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Here, we study the electromagnetic response of asymmetric mushroom-type metamaterials

loaded with nonlinear elements. It is shown that near a Fano resonance, these structures may

have a strong tunable, bistable, and switchable response and enable giant nonlinear effects. By

using an effective medium theory and full wave simulations, it is proven that the nonlinear ele-

ments may allow the reflection and transmission coefficients to follow hysteresis loops, and to

switch the metamaterial between “go” and “no-go” states similar to an ideal electromagnetic

switch. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4989816]

I. INTRODUCTION

The uniaxial wire medium consists of a set of infinitely

long parallel metallic wires embedded in a dielectric host.

This metamaterial has attracted a lot of attention due to its

numerous applications in the microwave, THz, and optical

frequency bands.1–25 Notably, the wire medium is character-

ized by a strongly nonlocal (spatially dispersive) response,

even in the quasi-static limit.1,5 It was shown in Ref. 10 that

the nonlocal response can be tamed by loading the wires

with metallic patches. This idea was further developed in

subsequent works.5,13–15 These structures are usually known

as mushroom-type metamaterials. Moreover, it was also

shown that the electromagnetic response of the metamaterial

can be tailored by loading the wires with lumped loads16,26,27

or alternatively by misaligning the geometrical center of the

patch elements with respect to the wires so that the structure

becomes asymmetric.28,29

The research of nonlinear effects in wire media has been

mainly focused on the propagation of light in structures

formed by metallic nanowires embedded in a nonlinear

Kerr-type dielectric host.30–33 Moreover, in a recent series of

works it was shown that mushroom-type ground planes with a

nonlinear response can be used to absorb high-power sig-

nals.34–36 In general, nonlinear metamaterials can enable

bistable and multi-stable regimes, provide tunable and switch-

able responses, dramatically boost the sensitivity to nonlinear

elements, and allow for frequency conversion and parametric

amplification.37–52 Furthermore, a nonlinear response may

enable new functionalities such as “electromagnetic diodes”53

and all-optical memories.54 Recent surveys on the topic can

be found in Refs. 55 and 56.

Motivated by the many opportunities that are created by

a nonlinear response, here we theoretically investigate the

interaction between electromagnetic waves and asymmetric

mushroom-type nonlinear metamaterials at microwave fre-

quencies. Typically, a nonlinear microwave response is real-

ized using nonlinear lumped elements, for instance, a

variable capacitance diode, commonly known as varactor.

For simplicity of modeling, in our study we consider that the

wires-to-patch connection is done through a small gap filled

with a Kerr-type dielectric, which behaves as a nonlinear

parallel-plate capacitor. To have pronounced nonlinear

effects for normal plane wave incidence, the wire grid is mis-

aligned with respect to the geometrical center of the metallic

patches. We develop an effective medium framework to

characterize the nonlinear response of the system in a sta-

tionary regime and present a detailed numerical study and

full wave simulations of the impact of varying the intensity

of the excitation field. It is shown that the dynamic response

of the mushroom metamaterial is bistable such that the struc-

ture may behave as an electromagnetic switch with “go” and

“no-go” states. Moreover, near a Fano resonance, there is a

strong enhancement of the electric field that acts on the non-

linear element, and this property and the high sensitivity of

the Fano resonance to the reactance of the lumped element

effectively boost the nonlinear effects.

This paper is organized as follows. In Sec. II we introduce

the system under study and highlight how a lumped load can

enable controlling of the response of the metamaterial. In Sec.

III we study the nonlinear dynamics of the system. Using a

homogenization model developed in an earlier work for the

linear problem,29 we investigate the conditions required for the

emergence of a bistable response and determine the hysteresis

loops followed by the transmission and reflection coefficients.

In Sec. IV we present full wave simulations of the dynamical

response of the metamaterial, showing that by changing the

intensity of an incoming wave it is possible to switch the sys-

tem between different states and control the transmission level.

In Sec. V the conclusions are drawn. In a time harmonic

regime, it is assumed that the time variation is of the type

e�ixt, x being the oscillation frequency.

