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Topological angular momentum and radiative heat transport in closed orbits
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We study the role of topological edge states of light in the transport of thermally generated radiation in a
closed cavity at a thermodynamic equilibrium. It is shown that even in the zero temperature limit—when the
field fluctuations are purely quantum mechanical—there is a persistent flow of electromagnetic momentum in the
cavity in closed orbits, deeply rooted in the emergence of spatially separated unidirectional edge state channels. It
is highlighted that the electromagnetic orbital angular momentum of the system is nontrivial, and that the energy
circulation is towards the same direction as that determined by incomplete cyclotron orbits near the cavity walls.
Our findings open inroads in topological photonics and suggest that topological states of light can determine
novel paradigms in the context of radiative heat transport.

DOI: 10.1103/PhysRevB.95.115103

I. INTRODUCTION

The discovery of topological states of light uncovered a
myriad of physical platforms in which the wave propagation
is impervious to perturbations of the propagation path and
immune to backscattering [1–17]. In particular, Chern-type
photonic insulators are characterized by a nontrivial topologi-
cal number, the Chern invariant, which being an integer is ab-
solutely insensitive to continuous deformations of the material
response, e.g., to weak continuous changes in the microscopic
or nanoscopic constituents [1–4,18–20]. The Chern number
can only vary when some topological charge is exchanged
between different photonic bands, i.e., when a band gap closes
and reopens [1–3]. Thus, a topological phase transition must
occur when some material is continuously transformed into
another material with a different Chern number (e.g., through
a continuous deformation of the structural unities or a variation
of a biasing field). Notably, this property implies that if two
topologically distinct materials that share a common band gap
are joined to form an interface, then topologically protected
unidirectional edge states will appear in the band gap, a
property which is known as the “bulk edge correspondence
principle” [3,20,21].

A nonzero Chern number requires breaking the time-
reversal symmetry and thus a nonreciprocal material response.
This can be achieved using a static magnetic field that
originates a gyrotropic response [1,7]. Nonreciprocal effects
may also occur in systems with moving parts [17,22,23],
when the material response is time modulated [24], or in the
presence of strong nonlinearities [25]. Furthermore, in some
antiferromagnetic materials, the time-reversal symmetry may
be spontaneously broken due to magnetic ordering [18,26].

It is natural to wonder whether the intriguing properties
of topologically protected unidirectional edge states can
have any exotic consequences in the context of fluctuational
electrodynamics, i.e., when the electromagnetic fields are
either generated by the random jiggling of atoms due to thermal
agitation or due to purely quantum fluctuations. Specifically,
we are interested in scenarios where the system of interest is
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closed (e.g., a closed cavity) and is in a thermal equilibrium.
The presence of topologically protected “one-way” channels
raises puzzling questions: do these channels lead to a transport
of the thermal (or zero-point) energy? Does heat transport
prevent that a thermal equilibrium is reached or does it
breach the second law of thermodynamics due to the energy
concentration in some location of the cavity? Here, it is
theoretically shown that the emergence of topological edge
states does not lead to any paradoxical settings and that
standard fluctuation electrodynamics provides a conclusive
answer to the enunciated questions. Specifically, it is found
that the topological edge states induce a circulation (with no
net sinks or sources) of thermal (or zero-point) energy in closed
orbits, such that the angular momentum of the electromagnetic
field is nonzero. Remarkably, it is shown that the heat flux
circulates towards the direction determined by incomplete
electron cyclotron orbits. Notably, the energy flow persists
even in the zero temperature limit, when the system is in its
(parametric) “ground” state.

It is important to connect our findings with previous
studies. The circulation of electromagnetic momentum in
nonreciprocal systems in a thermal equilibrium has been
discussed in a few different contexts. In Ref. [27], we
demonstrated that in a system with parts in a shear motion,
the quantum expectation of the zero-point electromagnetic
momentum associated with a moving body is typically
nonzero, even though the expectation of the total momentum of
the system vanishes. Unfortunately, in such systems the effect
is negligibly small for nonrelativistic velocities. More recently
[28], it was shown that in a nonreciprocal many-body system
formed by magnetized nanoparticles near-field interactions
enable a persistent directional heat current at a thermodynamic
equilibrium, in qualitative agreement with our conclusions.
This paper builds on these previous works and looks at
the problem from a different angle: we investigate the heat
circulation in a system with topological properties, showing
that the topological unidirectional edge states lead to the
formation of spatially separated channels, where the energy
flows in closed orbits so that the angular electromagnetic
momentum is nontrivial at equilibrium.

