlattices is a time

consuming process due to the high number of necessary nodes to discretize the spatial and time domains.
Solutionmethod:Wedevelop a simulator based on the C/OpenCL standards to study the time evolution

of electron waves in graphene superlattices by exploiting hardware architectures such as graphics
processing units (GPUs) to speedup the computation of the pseudospinor.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Graphene is a carbon-based two-dimensional material where
the carbon atoms are arranged in a hexagonal lattice. Recent stud-
ies suggested the possibility of controlling the electronic properties
of graphene by applying an external periodic electrostatic potential
on its surfacewith a patternedmetallic gate, amongother possibili-
ties. These nanostructuredmaterials are knownas graphene super-
lattices (GSLs) [1–10]. The low-energy dynamics of the electrons
in GSLs is typically characterized by the massless Dirac equation
[11–13] whose solution is usually numerically determined,
for instance with the Finite-Difference Time-Domain (FDTD)

✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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method [14,15]. The FDTDalgorithm is used in a variety of scientific
domains and the associated computational complexity is deter-
mined by the nature of the problem. Previous works in the con-
text of electromagnetism have shown that it is possible to obtain
impressive speedup ratios (on the order of 20–100x) with a single
graphics processing unit (GPU) implementation, e.g., [16,17]. Fur-
thermore, a multi-GPU environment enables additional speedup
gains, e.g., [18,19].

The application of the FDTD scheme to the electron wave prop-
agation in graphene platforms typically leads to computationally
demanding simulations, consuming long periods of processing
time. This is mainly due to two factors: first, the computational
complexity associated with the density of nodes necessary to ac-
curately discretize the spatial domain and the nature of the FDTD
methodology which is based on a leap-frog scheme; second, the
hardware and software limitations of the computational resources
that are typically used, such as bandwidth constraints or the low
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Fig. 1. (a) Graphene superlattice characterized by a sinusoidal electrostatic potential in the microscopic model and the corresponding continuummodel where the granular
details are homogenized. (b) Anisotropy parameter χ of the homogenized superlattice as a function of the peak modulation amplitude Vosc .

number of cores available in central processing units (CPUs) or the
available sequential programming models.

The purpose of this work is to develop a framework that
enables the fast simulation of the electron wave dynamics in
GSLs using either a ‘‘microscopic’’ approach (relying on the two-
dimensional massless Dirac equation) or an effective medium for-
malism wherein the microscopic details of the superlattice are
described by some effective parameters. Particularly, we focus on
parallelization strategies relying on the C/OpenCL standards to
exploit higher throughput performance in heterogeneous multi-
GPU environments [20–23]. To this end, we propose two distinct
models, namely a simulation concurrency model and a device
concurrency model that capture different simulation scenarios.
Furthermore, we present a detailed study of a time evolution prob-
lem in graphene superlattices with localized scattering centers.

The article is organized as follows. In Section 2 we present
a brief overview of the electron wave propagation in GSLs and
of the FDTD numerical solution. Section 3 describes the adopted
computational procedures and parallelization strategies. The pro-
posed methodologies are applied to study the time evolution of
electronic states in a superlattice with localized scattering centers
in Section 4. Performance metrics are reported and discussed in
Section 5. The article ends with a brief conclusion in Section 6.

2. Graphene superlattices and the electron wave propagation

2.1. Formalism

This section identifies and describes the key steps in the formal-
ization of the equations that govern the behavior of electronwaves
in graphene-based nanostructures. This method was developed
in [15] and establishes the basis of our study.

The propagation of charge carriers in graphene superlattices
may be characterized in the spatial and time domains by solving
the massless Dirac equation [12]:

Ĥψ = ih̄
∂

∂t
ψ, (1)

being Ĥ = −ih̄vFσ · ∇ + V (x, y) the microscopic Hamiltonian
operator near the K point, V the microscopic electric potential,
ψ = {Ψ1,Ψ2}

T the two component pseudospinor, vF ≈ 106m/s
is the Fermi velocity, σ = σxx̂ + σyŷ a tensor written in terms
of the Pauli matrices and ∇ =