II. THE NONLINEAR METAMATERIAL MODEL

We consider a two-sided mushroom structure formed by

a wire medium slab with thickness h terminated with metal-

lic patches, as depicted in Fig. 1(a). The wires are arranged

in a two-dimensional square lattice of period a and are
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attached to the metallic patches either through a discrete

lumped load ZL (bottom interface) or through a direct (ideal

short-circuit) connection (top interface). It is also assumed

that the connection point between the metallic wires and the

patches is shifted with respect to the geometrical center of

the patches, along the x-direction, as shown in Fig. 1(b). It

was demonstrated in previous works that when the patch grid

and wire array are misaligned, the response of the mushroom

is altered and new resonances appear, allowing the wire

medium to strongly interact with an incident wave for nor-
mal incidence.28,29 An effective medium framework was put

forward in Ref. 29 to characterize the scattering of plane

waves by this two-sided mushroom structure in the linear

regime. For the convenience of the reader, we present a brief

overview of the theory in Appendix A.

The effective load impedance ZL;ef depends on the

lumped element impedance ZL and also on a parasitic capaci-

tance and a parasitic inductance (Cpar and Lpar), which are

determined by the specific geometry of the connection

point.16 The effective impedance may be written as

ZL;ef ¼ �ixLpar þ
1

�ixCpar þ 1=ZL
: (1)

Here, we consider that the wire-to-patch connection is done

through a nonlinear load whose impedance varies with the

voltage drop VL at its terminals ZL ¼ ZLðVLÞ.
It is well known16,26,27,29 that a lumped element may

strongly affect the transmission and reflection coefficients

of the metamaterial structure, even in the linear regime. To

illustrate this, first we determine the scattering from a two-

sided mushroom slab with thickness h ¼ 4a, with a ¼ 1 cm

as the period of the structure, for different inductive and

capacitive loads. For simplicity, the wires are modeled as

perfect electric conductors (PEC), and it is assumed that

they are surrounded by air. The wire radius is rw ¼ 0:025a,

and the offset distance between the wire and patch arrays

is d ¼ a=4. The gap between adjacent metallic plates is

g ¼ 0:05a. These structural parameters are used throughout

the article. The metamaterial slab is excited with a plane

wave propagating along the direction normal to the interface

(hinc ¼ 0�). Figure 2 shows a comparison between the

results obtained with the homogenization model and the

commercial full-wave electromagnetic simulator CST

Microwave Studio57 for different values of load impedance.

The values of the parasitic inductance and impedance are

estimated using a curve fitting of the analytical results and

the full-wave simulations (in the full wave simulations the

load is placed in a tiny gap of h=40). In our case, the parasitic

effects are modeled by Lpar ¼ 77:5 pH and Cpar ¼ 40:9 fF.

The results reveal a good agreement between the

effective medium and full-wave simulations, supporting

the validity of the theory. The discrepancies between the

two models are a consequence of the approximations implicit

in the analytical model, which regards the metamaterial as

an effective medium, whereas the numerical simulations

take into account all microscopic details of the structure.

The observed discrepancies are somewhat similar to those

found in previous works.16,26,27 It is seen in Fig. 2(a) that

when the inductance of the lumped load increases, the sec-

ond transmission resonance near 13 GHz moves to lower fre-

quencies. Similarly, larger capacitive loads shift the same

resonance (now near 14.5 GHz) to lower frequencies [Fig.

2(b)]. Therefore, the lumped load provides an interesting

opportunity to control the scattering by the metamaterial

slab. The second transmission resonance has a Fano-type

FIG. 1. Geometry of the problem under study (two-sided mushroom slab) (a) Side view: The wires are arranged in a square lattice with period a, embedded in a

dielectric host with permittivity eh and thickness h. The wires are connected to the bottom patch grid through lumped loads (blue arrows in the figure) and to the

top patch grid through a short circuit (s.c.). The separation between adjacent patches is g. The slab is illuminated by a plane wave with an incidence angle hinc. (b)

Top view of one cell of the two-sided mushroom structure: the wire is displaced by a distance d with respect to the patch center along the positive x-direction.

FIG. 2. Amplitude of the transmission

coefficient for the two-sided mush-

room structure when the wires are con-

nected to the patch grid through: (a)

inductive loads L ¼ 1nH (blue curve)

and L ¼ 1:5nH (black curve) and (b)

capacitive loads C ¼ 0:05pF (blue

curve) and C ¼ 0:075pF (black curve).