It is relevant to mention that the influence of a nonreciprocal
electromagnetic response in the context of radiative heat
transport in nonequilibrium situations (e.g., in the presence of
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FIG. 1. Geometry of the parallel-plate gyrotropic waveguide. (a) The waveguide is filled with a gyrotropic material biased with a uniform
static magnetic field oriented along the negative y direction. (b) Sketch of the electron cyclotron orbits in the gyrotropic material. The orbits
are incomplete at the metallic plates, inducing and electron flow to the right (left) on the top (bottom) plate.

a temperature gradient) was discussed in other recent works.
For example, it was shown that nonreciprocal effects enable a
giant radiative thermal rectification [29], a thermal Hall effect
[30], and a tunable near-field heat transfer [31]. Asymmetric
radiative heat flows can also occur in reciprocal structures with
a temperature dependent response [32,33] or in anisotropic
materials [34]. More generally, there is great interest in recent
literature in novel approaches to tame the radiative heat flow
at the nanoscale due to its applications in thermophotovoltaics
[35–41], thermal radiation based microscopy [42–46], or
radiative cooling [47].

II. GYROTROPIC WAVEGUIDE

We consider a closed cavity formed by a parallel
plate waveguide filled with an electric gyrotropic material
[Fig. 1(a)]. The widths of the structure along the x and y di-
rections are much larger than the waveguide height (Lx,Ly �
d), and for simplicity of modeling, the corresponding ends
are terminated with periodic boundary conditions. Thus, the
structure can be assumed invariant to translations along the
x and y directions. The waveguide walls are modeled as
perfect electric conductors (PEC), a good approximation up
to terahertz frequencies.

The gyrotropic material is biased with a static magnetic
field (B0 = −B0ŷ) directed along the negative y direction
so that the relative permittivity tensor is of the form ε =
εt1t + εa ŷŷ + iεg ŷ × 1 with 1t = 1 − ŷŷ. It is assumed that
the frequency dispersion of the permittivity elements is the
same as in a magnetized electric plasma (e.g., InSb) with
negligible material loss:

εt = 1 − ω2
p

ω2 − ω2
0

, εa = 1 − ω2
p

ω2
, and

εg = −1

ω

ω2
pω0

ω2
0 − ω2

. (1)

Here, ωp is the plasma frequency, and ω0 = −qB0/m is the
cyclotron frequency determined by the biasing field (q = −e

is the negative charge of the electrons and m is the mass) [48].

A. Topological properties of the bulk gyrotropic material

Figure 2(a) shows the band structure of a magnetized
plasma with ω0 = 0.5ωp for different directions of propa-
gation (χ = 0◦, χ = 45◦, and χ = 90◦). The band diagrams
were obtained with the formalism described in Appendix A
[Eq. (A4)]. The angle χ is measured with respect to the y

direction, i.e., a direction parallel to the bias magnetic field.
Note that generally χ = const determines a conical surface;
for χ = 90◦, the conical surface reduces to the xoz plane,
whereas for χ = 0◦, it degenerates into the y axis. Thus,
Fig. 2(ai) represents the band structure for propagation in
the xoz plane. It is well known that when the propagation
direction is perpendicular to the bias field, the waves are either
TE polarized [with electric field along the y direction; green
dashed line in Fig. 2(ai)] or TM polarized [with electric field
in the xoz plane and magnetic field along the y direction; blue
lines in Fig. 2(ai)] [19,20,49–51]. In particular, TM-polarized
waves have two different band gaps for propagation in the
xoz plane. Here, we will focus on the high-frequency band
gap determined by ωgL < ω < ωgU , with ωgL =