∂
∂x x̂ +

∂
∂y ŷ. In GSLs, the potential

V is a periodic function of space. A complex spatial dependence
of the potential V can increase the computational effort to an
undesired level and even limit the understanding of the relevant
physical phenomena. A solution to reduce the complexity of the
problem is to use effective medium techniques. It was recently
shown that electronic states with the pseudo-momentum near
the Dirac K point can be accurately modeled using an effective
medium framework [24,25].Within this approach, themicroscopic
potential is homogenized and the effective Hamiltonian treats the

superlattice as a continuum characterized by some effective pa-
rameters [24,25]. For the cases of interest in thiswork, the effective
Hamiltonian is of the form:(

Ĥeffψ

)
(r) =

[
−ih̄vFσef · ∇ + Veff

]
· ψ (r) , (2)

where σeff = χxxσxx̂ + χyyσyŷ and Veff is an effective potential.
Moreover, the energy dispersion of the stationary states in the
homogenized superlattice can be calculated using [24]:

|E − Veff | = h̄vF
√
χ2
xxk2x + χ2

yyk2y, (3)

where k = (kx, ky) is the wave vector of the electronic state with
respect to the K point and E is the electron energy.

Next we characterize the effective parameters χxx, χyy and Veff
of the effective Hamiltonian of two distinct superlattices.

2.1.1. Anisotropic superlattices
To begin with, we consider 1D-type graphene superlattices de-

scribed by a microscopic potential with a spatial variation V (x) =

Vav + Vosc sin(2πx/ax), as shown in Fig. 1. Here, Vav is the average
electric potential, Vosc is the peak amplitude of the oscillations and
ax is the spatial period. These structures have been extensively
studied in the literature and can have strongly anisotropic Dirac
cones and particle velocities, allowing for the diffractionless prop-
agation of electron waves [5,6,15,25].

The continuummodel for the propagation of electrons in these
superlattices was thoroughly discussed in [15,24,25]. In particular,
in Ref. [24] it was found that the effective parameters of the
stratified superlattice satisfy χxx = 1 and χyy = χ . The anisotropy
parameter χ depends on the peak modulation amplitude Vosc and
can be numerically calculated using the approach described in [24].
The explicit dependence of χ on Vosc is represented in Fig. 1, and
it varies from χ = −0.4 to χ = 1. The latter value corresponds
to pristine graphene. The anisotropy ratio determines the (wave
packet) electron velocity, which under the continuum formalism is
v =

1
h̄∇kE = sgn(E−Vav)vF (k2x +χ2k2y)

−
1
2 (kxx̂+χ2kyŷ) [15,24,25].

Thus, the value of χ determines the degree of anisotropy and a
preferred direction of propagation. In particular, in an extreme
anisotropy regime, where the anisotropy ratio vanishes, χ = 0,
the group velocity is equal to v = ±vF x̂, so that the electron waves
propagate without diffraction along the x-direction [3,15,26–30].
Thus the electron transport differs in a drastic manner from pris-
tine graphene (χ = 1) wherein the electrons propagate parallel to
the quasi-momentum k.

2.1.2. Superlattices with localized scattering centers
Next, we characterize the effective Hamiltonian of a superlat-

tice formed by localized scattering centers, which is modeled by
an electric potential periodic in the x- and y-coordinates V (x, y) =

Vav+Vosc sin(2πx/ax) sin(2πy/ay) as illustrated in Fig. 2. To the best
of our knowledge, this superlatticewas not previously discussed in
detail in the literature. In this work, it is assumed that ax = ay =
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Fig. 2. (a) Graphene superlattice formed by localized scattering centers corresponding to a 2D sinusoidal periodic electrostatic potential in the microscopic model, and the
associated continuum platform where all granular details are homogenized. (b) Effective Fermi velocity vF ,eff as a function of the peak modulation amplitude Vosc .
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Fig. 3. Geometry of the grid for the discretized two component pseudospinor ψ . (a) Spatial domain. (b) Time domain.

a. This structure is reminiscent of a Moiré graphene superlattice,
which is typically obtained when graphene is stacked atop a crys-
tal with a slightly different hexagonal lattice, for instance boron
nitride [7–10,31,32]. It should be mentioned that the Hamiltonian
of Moiré superlattices also includes σz component, which is not
featured in our model.