Solid lines: homogenization model;

dashed lines: full-wave simulations.
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lineshape,58,59 and hence the transmission coefficient may be

rather sensitive to a variation of the load reactance near this

resonance. Fano resonances may emerge in wire media when

a narrow quadrupole-type resonance interferes with a broad

dipole-type resonance.60,61

In this work, we aim to take advantage of the response

of a nonlinear load. In our model, it is supposed that the

lumped load consists of a parallel plate-type capacitor filled

with a nonlinear Kerr-type dielectric (Fig. 3). Thus, the

impedance of the lumped element may be estimated using

ZL ¼
1

�ixCL
; (2)

where CL ¼ e0ecap
Acap

tcap
is the capacitance, tcap is the separation

between the plates that encapsulate the dielectric, Acap ¼ l2cap

is the area of the cross-section of the smallest plate (see Fig.

3), and ecap is the relative permittivity of the nonlinear

dielectric. Note that one of the plates of the capacitor is coin-

cident with the bottom patch of the two-sided mushroom

structure.

In the adopted framework, the nonlinear effects are

treated perturbatively such that the frequency dependent

impedance becomes a nonlinear function of the electric field

amplitude. The dominant field component in the capacitor

region is evidently along the z-direction (Ez;L). Hence, it is

assumed that ecap ¼ e0
capð1þ ajEz;Lj2Þ, where a determines

the strength of the nonlinear response and e0
cap is the relative

permittivity in the linear regime. The parameter a is propor-

tional to the third order electric susceptibility vð3Þ of the mate-

rial, and in a time-harmonic regime, it may be estimated as

a ¼ 3
4

v 3ð Þ

e0
cap

.54 Within the validity of the model, the electric field

inside capacitor is nearly constant and approximately equal to

Ez;L � VL=tcap. Thus, the impedance of the load depends on

the voltage drop at its terminals ZL ¼ ZLðVLÞ and, thereby,

also on the amplitude of the incident field.

Clearly, to have a strong nonlinear response, the system

should be desirably operated near some resonance so that VL (or

equivalently the load current IL ¼ Iðz ¼ �hÞ) can be strongly

dependent on small variations of the load impedance. To deter-

mine a suitable operating frequency, we used the analytical

model of Appendix A to calculate IL as a function of frequency

in the linear regime. In the analytical model, the load is modeled

as a capacitor with C ¼ e0e0
capAcap=tcap. The structural parame-

ters used in our simulations are tcap ¼ 2g, Acap ¼ 9g2, and

e0
cap ¼ 2, which yield C ¼ 0:04 pF. Figure 4 represents the load

current as a function of frequency obtained using both the effec-

tive medium model [Eq. (A5)] and the full-wave electromag-

netic simulator.57

Similar to Fig. 2, on the overall there is a reasonable

agreement between the two calculation methods. Moreover,

the results of Fig. 4 reveal that there are multiple resonances

for which the current delivered to the lumped element is

strongly enhanced. The strongest resonance occurs at

14.56 GHz, i.e., the Fano resonance of Fig. 2(b), and will be

the focus of our attention in the following.

III. BISTABLE RESPONSE

In the nonlinear regime, the relation between VL and the

incident field is evidently nontrivial. Importantly, because

the nonlinearity of the system is concentrated in the response

of the lumped element, the nonlinear problem may be

regarded as equivalent to a linear problem with an unknown

impedance ZL. This means that in the nonlinear regime, the

transfer function VL=Einc depends only on the unknown

value of the load ZL and, thus, can be rigorously determined

based on the linear response of the system (even though ZL is

a nonlinear function of VL). We define the function F0ðZLÞ as

the ratio between the incident field and the voltage at a

lumped load with a given impedance ZL, calculated in the

linear regime

F0 ZLð Þ ¼
Einc

VL

����
linear regime

: (3)

For a fixed frequency, the function F0ðZLÞ can be numerically

evaluated using the homogenization theory of Appendix A.

Then, in the nonlinear regime, the unknown ZL is found by

numerically solving the nonlinear equation

Einc ¼ F0ðZLÞVL; with ZL ¼ ZLðjVLjÞ: (4)

The above formula makes clear that both VL and ZL are non-

linear functions of the incident field. The main requirement

to obtain a bistable response is that in the linear regime the

FIG. 3. A nonlinear load connects the wires to the metallic patch at the bot-

tom interface. The load is a parallel plate-type capacitor. The smallest plate

has the dimensions lcap � lcap, and the plates are separated by a distance tcap.