√
ω2

0 + ω2
p

and ωgU = ω0/2 +
√

(ω0/2)2 + ω2
p, delimited by the dashed

gray horizontal grid lines in Fig. 2(a). For propagation in the
xoz plane, this band gap separates the TM-polarized waves
into two subsets of topologically distinct bands (the TE-band
is topologically trivial). There is a single band above the
gap with Chern number C3 = 1 and two bands below the
gap, with the total Chern number C1 + C2 = +1 − 2 = −1.
The Chern numbers are numerically calculated by integrating
the Berry curvature over the kx − kz plane, specifically, C =

1
2π

∫∫
dkxdkz ŷ · (∇k × Ak), where Ak is the Berry potential

[19]. The calculation of the topological numbers in an
electromagnetic continuum requires imposing a wave vector
cutoff in the nonreciprocal part of the electromagnetic response
[19,20]. Note that the low-frequency band (ω = 0+) with
C1 = 1 is a flat (dark) mode in the xoz plane. However, if
the propagation direction is slightly tilted so that it gains a
small y component, the dark mode becomes bright, as can be
inferred from the band structure in Fig. 2(aii) [52].

Generally, the wave polarization depends on 0◦ < χ < 90◦
in a complicated way (it also varies from one band to another).
For χ = 0◦, (propagation along the y axis parallel to the bias
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FIG. 2. Band structure and isofrequency contour for a bulk magnetized plasma. (a) Band structure for propagation along the direction (ai)
χ = 90◦, (aii) χ = 45◦, and (aiii) χ = 0◦, measured with respect to the bias magnetic field. In panel (ai), the TE band is depicted with a dashed
green line, whereas the remaining bands (solid blue lines) are associated with TM-polarized waves; the insets indicate the Chern numbers.
(b) Isofrequency contour for ω = 1.2ωp and propagation in the xoy plane.

field), the wave is TEM and circularly polarized (CP). As
may be inferred from Figs. 2(ai)–2(aiii), in the range ωgL <

ω < ωgU , there is a single propagating plane wave in the bulk
magnetized plasma for every direction of space. The isofre-
quency contour associated with this band is shown in Fig. 2(b)
for the frequency ω = (ωgL + ωgU )/2 = 1.20ωp. Evidently,
the associated isofrequency surface has revolution symmetry
around the y axis. As seen in Fig. 2(b), the isofrequency surface
is slightly elongated along the y direction due to the anisotropy
of the material. For propagation in the x direction, the wave is
a linearly polarized (LP) TE mode, whereas for propagation
along the y direction, the wave is CP polarized.

B. Topological waveguide modes

Let us now consider the waveguide of Fig. 1(a) formed
by introducing two metallic (PEC) walls at the planes z = 0
and z = d. The gyrotropic waveguide modes are characterized
in Appendix B. Using the developed theory [Eq. (B5)],
we determined the dispersion of the waveguide modes in
the frequency region ωgL < ω < ωgU . A few representative
isofrequency contours are shown in Fig. 3(a) for the case in

which the waveguide height is d = 0.5c/ωp. It turns out that
for ωgL < ω < ωgU , there is a single propagating mode for
every direction in the xoy plane. Remarkably, notwithstanding
the strong anisotropy of the gyrotropic material, the isofre-
quency contours are nearly circular, and the anisotropy effects
are only noticeable near ω ≈ ωgL (black contour), where the
mode enters into cutoff.

Figure 3(b) shows the detailed mode dispersion in the
interval ωgL < ω < ωgU (delimited by the dashed gray lines)
for propagation along the x (blue lines) and y direction (dashed
green lines). In agreement with the isofrequency contours, the
two cases are nearly indistinguishable. The numerical simu-
lations show that independent of the propagation direction,
the dominant component of the electric field is along the z