Using the first principles homogenization approach described
in Ref. [24] it is possible to determine the parameters χxx and
χyy as a function of Vosc . By symmetry, in this superlattice χxx =

χyy = χ so that the response is isotropic. Moreover, similar to the
anisotropic superlattice, the effective potential is equal to the av-
erage potential, i.e., Veff = Vav . From Eqs. (2)–(3) it is seen that the
effect of χ within a continuum approach is equivalent to redefine
the Fermi velocity as vF ,eff = vFχ . The explicit dependence of the
effective Fermi velocity vF ,eff on Vosc is shown in Fig. 2(b). As seen,
the electrons can be significantly slowed down by the scattering
centers. Surprisingly, this happens only for rather large values of
the peak normalized microscopic electric potential. Indeed, for
moderate values of Vosc the electron transport is little affected by
the microscopic potential, rather different from the superlattices
discussed in the previous subsection.

2.2. The finite-difference time-domain (FDTD) scheme

Here we present a brief review of the FDTD scheme that is used
to determine the electron wave propagation in GSLs. This method
was proposed and thoroughly discussed in Ref. [15]. The spatial
domain is discretized into a given number of nodes that are spread
over a rectangular grid. In the time domain, the pseudospinor is
sampled with a time step ∆t . Thus, in the discretized problem
the pseudospinor is ψ(x, y, t) = ψ(p∆p, q∆q, n∆t ), where ∆p
and∆q are the node distances along the x- and y-directions. Since
both components of the pseudospinor become coupled in the Dirac

equation (1), they are defined in different grids shifted by ∆p
2 , ∆q

2
and ∆t

2 (Fig. 3).
The application of this scheme results in a pair of update

equations that describe the dynamics of the wave function. These
equations are given in Appendix A. The stability of the algorithm is
guaranteed provided the time step∆t satisfies [15]:

∆t < ∆tmax =
1
vF

1√
χ2
xx
∆2

x
+

χ2
yy

∆2
y

. (4)

This approach can be applied both to the microscopic and con-
tinuum formalisms, simply by adjusting the input parameters.
Specifically, the update equations for themicroscopic approach are
obtained by replacing the effective potential by the corresponding
microscopic potential and by setting χxx = χyy = 1 in all space.
The numerical method was extensively validated in [15].

3. Computational methods

3.1. Data dependencies

The starting point of this analysis focuses on the update equa-
tions (6) and (7) (in Appendix A) and the objective is to capture
the behavior of data dependencies. From the update equations
we can identify two types of dependencies, namely in the time
and spatial domains. The computation of the wave function in
an arbitrary node (p, q) at a given time stamp (n + 1) requires
the prior knowledge of a set of nodes localized in time at n and
n + 1/2. Consequently, when computing the pseudospinor ψ it is
first necessary to compute the pseudospinor component 92 and
then 91. Regarding spatial dependencies, to obtain 91 at node
(p, q), the92 neighbor values must be accessed. The pseudospinor
92 has similar data interconnections.
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3.2. Parallelization strategy

In this work we explore the C/OpenCL standards to build the
computational methodologies that take advantage of GPU devices
to implement and expedite the simulation process. The program-
ming model is based on a host that manages all the work per-
formed concurrently by the OpenCL devices. These devices execute
functions (kernels) over an index space (NDRange) which, for the
purpose of thiswork, can be seen as the index space of thematrices
that hold thewave function’s value. This index space is represented
in Fig. 4 and the selected data structure is a float4 vector data
type that stores the complex value of both components of the
pseudospinor.

At the hardware level, a scheduling of groups of threads/work-
items occurs to execute concurrently sub-blocks of data that oc-
cupy the GPU resources (called wavefronts by AMD and warps
by Nvidia). This granularity can be expressed under the OpenCL
standard by appropriately defining the number of work-groups
and work-items (Fig. 4).

From the previous analysis we were able to identify the flow
and dependencies between tasks. Consequently, the update equa-
tions are performed in two independent kernels and the synchro-
nization between them is guaranteed by the host and OpenCL
events that track the execution state of each called kernel. This
ensures that intra-kernel parallelism is fully implemented and just
limited by the hardware capacity and intrinsic data dependencies.
Parallelism between tasks cannot be achieved due to the depen-
dencies between them.

Next, we present an overview of the algorithms that describe
our approach. We developed two distinct models: (1) a simula-
tion concurrency model; and (2) a device concurrency model. The
goal is to explore different simulation scenarios. The main host
routine of both models is identical and consists of a main process
that manages the entire workload. It is responsible for querying
the computer platform, loading simulation data from the pipeline
and creating a host thread for each individual simulation setup.
The host threads execute concurrently and are implemented by
the POSIX Threads application programming interface [33]. This
algorithm is described below (Algorithm 1).