The filling material is a Kerr-type nonlinear dielectric.
FIG. 4. Amplitude of the electric current feeding the parallel-plate capacitor

for an incident field with Einc ¼ 1V=m (linear regime). Solid lines: homoge-

nization model; dashed lines: full-wave simulations.57
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relation between the input (jEincj) and the output (jVLj)
depends on some parameter in a non-monotonic manner.

From the relation jVLj ¼ jF0ðZLÞj�1jEincj, it follows that

the transfer function jF0j must have a non-monotonic depen-

dence on the load impedance. In these conditions, if the load

impedance becomes a nonlinear function of the output, then

the system response becomes bistable.

To illustrate these ideas, we depict in Fig. 5 the

numerically calculated transfer function F0 as a function

of the load reactance XL (ZL ¼ �iXL) for the frequencies

f ¼ 7:90 GHz (1st resonance in Fig. 4) and f ¼ 14:56 GHz

(4th resonance in Fig. 4). The point of operation in the linear

regime is marked with an orange circle in the plots. Evidently,

the reactance of the lumped element has a strong influence on

the transfer function. Importantly, for capacitive loads

(XL < 0), the monotonic behavior of jF0j changes in the vicin-

ity of XL � �60 X and XL � �240 X for Figs. 5(a) and 5(b),

respectively. For f ¼ 14:56 GHz, the point wherein jF0j has a

minimum (XL � �i 274 X) is relatively close to the value of

the load reactance in the linear regime. Hence, the Fano reso-

nance at f ¼ 14:56GHz enables us to operate the system near

the point wherein jF0j changes the monotonic response, which

is the basis of a bistable response as previously discussed.

Thus, from here on, we fix f ¼ 14:56GHz.

The nonlinear relation between VL and ZL can be found

from Eq. (4). In particular, Eq. (4) implies that

jEincj ¼ jF0ðZLðjVLjÞÞjjVLj, and hence jEincj can be regarded

as a function of the load voltage, as shown in Fig. 6. In the

simulation it was assumed that the nonlinear Kerr material is

modeled by vð3Þ ¼ 0:9� 10�9 m2 V�2. The results of Fig. 6

reveal that in a stationary regime the relation between the inci-

dent field and the load voltage is not univocal, and, in

particular, for some values of jEincj the load voltage jVLj has

three distinct allowed values. To illustrate the consequences

of such property, let us suppose that jEincj is slowly increased

from zero to a very large value. In that case, the load voltage

is forced to suffer a discontinuous jump represented by the

path p1 in Fig. 6. On the other hand, if one slowly decreases

jEincj from very high values down to zero, a similar phenome-

non occurs, corresponding to the path p2 in Fig. 6. Therefore,

the point of operation of the system in a stationary regime fol-

lows a hysteresis-type loop so that a given value of jEincj can

be associated with different voltages at the nonlinear load.

Thus, the system may have a bistable response that depends

on its past history. Similar effects have been reported in the

literature for the refractive index of nonlinear metamaterials

and plasmonic systems (see, for example, Refs. 48 and 49).

Furthermore, it is shown in Appendix B that much stron-

ger nonlinearities may be implemented at microwave frequen-

cies with commercially available varactors. Specifically, in

Appendix B we compare the Einc vs:VL curves of a varactor

and of the considered Kerr-material capacitor and show that

the varactor has an increased sensitivity to the variations of

the load voltage. It is demonstrated that the bistable response

provided by a commercial varactor is approximately equiva-

lent to that of a nonlinear parallel plate capacitor filled

with a material with a vð3Þ parameter that may be up to three

orders of magnitude larger than the value considered here.

Note that our study is based on Kerr-type nonlinearities to

enable a direct full-wave validation of the results using CST

Microwave Studio57 (this commercial software does not sup-

port the nonlinear dynamics of a varactor).