direction, consistent with the boundary conditions imposed
by the metallic plates. This orientation of the electric field
contrasts sharply with the electric field polarization curves
in the bulk gyrotropic material [Fig. 2(b)]. A density plot of
a time snapshot of Ez is shown in Fig. 3(c) for the points
A, B, C and D associated with the isofrequency contour
ω = 1.2ωp [see Fig. 3(a)]. The point B corresponds to the
direction of propagation ϕ = 60◦ (ϕ is measured with respect
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FIG. 3. The gyrotropic waveguide modes. (a) Several isofrequency contours in the range ωgL < ω � ωgU for the waveguide height
d = 0.5c/ωp and for a cyclotron frequency ω0 = 0.5ωp . (b) Mode dispersion for propagation along the x direction (blue lines) and for
propagation along the y direction (green dashed lines; the dispersions in the x and y directions are nearly coincident). The black line in the
region with a negative abscissa represents the dispersion of the topological edge mode supported when the top plate is removed and is exactly
coincident with the corresponding blue line. (c) Time snapshot of the Ez field along the direction of propagation for the modes A, B, C, and
D marked in panel (a). The arrows represent the Poynting vector lines in the waveguide. The energy tends to be concentrated near the top wall
(bottom wall) when the wave propagates along the +x (−x) direction.

to the +x axis) and the coordinate x̃ is measured along this
direction. The plots also depict the Poynting vector lines in the
waveguide.

Notably, the numerical results reveal that for propagation
along the +x direction [Fig. 3(c-A)] the energy tends to flow
near top wall of the waveguide, whereas for propagation along
the –x direction [Fig. 3(c-D)] the bottom wall is preferred.
On the other hand, for propagation along y direction the
energy distribution is symmetric with respect to the center
of the waveguide [Fig. 3(c-C)]. The locking between the
spatial region where the light flows and its momentum parallels
precisely the electron flow induced by a static magnetic field
due to incomplete cyclotron orbits (skipping orbits) near
the metallic walls [Fig. 1(b)]. This suggests that the two
phenomena are deeply linked.

From another perspective, the spatially asymmetric energy
transport along the x direction has its origin in the topological
properties of the bulk gyrotropic material. Indeed, due to the
bulk edge correspondence principle [19,20], a single interface
of the gyrotropic material and a standard metal supports

exactly one topological edge state in the range ωgL < ω <

ωgU . Note that the total Chern number below the relevant band
gap is C1 + C2 = −1, and since a metal is topologically trivial,
the Chern number difference is δC = Cgyro − Cmetal = −1.
Thus, a single interface of the two materials must support
a unidirectional (TM-polarized) edge mode for propagation
along the x direction. The dispersion of the edge mode is
determined by [19,20,49](

γg

εef

∓ εxzikx

ε2
xx + ε2

xz

)
+ γm

εm

= 0, (2)

where εm is the metal permittivity, γm =
√

k2
x − εm(ω/c)2,

εef = (ε2
t − ε2

g)/εt is the effective permittivity of the gy-

rotropic material, γg =
√

k2
x − εef (ω/c)2, and εxx = εt and

εxz = iεg are the components of the gyrotropic material
permittivity tensor. For a perfectly conducting metal, the term
γm/εm vanishes. In Eq. (2), the sign − (+) is chosen when
the metallic wall stands below, in the region z < 0 (above,
in the region z > 0), the gyrotropic material. In particular,
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the dispersion of the topological edge mode supported by the
single interface waveguide obtained when the top PEC plate
is removed is given by γg

εef
+ εgkx

εef εt
= 0. This unidirectional

topological mode propagates exclusively towards the –x
direction and has the dispersion depicted in Fig. 3(b) with
a black line. Notably, this dispersion is precisely coincident
(in the region with negative abscissa) with that of the mode
supported by the parallel plate gyrotropic waveguide [blue line
in Fig. 3(b)]. Indeed, it can be checked that in the limit ky → 0,
the dispersion of the waveguide modes [Eq. (B5)] reduces to
( γg

εef
+ εg

εef εt
kx)( γg

εef
− εg

εef εt
kx) = 0. Each of the factors can be

recognized as the dispersion of the topological state supported
by the bottom plate and the gyrotropic material (first factor)
or the top plate and the gyrotropic material (second factor).
Furthermore, the field distribution of the gyrotropic waveguide
modes (for propagation along the x direction) coincides with
that of the topological edge states of the individual guides
with a single metallic wall. Indeed, when the metal is perfectly
conducting, the edge state has an electric field oriented along z,
and as a consequence, the edge state profile is unaffected by the
introduction of a second metallic wall. For a metal described
by a Drude model, the x component of the electric field would
be nonzero; hence, in that scenario, the dispersion of the edge
modes could be modified by the second metallic plate.