Algorithm 1 Host side: main process
1: Load simulation data
2: Computer platform query
3: Load number of simulations to NSim variable
4: for th_ctr = 1 to NSim: do
5: Create th_ctr thread with respective simulation data
6: end for

Ensure: Wait until all threads have finished

3.2.1. Simulation concurrency model
This model explores concurrency between simulations and tar-

gets the distribution of each independent simulation to a unique
OpenCl device. Thus, it enables the utilization of all compute re-
sources from the workstation by providing the same number of
simulation setups as hardware resources available.

Each host thread handles the assigned simulation and has ac-
cess to one OpenCL device (Algorithm 2). Before the OpenCL device
is called to compute the simulation it is necessary to allocate the
pertinent buffers and compile the respective kernelswith the input
parameters defined in the simulation setup. The process of storing
a sample is designed to minimize the time wasted in memory
operations. Therefore, a sample is downloaded from the buffer
device to a host buffer and passed to a newly created thread that
will save the data on the disk. Thus, this job is executed concur-
rently with the computation of the pseudospinor and the only stall
occurs when the data is downloaded from the device to the host
process.

Algorithm 2 Host side: simulation thread
1: Lock an available device
2: Compile the kernels that will execute in the OpenCL device
3: Set the respective kernel arguments
4: Create and initialize host side buffers: psiH, vH and chiH

{psiH - buffer that stores the wave function information; vH -
buffer that stores the electrostatic potential associatedwith the
structure; chiH - buffer that stores the anisotropy parameter
associated with the lattice (this only applies to the effective
medium model routine).}

5: Create and initialize device side buffers: psiD, vD and chiD
6: for n = 1 to NTI : do{NTI variable gives the number of time

iterations}
7: Submit fdtdPsi2 kernel {Compute over the Np ∗ Nq index

space and updates the pseudospinor component Ψ2; Np stores
the number of nodes in the p dimension; Nq stores the number
of nodes in the q dimension}

Ensure: Wait until fdtdPsi2 kernel is finished
8: Submit fdtdPsi1 kernel {Compute over the Np ∗ Nq index

space and updates the pseudospinor component Ψ1}
Ensure: Wait until fdtdPsi1 kernel is finished
9: if n == SampleTI {SampleTI variable holds the iteration

values for the pseudospinor that will be stored on disk} then
10: Upload the wave function information from device to host
Ensure: Wait until device-host data transfers are complete
11: Create iSample_ctr thread with respective wave function

data {This thread is launched concurrently to store data on
disk}

12: end if
13: end for
Ensure: Wait until sample store threads are finished
14: Release resources and unlock device

The OpenCL device is called in steps 7 and 8 of Algorithm 2
and executes the kernels over the defined index space Np × Nq.
The kernels’ structure is described in Algorithm 3. The fdtdPsi2
kernel implements Eq. (6) while fdtdPsi1 kernel is the application
of Eq. (7). The synchronization process shown after steps 7 and 8 in
Algorithm 2 is accomplished by assigning to each called kernel an
OpenCL event object and ensuring that the next kernel is executed
only when the previous one has finished.

Algorithm 3 Device side: kernel instance
1: Get index space identifier {Gives the information of the node

location in the pseudospinor matrix}
2: Get node potential from the vD buffer allocated in the global

memory
3: Download information of the node pseudospinor value and

neighbors from the psiD buffer allocated in the global memory
4: Compute node value {This update is given by the respective

update equation in the A}
5: Store node value in psiD buffer allocated in the global memory

3.2.2. Device concurrency model
This approach is designed to target multi-GPU platforms such

that each simulation has access to all available GPU devices (Nd)
and the work load is distributed between them. The idea is to split
the pseudospinormatrix into smaller blocks and compute each one
in a different device.

This method requires the division and distribution of Np/Nd
chunks of the wave function matrix by the corresponding devices
(Fig. 5). The length of each block (in the p direction) needs to
be larger than its normal length to cope with the nature of the
accessed nodes (the computation of the pseudospinor component
91 inquires nodes located at p − 1 and 92 examines nodes at



244 M.J. Rodrigues et al. / Computer Physics Communications 222 (2018) 240–249

Fig. 4. Representation of the data structure that stores each component of the pseudospinor mapped under the OpenCL index space.