Evidently, the hysteresis cycle of Fig. 6 implies that the

scattering parameters jRj and jTj also follow analogous hystere-

sis loops as the amplitude of the incident field is varied. This is

supported by Fig. 7, which depicts the hysteresis cycles calcu-

lated with the effective medium theory and with CST

Microwave Studio.57 The hysteresis loop is obtained with the

full wave simulator by computing the scattering coefficients in

the nonlinear regime with a dynamic excitation whose amplitude

varies slowly in time. Specifically, the transmission and reflec-

tion properties are numerically determined by progressively

increasing the excitation field from zero to any given amplitude,

or by gradually decreasing the excitation field from high values

to a desired value, depending on the branch of the hysteresis

loop. As seen, there is a remarkable agreement between the

effective medium theory and the full wave simulations.

Most importantly, Fig. 7 reveals that the transitions

between different branches are accompanied by a dramatic

FIG. 5. jF0j as a function of the reac-

tance of the lumped element of the

two-sided mushroom under the plane-

wave excitation at a frequency: (a) f ¼
7:90GHz and (b) f ¼ 14:56GHz. The

point of operation is marked with an

orange dot.

FIG. 6. Incident electric field as a function of the voltage at the nonlinear

load for the operating frequency 14:56 GHz.
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change in the values of the transmission and reflection coeffi-

cients, with a nonlinear modulation depth that can exceed

80%. In particular, the system can be switched between a state

of nearly total transmission and another state where it is

nearly opaque, depending on whether the incident field is

increasing or decreasing. Typical from a bistable switch, our

nonlinear metamaterial exhibits a jump-up characteristic, such

that when the increasing (decreasing) incident field reaches

some threshold, the transmission coefficient jumps up (down).

IV. DYNAMICAL RESPONSE

A bistable regime can have interesting practical applications

in high-power microwave circuits. In our system, the hysteresis

loop of the scattering parameters is characterized by states with

either a nearly total transmission or an almost complete reflec-

tion, which may enable the realization of an electromagnetic

switch. To further explore this possibility, we performed a full

wave simulation where the transmitted field was monitored as

the amplitude of the incident field was dynamically varied.

In the simulation, the incident wave is a time-varying mod-

ulated signal with an envelope [green line in Fig. 8(a)]

that permits exploring the full hysteresis cycle of the nonlinear

metamaterial. The transmitted field was calculated with

Microwave Studio (our vð3Þ parameter seems to be related

to the definition used by CST Microwave Studio as vð3Þ ¼ 8=
9vð3ÞCST) and is represented with a blue line in Fig. 8(a). The full

wave simulation demonstrates unequivocally that the transmit-

ted field depends on the history of the system. Consistent with

the hysteresis loop shown in Fig. 7, for an incident field with

amplitude of jEincj ¼ 550V=m [1st and 3rd plateaus in Fig.

8(a)], the transmitted field depends on whether the incident field

is increasing from very small values (the incoming wave

is strongly reflected) or decreasing from high values (transmis-

sion coefficient is near unity). Furthermore, in the 2nd plateau,

which corresponds to the strongest incident field, the transmis-

sion level (in percentage) is smaller than in the 3rd plateau.

Note that the transmitted field oscillates very fast on the time

scale of the plot (the period of the incident wave is 68.7 ps), and

this is why it is represented as a shaded area.

The bistable response occurs due to the nonlinear dynam-

ics of the system, allowing the structure to maintain a

“memory” of the external excitation. This is further highlighted

in Fig. 8(b), which represents the time evolution of the field

Ez;L in the parallel plate capacitor, revealing dynamic features

analogous to those of the transmitted field. Remarkably, the

electromagnetic field inside the capacitor can be rather strong,

and its amplitude can exceed 30 times that of the incident field.

This property is the key to boost the nonlinear response and

enhance the sensitivity of the nonlinear element to the incident

FIG. 7. Profile of the (a) transmission and (b) reflection coefficients for the two-sided mushroom structure as a function of the amplitude of the incident field. The

black (blue) curves correspond to a scenario where the amplitude of the incident field decreases (increases) from a very high value to zero (from zero to a very high

value). Solid lines: homogenization model. Dashed lines: full wave simulations.57 The structural parameters and operating frequency are the same as in Fig. 6.

FIG. 8. (a) Transmitted electric field

(blue line) and as function of time

when the incident field is a time

varying modulated signal with carrier

at f ¼ 14:56 GHz and envelope (green

line) such that jEincj ¼ 550 V=m for

t < 200 ns, jEincj ¼ 800 V=m for

200 ns < t < 400 ns, jEincj ¼ 550 V=m

for 400 ns < t < 600 ns, and jEincj
¼ 200 V=m for t > 600 ns. (b) Similar

to (a) but for the z-component of

the electric field inside the capacitor.