For propagation along the x direction, the confinement
(along z) of the edge modes is determined by the transverse
attenuation constant γg depicted in Fig. 4(a). Somewhat
counterintuitively, it is seen that γg diverges to infinity as the
frequency approaches the bottom edge of the TM waves band
gap (ω = ωgL = 1.12ωp). Note that in the limit ω → ωgL, the
propagation constant of the edge modes approaches kx → 0
[Fig. 3(b)]. Thus, different from surface plasmon polaritons,
the edge waves become more confined when the guided
wavelength is longer. This exotic effect is a consequence of
gyrotropic response. Figure 4(b) shows the modal field profile
and the Poynting vector lines near the band gap edges, showing
a dramatic confinement when ω → ωgL [Fig. 4(bi)] and weak
confinement when ω → ωgU [Fig. 4(bii)].

d
w

FIG. 5. Field radiated by a vertical electric dipole in the gy-
rotropic waveguide. (a) Cut of the xoz plane. (b) Cut of the yoz
plane. The density plots represent a time snapshot of the emitted Ez.
The waveguide height is d = 0.5c/ωp, and the cyclotron frequency
is ω0 = 0.5ωp . The lateral width of the guide in the plots is w = 63d .
The oscillation frequency is ω = 1.2ωp .

To further illustrate the discussion, we used a commercial
electromagnetic simulator [53] to compute the fields radiated
by a short vertical electric dipole inside the gyrotropic waveg-
uide. A density plot of a time snapshot of the z component
of the radiated electric field is depicted in Fig. 5. Consistent
with Fig. 3(c), it is seen that in the xoz plane [Fig. 5(a)],
the emission is spatially asymmetric such that the emitted
fields flow nearer the top/bottom metallic plates, depending
on if the wave propagates along +x or −x, respectively. In
contrast, in the yoz plane, the field distribution exhibits an
even symmetry with respect to the midplane z = d/2. The
detailed time variation of the emitted field can be found in the
time animations available as Supplemental Material [54].
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FIG. 4. Mode confinement. (a) Transverse attenuation constant γg as a function of the normalized frequency for propagation along the x

axis. (b) Time snapshot of Ez for propagation along the +x direction and (bi) ω = 1.001ωgL and (bii) ω = ωgU . The arrows represent the
Poynting vector lines in the waveguide.
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In summary, for propagation along the x direction (perpen-
dicular to the bias magnetic field), the waveguide modes are
inherently topological. The topological states determine two
spatially separated propagation channels such that the wave
energy transported to the positive (negative) x direction is
concentrated near the top (bottom) waveguide wall.

III. FLUCTUATIONAL ELECTRODYNAMICS

Having discussed in detail the topological origin of the wave
phenomena in the gyrotropic waveguide, next we investigate
correlations of the electromagnetic fields induced by either
thermal or quantum fluctuations. It is supposed that all the
points of the waveguide are held at a fixed temperature T .

A. Field correlations

To begin with, it is convenient to introduce some notations
and write the Maxwell’s equations in the frequency domain in
the following compact form:

N̂ · F = ωM · F, with N̂ =
(

0 i∇ × 13×3

−i∇ × 13×3 0

)
.

(3)

Here, 13×3 is the 3×3 identity matrix, ω is the oscillation
frequency, F = (E H)T is a six-component vector field written
in terms of the standard electromagnetic field vectors, and T

denotes the transpose operator. The material matrix M for the
geometry of interest is of the form M(r,ω) = (

ε0ε 0
0 μ013×3

)
,

where ε(r,ω) is the space dependent permittivity tensor.
In the limit of negligible material loss, the quantized

electromagnetic fields in the gyrotropic waveguide may be
expressed in terms of the electromagnetic modes Fnk = Fnk(r)
as [55–58]:

F̂(r,t) =
∑

ωnk>0

√
h̄ωnk

2
(ânke

−iωnktFnk(r) + â
†
nke

+iωnktF∗
nk(r)).