Fig. 5. Division of the Ψ matrix into Np/Nd chunks (illustrated for Nd = 3). The green spaces represent the extra lines of each buffer necessary to cope with the nature of
node accesses. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Time profile of the single and multi-GPU simulation. In the dual-GPU model, tasks are executed concurrently on different devices and synchronized periodically at
each time iteration.

p + 1). Also, buffer synchronization between devices is required
after each kernel is executed in order to keep consistency between
buffers. This approach is described in Algorithm 4. The followed
approach allows the reutilization of kernels designed to single-
GPU implementations. This methodology is enabled by using the
host to implement the required control to handle multi-GPU en-
vironments. Therefore, the structure of the kernels in steps 8 and
12 of Algorithm 4 is identical to the one in Algorithm 3, thus,
showing the flexibility of the proposed solution. To highlight the
differences between the single and the multi-GPU implementa-
tions, it is shown in Fig. 6 a time profile for the execution of
both applications. In a multi-GPU environment (using two differ-
ent GPUs), the communication between buffers imposes delays in
the continuous computation of the pseudospinor. However, the
update process is performed much faster when compared to the
single-GPU model, which results in an improvement of the overall
throughput performance.

4. Simulation results

Next, we apply the proposedmethodologies to study the propa-
gation of electronic states in superlattices with localized scattering
centers (see Section 2.1.2). In the simulations we consider an un-
bounded superlattice characterized by an oscillating microscopic
potential with normalized amplitude of Vosca/h̄vF = 7.0. In the
continuummodel the effective Fermi velocity, vF ,eff = vFχ , equals
0.836vF . The initial Gaussian electronic state is of the form:

ψ(x, y, t = 0) =

(
1

h̄vF ,eff
E0

(kx0 + iχky0)

)
ei(kx0x+ky0y)e

−
x2+y2

R2G , (5)

with E0a/h̄vF ,eff = 0.001, kx0a = 0.001 and ky0a = 0. The
initial state propagates along the x-direction and its characteristic
spatial width is determined by the parameter RG. The results for
RG = 10a and RG = 0.5a are shown in Fig. 7(a)–7(b) and 7(c)–7(d),
respectively.



M.J. Rodrigues et al. / Computer Physics Communications 222 (2018) 240–249 245

Algorithm 4 Host side: Simulation thread
1: Lock Nd devices {Nd-Number of available devices}
2: Create and initialize host side buffers: psiH, vH and chiH

{psiH - buffer that stores the wave function information; vH -
buffer that stores the electrostatic potential associatedwith the
structure; chiH - buffer that stores the anisotropy parameter
associated with the lattice (this only applies to the effective
medium model routine).}

3: for device_ctr = 1 to Nd: do
4: Create and initialize device side buffers: psiD[device_ctr],

vD[device_ctr] and chiD[device_ctr]
5: end for
6: for n = 1 to NTI : do{NTI variable gives the number of time

iterations}
7: for device_ctr = 1 to Nd: do
8: Launch fdtdPsi2 kernel on device[device_ctr]
9: end for

10: Buffer synchronization between devices.
11: for device_ctr = 1 to Nd: do
12: Launch fdtdPsi1 kernel on device[device_ctr]
13: end for
14: Buffer synchronization between devices.
15: if n == SampleTI {SampleTI variable holds the iteration

values for the pseudospinor that will be stored on disk} then
16: Upload thewave function information fromdevices to host
Ensure: Wait until device-host data transfers are complete
17: Create iSample_ctr thread with respective wave function

data {This thread is launched concurrently to store data on
disk}

18: end if
19: end for
Ensure: Wait until sample store threads are finished
20: Release resources and unlock Nd devices

The microscopic wave function ψmic has strong fluctuations on
the scale of the period of the superlattice. To filter out these spatial
oscillations, we represent in Fig. 7(a) the spatially averaged proba-
bility density function |ψmic |