(c) and (d) jEz;Lj in the parallel-plate

capacitor and the nonlinear permittiv-

ity ecap, respectively, as a function

of the incident field amplitude. The

black curves correspond to a scenario

where the amplitude of the incident

field decreases from a very high value

to zero, whereas the blue curves corre-

spond to the reversed situation.
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field. Moreover, both Ez;L and the permittivity of the Kerr

material (ecap ¼ e0
capð1þ ajEz;Lj2Þ) exhibit hysteresis loops

with respect to the amplitude of the incident field [see Figs.

8(c) and 8(d)]. The required nonlinear modulation of the per-

mittivity is on the order of 25%. It was shown in early experi-

ments of nonlinear metamaterials38 that the rectification of the

microwave signal may lead to charge accumulation at the ter-

minals of a nonlinear lumped element, and thereby to a slowly

time-varying biasing voltage. We numerically checked (not

shown) with a two pulse repetition of the incident field that the

response of our system appears to be weakly sensitive to such

an effect. Yet, it is unclear if the numerical software can accu-

rately capture the discussed phenomenon. In general, such a

problem may be corrected with a large shunting inductor.

V. CONCLUSIONS

We developed an effective medium approach to study the

response of asymmetric mushroom-type metamaterials loaded

with nonlinear elements. It was shown that the dynamic varia-

tion of the impedance of the nonlinear element causes the

metamaterial to exhibit a strong bistable response and hystere-

sis loops, and allows the mushroom structure to behave as an

electromagnetic switch controlled by the intensity of the

incoming field. In particular, a parallel-plate capacitor filled

with a nonlinear Kerr-type material in the wires-to-patch con-

nection enables the system to be switched between “go” and

“no-go” transmission states, controlled by the dynamics of the

incident field and dependent on the past history of the system.

The operation near the Fano resonance boosts the nonlinear

effects due to a strong enhancement of the electric field in the

capacitor and due to the high sensitivity of the Fano resonance

to changes in the capacitance. For the proposed design, the

switch operation requires an incident field with an intensity on

the order of 850 W=m2. As shown in Appendix B, our design

is somewhat conservative and it appears that with a varactor it

may be possible to implement much stronger nonlinearities

with an “equivalent” vð3Þ increased by two or three orders of

magnitude. In such a case, the electromagnetic switch opera-

tion may be attained with a power density on the order of

1 W=m2. Thus, our findings indicate that mushroom-type

metamaterials can be interesting platforms to implement novel

tunable nonlinear functionalities in the microwave regime.
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APPENDIX A: THE EFFECTIVE MEDIUM MODEL

The effective response of a set of infinitely long parallel

metallic wires oriented along the z-direction and arranged in

a periodic square lattice is described by the following dielec-

tric function:1,5

�eeff ðx; kzÞ ¼ ehfetðx̂x̂ þ ŷŷÞ þ ezzẑẑg; (A1)

where eh is the dielectric host permittivity, ezz ¼ 1þ

eh

em�ehð ÞfV �
k2

h�k2
z

k2
p

� ��1

and the transverse permittivity satisfies

et � 1.1,5 Here, kh ¼ x
ffiffiffiffiffiffiffiffiffi
ehl0

p
is the wave number in the host

medium, fV ¼ pðrw=aÞ2 is the volume fraction of the metal

in the cell and em is the complex permittivity of the metallic

wires. In this work, for simplicity, we suppose that the metal

is a PEC such that em ¼ �1 and ezz ¼ 1� k2
p=ðk2

h � k2
z Þ.