(4)

Here, ânk,â
†
nk are standard annihilation and creation operators

([ânk,â
†
nk] = 1), and ωnk is the oscillation frequency associated

with the mode nk. As previously mentioned, the waveguide
modes Fnk are determined with the formalism of Appendix B.
For dispersive media, the electromagnetic modes must be
normalized as [57,58]:

1

2

∫
d3r F∗

nk · ∂(ωM)

∂ω
· Fnk = 1. (5)

The above condition ensures that the energy stored in the
mode Fnke

−iωnkt is identical to the unity [19]. Because the
waveguide is invariant to translations along x and y the
modes can be labeled by the transverse wave vector k =
(kx,ky,0), which determines the fields variation in the xoy
plane: Fnk(r) = fnk(z)eik·r. Note that for a cavity with lateral
widths (Lx,Ly) finite, kx,ky are quantized due to the periodic
boundary conditions.

Next, we obtain the spectral density of the field
correlations in terms of a modal expansion. For
simplicity, first it is assumed that the field is in its

parametric ground state |0〉. The ground state depends
on the biasing magnetic field. Calculating the Fourier
transform of the quantized fields one obtains that F̂(r,ω) =
2π

∑
ωnk>0

√
h̄ωnk

2

(
δ(ω − ωnk)ânkFnk + δ(ω + ωnk)â†

nkF∗
nk

)
.

For two generic scalar operators, we define the symmetrized
product as {ÂB̂} = 1

2 (ÂB̂ + B̂Â). Straightforward
calculations show that the quantum vacuum expectation
(〈 〉0) of the tensor operator {F̂(r,ω)F̂†(r′,ω′)} is

1

(2π )2 〈{F̂(r,ω)F̂†(r′,ω′)}〉0

= δ(ω − ω′)ε0,ω

∑
ωnk>0

1

2
[δ(ω − ωnk)Fnk(r) ⊗ F∗

nk(r′)

+ δ(ω + ωnk)F∗
nk(r) ⊗ Fnk(r′)], (6)

where ε0,ω = h̄|ω|/2 is the zero-point energy of an harmonic
oscillator. In Appendix C, it is proven that this result is fully
consistent with the fluctuation-dissipation theorem [59] in
the T = 0 limit and that the field correlations may also be
written in terms of a retarded Green-function. Furthermore,
such a link shows that Eq. (6) can be extended to the case
of thermally induced fluctuations simply by replacing ε0,ω by
εT,ω = h̄ω

2 coth( h̄ω
2kBT

) [59], i.e., by the energy of a harmonic
oscillator at temperature T .

To sum up, in the limit of vanishingly small material losses,
the field fluctuations can be conveniently characterized using
a modal expansion, as shown in Eq. (6). This formalism is
exactly equivalent to the result obtained using the fluctuation-
dissipation theorem. Note that the fluctuation-dissipation
theorem [Eq. (C3)] is more general than Eq. (6) because it
applies also to systems with strong material absorption.

Calculating the inverse Fourier transforms of the two
operators in Eq. (6), it is found that in the time domain:

〈{F̂(r,t)F̂(r′,t)}〉T
=

∫ +∞

0
dω εT,ω

∑
ωnk>0

δ(ω − ωnk)
1

2
[Fnk(r) ⊗ F∗

nk(r′)

+ F∗
nk(r) ⊗ Fnk(r′)]. (7)

The subscript T indicates that the expectation is taken at the
temperature T , and in accordance, ε0,ω was replaced by εT,ω.