2
av(x, y) =

1
a

∫ a/2
−a/2 |ψmic(x + x′, y)|2dx′

for RG = 10a. This approach provides a better visualization of
the envelope of the wave function calculated with the microscopic
theory. Fig. 7(b) shows the same plots but without spatial averag-
ing. Importantly, the results reveal a good agreement between the
microscopic and themacroscopic formalismswhen the initial state
width is larger than the period of the superlattice. In contrast, the
results depicted in Fig. 7(c)–(d) for an RG smaller than the period a,
reveal significant differences between themicroscopic and contin-
uum approaches (note the different vertical scales in the figures).
This is consistent with the fact that the continuum approximation
requires that the wave function varies slowly on the scale of the
unit cell [24]. To sum up, the numerical results of Fig. 7 reveal that
the effective Hamiltonian can only accurately describe the time
evolution of an initial wave packet when the characteristic width
of the initial state is not more localized than the spatial period of
the superlattice. Similar conclusionswere drawn in Ref. [25] for the
case of anisotropic graphene superlattices.

To demonstrate the effect of the localized scattering centers on
the electron transport, we show in Fig. 8(bi)–(bii) a snapshot of the
probability density function at the fixed time t = t2 calculatedwith
the microscopic and effective medium approaches with RG = 10a.
We contrast these results with the propagation of the same initial
state in pristine graphene, see Fig. 8(aii). Noticeably, the electron
wave is somewhat slowed down by the scattering centers, but
not significantly considering the rather strong modulation of the
electric potential. More precisely, the electrons propagate in the
superlattice with a velocity 0.836vF (i.e., about 84% the velocity in
pristine graphene), which is consistent with the theoretical value
obtained from the continuum approximation.

Table 1
Apparatus considered in the simulations. In the AMD Platform, GPU 0 is an AMD
Radeon R9 280x and GPU 1 is an AMD Radeon R9 390. In the Nvidia Platform, GPU
0 is an Nvidia Geforce GTX Titan, GPU 1 is an Nvidia Tesla k40c and GPU 2 is an
Nvidia Geforce Titan X.

AMD platform Nvidia platform

GPU Setup GPU 0 GPU 1 GPU 0 GPU 1 GPU 2
Cores 2048 2560 2688 2880 3072
Base clock (MHz) 850 1000 837 745 1000
Memory (GB) 3 8 6 12 12
Memory Bandwidth 288 384 288 288 336
(GB/s)
Single-Precision 4096 5120 4500 4291 6144
(FLOPS)
Double-Precision 1024 640 1500 1430 192
(FLOPS)

CPU setup Intel(R) Core(TM) Intel(R) Core(TM)
i7 950 3.07GHz i7-4790k 4 GHz

OS CentOS Linux CentOS Linux
Release 7.2.1511 Release 6.7

OpenCL version OpenCL 2.0 OpenCL 1.2

It is interesting to highlight the differences between this
superlattice and the anisotropic superlattice discussed in Sec-
tion 2.1.1. To this end, we studied the propagation of an initial state
with RG = 10a in an anisotropic superlattice characterized by
the electric potential Vosca/h̄vF = 7.0, for which χ = 0.093
in the continuum model. The results are shown in Fig. 8(ci)–
(cii) and reveal that not only the (x-component of the) electrons
velocity is unaffected by the microscopic electric potential, i.e., the
electrons propagate with velocity vF due to the Klein tunneling
effect, but also the matter wave experiences a negligible lateral
spreading (the y-component of the velocity is near zero). Finally,
it is important to underline the excellent agreement between the
continuumandmicroscopic theories in the anisotropic superlattice
case, which further validates the effective medium model.

Performance metrics of these simulations are discussed in Sec-
tion 5 to evaluate the gains of our method.

5. Throughput performance evaluation

Next, a comprehensive analysis of the performance of the de-
vised solution is disclosed. The apparatus used in the performance
tests is summarized in Table 1.

These platforms are intentionally different to demonstrate
portability and also to analyze the impact of the devised solution
in terms of synchronization and throughput performance for gen-
eralized contexts.

The performance tests were based on the time evolution prob-
lem reported in the previous section, and the only varying input
parameters are the dimensions of the matrices (Np ×Nq) that store
the pseudospinor values. The other parameters remain unchanged
as they do not influence the performancemetrics and can be found
in Table 2.