The parameter kp has the physical meaning of the

plasma wave number of the effective medium, and within

a thin wire approximation, it can be written as

kpað Þ2 ¼ 2p ln a2

4rw a�rwð Þ

� �h i�1
.15 The explicit dependence of

the dielectric function on the wave vector kz ¼ �i @@z implies

a strong non-local behavior.1,5

Let us consider a transverse magnetic (TM) polarized

incoming plane wave (magnetic field is along the y-direc-

tion) that impinges on the bilayer mushroom structure with

an incidence angle hinc (see Fig. 1), so that the plane of inci-

dence is the xoz plane. As discussed in Ref. 29, a TM-

polarized wave can excite plane waves in the wire medium

slab with a transverse wave vector kt ¼ kxx̂ þ kyŷ such that

kx ¼ k0 sin hinc and ky ¼ 0, with k0 ¼ x=c and c the light

speed in the vacuum. In our problem, the electromagnetic

field inside the wire medium slab can be written as a super-

position of two pairs of counter-propagating waves (propa-

gating alongþz and –z directions, respectively) associated

with the so-called transverse electromagnetic (TEM) and

TM modes. The relevant field components in the scenario of

interest are Hy, Ex, and Ez and when the slab is surrounded

by air, the electromagnetic fields satisfy29

Hy ¼ eikxx Einc

g0

ec0z � Re�c0zð Þ z > 0

A1ecTM zþhð Þ þ A2e�cTM zþhð Þ þ B1ecTEM zþhð Þ þ B2e�cTEM zþhð Þ �h < z < 0

Tec0 zþhð Þ z < �h

;

8><
>: (A2)

Ex ¼ eikxx Einc

g0

1

ixe0

c0 ec0z þ Re�c0zð Þ z > 0
e0

eh
cTM A1ecTM zþhð Þ � A2e�cTM zþhð Þ
� 	

þ e0

eh
cTEM B1ecTEM zþhð Þ � B2e�cTEM zþhð Þ

� 	
�h < z < 0

c0Tec0 zþhð Þ z < �h

;

8>>><
>>>:

(A3)
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Ez ¼ �eikxx Einc

g0

kx

xe0

ec0z � Re�c0z z > 0
e0

eTM
zz

A1ecTM zþhð Þ þ A2e�cTM zþhð Þ
� 	

�h < z < 0

Tec0 zþhð Þ z < �h

;

8>>><
>>>:

(A4)

where R and T are the reflection and transmission coeffi-

cients, and A1;2 and B1;2 represent the complex amplitudes of

the TM and TEM waves, respectively, in the wire medium.

The propagation constants of the TM and TEM modes are

given by cTM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
p � x2ehl0

q
and cTEM ¼ �ix

ffiffiffiffiffiffiffiffiffi
ehl0

p
.

The free space propagation constant along the z-direction is

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x � x2l0e0

p
, g0 is the free space impedance, and Einc

is the complex amplitude of the incident field. The parameter

eTM
zz ¼ ehk2

x=ðk2
p þ k2

xÞ represents the z-component of the per-

mittivity for the TM polarized wave. Moreover, the electric

current I that flows along the metallic wires can be written in

terms of the macroscopic electromagnetic field as16,29

I ¼ þixehEz þ ẑ � ðikt �HtÞ½ �a2; (A5)

where kt ¼ kxx̂ and Ht ¼ H ¼ Hyŷ represent the transverse

(to the z-axis) components of the wave vector and magnetic

field.

The unknowns A1;2, B1;2, R, and T can be determined by

imposing suitable boundary conditions at the interfaces. It

was shown in Ref. 29 that when the wires are misaligned

with respect to the patch grids, the pertinent boundary condi-

tions at an interface z ¼ z0 with air are

bExcz¼z0
¼ 0; (A6a)

bHycz¼z0
¼ �YgExjz¼z0

þ fa
a

n̂ � ẑ I; (A6b)

@I

@z
þ Cw

Cpatch

� ixCwZL;ef


 �
I n̂ � ẑð Þ� ixCw faaEx ¼ 0; (A6c)

where bFcz¼z0
¼ Fz¼zþ

0
� Fz¼z�

0
stands for the field disconti-

nuity of F at the pertinent interface and n̂ is the outward unit

vector directed towards the exterior of the wire medium.