B. Poynting vector

Using Eq. (7) and F̂ = (Ê Ĥ)T , it is possible to determine
the expectation of the Poynting vector operator Ŝ = {Ê × Ĥ}.
It is found that 〈Ŝ(r,t)〉T = ∫ +∞

0 dω S+
ω (r), being S+

ω the
unilateral spectral density of the Poynting vector,

S+
ω (r) = εT,ω

∑
ωnk>0

δ(ω − ωnk)Snk(r), with

Snk(r) = Re{Enk(r) × H∗
nk(r)}. (8)

Here, Enk,Hnk are the electric and magnetic components of
the mode nk, i.e., Fnk = (Enk Hnk)T . In particular, it is
seen that the expectation of the Poynting vector operator
can be expressed as 〈Ŝ(r,t)〉T = ∑

ωnk>0 εT,ωnk Snk(r). This
is a physically intuitive result: Snk(r) determines the energy
density flux when the mode nk has unit energy [Eq. (5)];
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hence, εT,ωnk Snk(r) gives the energy density flux when the
mode energy is determined by the Bose-Einstein statistics.

Let us first consider that the waveguide is reciprocal
(biasing magnetic field is zero), or equivalently (in the
limit of vanishing material loss) time-reversal invariant. The
time-reversal operator T transforms the modal fields as
(Enk Hnk) → (E∗

nk −H∗
nk) and the frequency and the wave

vector as (ωnk,k) → (ωnk, − k). In particular, the Poynting
vector is flipped by the time-reversal operation Snk → −Snk
[17]. Thus, the contribution of the modes Fnk and T · Fnk to the
Poynting vector expectation cancels out. Hence, in reciprocal
structures, the expectation of the Poynting vector is precisely
zero at all points of space: 〈Ŝ(r,t)〉T = 0 [28]. It can be shown
using directly the fluctuation-dissipation theorem [Eq. (C3)]
that this result remains valid when the material absorption is
non-negligible (i.e., when reciprocity is not equivalent to time
reversal). Therefore, the system reciprocity needs to be broken
to have a radiative heat flow in a stationary state (with the
system temperature constant at all points of space) [28].

Since Snk determines the Poynting vector of a solution of
Maxwell’s equations in the frequency domain, it follows that
in the absence of material absorption ∇ · Snk = 0. Thus, from
〈Ŝ(r,t)〉T = ∑

ωnk>0 εT,ωnk Snk(r), one concludes that

∇ · 〈Ŝ(r,t)〉T = 0. (9)

Thus, the Poynting vector orbits are necessarily closed, i.e.,
there are no sources or sinks of the Poynting vector lines.
Since the energy flows in closed orbits, a nonzero expectation
of the Poynting vector does not require pumping energy into
the system. The result ∇ · 〈Ŝ(r,t)〉T = 0 holds even in the
presence of strong material absorption. In that case, the rate
of energy absorption by a given material element must be
precisely the same as the rate of energy emission by the
same element to ensure that all material elements are held
at a constant temperature.

To further characterize the spectral density of the Poynting
vector in the gyrotropic waveguide, it is now supposed that
the waveguide widths along the x and y directions are rather
large so that the summation over k can be transformed into an
integral using

∑
k = A0

(2π )2

∫
d2k, where A0 = Lx × Ly is the

transverse area of the waveguide. Hence, it follows that

S+
ω (r) = εT,ω

∑
n

1

(2π )2

∫
d2k δ(ω − ωnk)A0Snk(r)

= εT,ω

1

d

∑
n

1

(2π )2

∫
ω=ωnk

dl
c

|∇kωnk| S̃nk(r). (10)

The rightmost integral is a line integral (in the wave vector
space) over the isofrequency lines ω = ωnk. For convenience,
we introduced the dimensionless vector S̃nk = 1

c
V Snk, with

V = A0 × d, the volume of the waveguide. The vector
S̃nk may be written as S̃nk = η0Re{Ẽnk × H̃∗

nk} (η0 is the
vacuum impedance), with the modal fields F̃nk = (Ẽnk H̃nk)T ,
normalized as 1

ε0V
1
2

∫
d3r F̃∗

nk · ∂(ωM)
∂ω

· F̃nk = 1. It is evident

that when the waveguide is invariant to translations along x

and y, S̃nk depends exclusively on the z coordinate so that
S+

ω = S+
ω (z).