5.1. Multi-core CPU and many-core GPU metrics

This section discusses the throughput performance gains that
GPUs present when compared with CPU architectures. The CPU
implementation is the basis for this benchmark and is a pseudo-
sequential implementation of the OpenCL code that also runs on
the GPU. The CPU version is executed on an Intel Core i7 950
that has four cores and uses all eight available threads to perform
the computations. The execution times obtained using the three
different architectures are indicated in Table 3 and Fig. 9 shows
the overall speedup ratios.

The obtained results are a good indicator that GPU architectures
are suitable to compute this type of simulations and, if properly
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(a) (b)

(c) (d)

Fig. 7. (a) Longitudinal profiles (along the direction of propagation) of the probability density function sampled at t = 0, t = t1 = 4000∆t , t = t2 = 8000∆t and
t = t3 = 12 000∆t for the continuum (blue solid line) and microscopic approaches (red dotted line) for an initial electronic state with RG = 10a. (b) Similar to (a)
but without the application of a spatial filter. (c) and (d) Similar to (a) and (b) but for an initial electronic state with RG = 0.5a. The time step is ∆t = 0.5∆tmax , with
vF ,eff = 0.836vF and∆x = ∆y = a/40.

Table 2
Relevant parameters used in all the performance tests.

Time iterations ∆x/a ∆y/a ∆tvF /a E0a/h̄vF ,eff kx0a ky0a RG/a

12 000 0.025 0.025 0.0088 0.001 0.001 0.0 10

Table 3
Execution time in seconds obtained with the three different architectures. The CPU
execution time was acquired on an Intel Core i7 950 running on the AMD platform.
The AMD GPU is a Radeon R9 280X and the Nvidia GPU is a Tesla k40c.

Matrix Dim Intel AMD Nvidia
Np × Nq CPU GPU 0 GPU 1

2050×2050 719.36 25.30 28.71
3074×3074 1770.06 56.54 62.39
4098×4098 5171.67 101.48 113.84
6146×6146 16968.17 223.76 259.76

programmed, can provide significant acceleration, demonstrated
by the achieved speedups that can reach up to 75x. The execution
times and overall speedups also reveal that the nature of these
problems is well suited to compute resources that combine a
raw amount of processing power rather than highly complex and
optimized cores such as the CPU.

5.1.1. Single-Precision vs Double-Precision throughput performance
It is relevant to discuss the difference between using single and

double-precision data representation and arithmetic. In this re-
gard, normalizing some of the physical constants (e.g. the reduced
Planck’s constant h̄, Fermi velocity vF , among others) allowed us
to use single-precision format and arithmetic. Consequently, the
simulation results can be correctly represented by the accuracy

Table 4
Execution time in seconds obtained with the same GPU for single-precision and
double-precision. Nvidia GPU is a Tesla k40c.

Matrix Dim Single-Precision Double-Precision
Np × Nq Nvidia GPU 1 Nvidia GPU 1

6146×6146 259.76 544.82

provided by the single-precision format. This approach drastically
reduces the amount of memory required to run the simulator and
at the same time obtain significant speedup ratios as compared to
the double-precision arithmetic. As shown in Table 1, GPUs usually
offer higher single-precision throughout performance. In particu-
lar, the double-precision performance of the available GPUs in both
platforms is less than half of the single-precision performance. To
demonstrate these differences we show in Table 4 the execution
times for the Nvidia Tesla k40c GPU. The performance gap between
the two solutions is evident by the speedup factor of 2×.

5.1.2. GPU results on AMD architecture
In order to extract even more processing power from parallel

computing architectures, we studied the possibility of increas-
ing throughput performance gains by using multi-GPU platforms.
Table 5 shows the performance metrics for the single and dual-
GPU configuration for several matrix dimensions. The results show
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Fig. 8. (ai) Initial electronic state with RG = 10a. (aii) Density plot of |ψ |
2 at t = t2 for pristine graphene (here the microscopic and continuum formalisms give coincident

results). (bi) and (bii) Density plots of |ψ |
2 calculated with the microscopic and continuum formalisms at t = t2 , respectively, for a superlattice with localized scattering

centers. (ci) and (cii) Similar to (bi) and (bii) but for an anisotropic GSL. The color map of this figure was obtained by using the othercolor function from MATLAB Central File
Exchange [34] which is included in the simulator. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Speedups obtained by the GPUs compared against the CPU. The line with
triangles displays the AMD R9 280x results and the line with diamonds shows the
Nvidia Tesla k40c speedups. Each symbol of the figure corresponds to an entry in
Table 3.

that performance metrics are directly dependent on the matrix
dimensions of the structure.