Here, ZL;ef represents the effective load impedance (i.e.,

including parasitic effects), and Yg is the grid admittance that

relates the induced surface current with the tangential elec-

tric field. For an array of wires terminated with metallic

patches separated by a gap g, the admittance Yg is given

by Yg ¼ �iðeh þ e0Þðxa=pÞ log ½cscðpg=2aÞ�.15 Moreover,

Lw ¼ l0

2p log a2

4rw a�rwð Þ

� �
is the per unit of length (p.u.l.) wire

inductance, Cw ¼ ehl0L�1 is the p.u.l. wire capacitance and

Cpatch ¼ ðeh þ e0Þpða� gÞ½log ðsec ðpg=2aÞÞ��1
is the patch

capacitance.15 The parameter fa ¼ d
a�g is an angular filling

factor varying in the range of � 1
2
< fa <

1
2
, and depends on

the shift d (along the positive x-direction) between the wire

and patch grids.29

Using Eqs. (A2)–(A4), and imposing the boundary con-

ditions (A6) at the two interfaces with air, one obtains a

6� 6 linear system of equations. The numerical solution of

this linear system determines the six unknowns R, T, A1;2,

and B1;2. The current at the load position (IL ¼ Iðz ¼ �hÞ) is

determined using Eq. (A5), and the corresponding voltage

drop is given by VL ¼ ZL;ef IL.

APPENDIX B: MUSHROOM METAMATERIAL LOADED
WITH VARACTORS

As discussed in the main text, the emergence of a bista-

ble regime requires a non-monotonic variation of jF0j with

the impedance of the load. Next, it is shown that “varactors”

can be an interesting solution to implement a hysteresis-type

(bistable) response in mushroom-type metamaterials.

Varactors are nonlinear elements ubiquitous in micro-

wave devices. The capacitance of a varactor depends on the

voltage VL at its terminals. A typical model for the nonlinear

capacitance is62

C VLð Þ ¼ CJ0 1þ VL

VJ


 ��M

þ Cp; (B1)

where CJ0 is zero-bias junction capacitance, VJ is the junc-

tion potential, M is the grading coefficient, and Cp is the

package capacitance. Typical values for these parameters are

Cp ¼ 50 fF, CJ0 ¼ 2:92 pF, VJ ¼ 0:68 V, and M¼ 0.41.62

These parameters will be used throughout this Appendix. In

addition, a parasitic inductance LS ¼ 1:9 nH in series with

the junction capacitance is also considered in the model of

the varactor.62 It should be noted that a varactor is a diode

and thus conducts current in one of the directions. Hence, in

practice, one may need to use two oppositely directed varac-

tors in series or, alternatively, heterostructure barrier

varactors.63

Using the same methods as in Sec. III, we determined

the nonlinear relation between the incident field and the volt-

age VL when the varactor is used as the nonlinear element in

the mushroom metamaterial. The calculated characteristic

curve Einc vs:VL is represented in Fig. 9(a) and has features

completely analogous to those obtained for a Kerr-type

nonlinearity.

Note that for a varactor, the capacitance decreases with

jVLj, whereas for the Kerr-material capacitor considered in

the main text, the capacitance increases with jVLj. The

important point is that in both cases the capacitance varies

monotonically with jVLj. This property and the non-

monotonic behavior of jF0j guarantee a bistable response

provided the point of operation is carefully chosen. Indeed,

similar to Fig. 6, the characteristic Einc vs:VL in Fig. 9(a) is

multi-valued, so that the physical response of the varactor is

forced to have discontinuous jumps corresponding to the

paths p1 and p2. Thus, the bistable response can be obtained

with different types of nonlinear elements. The operation
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frequency in Fig. 9(a) is lower than in Fig. 6 because the

capacitance Cð0Þ in the linear regime is a few times larger

for the varactor.

Notably, the considered varactor enables a nonlinear

response much stronger than the nonlinear element of the

main text. This is shown in Figs. 9(b-i) and 9(b-ii),

which represent the relative change in the capacitance

jCðVLÞ � Cð0Þj=Cð0Þ � jDCj=Cð0Þ as a function of the volt-

age at each nonlinear element. Clearly, the varactor is more

sensitive to the variations of the voltage, particularly for low

values of jVLj. The hysteresis loops shown in Fig. 6 (which

corresponds to jVLj < 30V) require a nonlinear modulation

of the capacitance on the order of 30% [marked as a dashed

horizontal line in Fig. 9(b)]. The same relative variation of

the varactor capacitance can be achieved with a voltage as

small as jVLj � 0:9V. In order to mimic the response of the

varactor for jDCj=C < 0:3, one would need to use a parallel-

plate capacitor with a vð3Þ parameter as large as 0:9�
10�6m2V�2 [Fig. 9(b-iii)].
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