Based on the results depicted in Fig. 10 it is clear that we can
achieve additional speedups by scaling the problem dimensions to
a multi-GPU environment. For a small number of matrix elements
the performance improvements are not significant, as the available
computational resources in all the GPUs are underutilized. By

Table 5
Computation times (seconds) obtained by the AMD devices. Single-GPU metrics
were obtained using the AMD Radeon R9 280X.

Matrix Dim Single-GPU Dual-GPU
Np × Nq GPU 0 GPUs 0 &1

2050×2050 25.30 22.31
3074×3074 56.54 43.65
4098×4098 101.48 65.35
6146×6146 223.76 129.58
8194×8194 393.28 225.43

Table 6
Computation times (seconds) obtained by the Nvidia platform. Single-GPU metrics
were obtained by the Nvidia Tesla k40c. Dual-GPU metrics were obtained by the
Tesla k40c and GeForce GTX Titan X.

Matrix Dim Single-GPU Dual-GPU Triple-GPU
Np × Nq GPU 1 GPUs 1 & 2 GPUs 0 & 1 & 2

3074×3074 62.39 37.23 29.17
6146×6146 259.76 137.61 102.41
12290×12290 1056.13 547.71 378.15
18434×18434 2434.48 1246.09 857.32

increasing the matrix dimensions, the resources are effectively ex-
ploited and a throughput performance increase is obtained, which
for this particular platform can reach 1.8x when compared with
single-GPU execution.

5.1.3. GPU results on Nvidia architecture
Next, we present the performance metrics for a workstation

with three GPUs. The results are shown in Table 6.
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Fig. 10. Speedups obtained by the dual-GPU comparedwith the single-GPU version.
Each symbol of the figure corresponds to an entry in Table 5.

Fig. 11. Speedup obtained by the Nvidia Platform. The red linewith diamonds is the
speedup of the triple-GPU against single-GPU. The blue line with triangles shows
the speedup of the dual-GPU against single-GPU and the green line with the x-
marks is the speedup of the triple-GPU against dual-GPU. Each symbol of the figure
corresponds to an entry in Table 6. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 11 shows the performance gains obtained using a triple-
GPU environment. The results demonstrate the scalability of the
devised solution. Comparing with a single GPU implementation it
is shown that the triple-GPU version outperforms all the tested
scenarios, resulting in speedups that can be as high as 2.7x. Another
important feature of a multi-GPU workstation is the possibility of
simulating large structures, which with a single-GPU would per-
haps be unattainable due tomemory size limitations. Furthermore,
themulti-GPU approach is designed to automatically distribute the
workload by all available devices and prepared to use asmuch GPU
resources as available, thus, proving to be a scalable solution.

6. Conclusions

We proposed novel computational tools to efficiently and
rapidly simulate the propagation of electron waves in GSLs based
on the two-dimensional massless Dirac equation or alternatively
using an effective Hamiltonian. In particular, we investigated the
propagation of electron waves in ‘‘isotropic’’ graphene super-
lattices formed by localized scattering centers. Surprisingly, our
results show that for moderate values of the peak microscopic

electric potential the effective Fermi velocity remains compara-
ble to the Fermi velocity in pristine graphene. In contrast, for
anisotropic superlattices the Fermi velocity along the y-direction
can be strongly dependent on the peak amplitude of the micro-
scopic potential and be near zero. These results highlight that
the symmetry of the microscopic electric potential can have a
significant impact on the electron transport properties, and be
more influential than the strength of the potential modulation.
It was confirmed that the continuum approximation can only be
used to characterize the wave propagation in GSLs provided the
characteristic width of the initial state is larger than the period
of the superlattice. Furthermore, we showed substantial speedups
in terms of simulation times, confirming that GPU together with
the OpenCL framework is a powerful tool that can offer impressive
accelerated execution times. In addition, the developed framework
provides portability and scalability to the devised solutions.
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Appendix A. FDTD scheme: Update equations

The time evolution of the pseudospinor within the effective
medium framework is given by the following pair of update equa-
tions:
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For an anisotropic superlattice vF ,eff = vF , and for a superlattice
with localized scattering centers χ = 1.
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