IV. HEAT FLOW IN CLOSED ORBITS

To illustrate the implications of the theory, we used
Eq. (10) to determine the Poynting vector spectral density.
The calculation is restricted to the frequency interval ωgL <

ω < ωgU due to the inherent simplicity of the waveguide
dispersion in this frequency range (the waveguide supports
precisely one mode per propagation direction) and because of
the topological origin of the waveguide modes. The gyrotropic
waveguide is characterized by the same parameters as in Sec. II
(ω0 = 0.5ωp and d = 0.5c/ωp). As expected, the numerical
calculations reveal that the Poynting vector expectation has
only an x component: S+

ω = S+
ω (z)x̂. For convenience, we

normalize the spectral density S+
ω to the temperature dependent

density ST
ω = εT,ω(ωp/c)2. Note that the units of S+

ω are joule
per square meter.

Equation (10) may be rewritten as S+
ω (z) = ∫

dϕ Ṡ+
ω,ϕ(z),

where Ṡ+
ω,ϕ0

(z)dϕ gives the contribution of all the waveguide
modes with wave vector k in the angular sector ϕ0 < ϕ <

ϕ0 + dϕ. Here, the angle ϕ is measured with respect to the x

direction in the xoy plane. Figure 6(a) depicts Ṡ+
ω,ϕ(z) as a func-

tion of ϕ for the case ω = 1.2ωp. Consistent with the results
of Sec. II, the modes that contribute mostly to the expectation
of the Poynting vector near the top wall are associated with
ϕ = 0◦, i.e., are topological waves that propagate along the
+x direction [see the black curve in Fig. 6(a)]. Conversely,
near the bottom wall, the modes that contribute mostly are
associated with ϕ = 180◦, i.e., with propagation along the −x

direction [dot-dashed blue curve in Fig. 6(a)]. In agreement
with the symmetry of the problem, Fig. 6(a) shows that
Ṡ+

ω,ϕ(d) = −Ṡ+
ω,ϕ+π (0). Thus, the fluctuation induced Poynting

vector satisfies S+
ω (z) = −S+

ω (d − z), i.e., has odd symmetry
with respect to the center of the waveguide. This property is
nicely illustrated by Fig. 6(b), which shows a density plot of
the intensity and the vector lines of S+

ω at ω = 1.2ωp. Notably,
due to the topological properties of the gyrotropic material, the
expectation of the spectral density of the Poynting vector is
nonzero; hence, there is a net flow of electromagnetic energy
in the upper and lower regions of the waveguide, even though
the system is in a thermal equilibrium.

As seen in Fig. 6(b), the Poynting vector lines form
closed orbits oriented in the clockwise direction (the direction
opposite to the applied magnetic field). Because the waveguide
width is assumed to be very large along the x direction, the
orbits of the Poynting vector are closed at infinity. Remarkably,
the heat flow near the top plate is towards the +x direction,
imitating thus the electron flow due to incomplete cyclotron
orbits near the same metallic wall [see Fig. 1(b)]. Because
the electromagnetic momentum density is S/c2, it follows
that even though the total electromagnetic momentum of
the system vanishes ( 1

c2

∫
SdV = 0), there is a nontrivial

electromagnetic angular momentum due to the circulation
of energy in closed orbits. The angular momentum is L =
1
c2

∫
r × SdV = Ly ŷ withLy/A0 = 1

c2

∫
(z − d

2 )Sxdz [60–62]
(in this calculation, we do not include the contributions at
x = ±∞ from the z component, Sz/c

2, of the momentum
density). The system has this attribute even in the limit of a
zero temperature, when εT =0,ω = h̄|ω|/2 and the fluctuations
have a purely quantum origin.
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FIG. 6. The fluctuation induced energy density flux. (a) Ṡ+
ω,ϕ(z) as a function of the direction (ϕ) of the wave vector for ω = 1.2ωp .

(b) Density plot of the intensity and vector lines of S+
ω for ω = 1.2ωp . (c) S+

ω as function of z for ω = ωgL (black line), ω = 1.2ωp (dot-dashed
blue line), and ω = ωgU (dashed green line). (d) S+

ω as function of frequency calculated at the positions z = (m/4)d with m = 0,1, . . . 4.

A quantitative characterization of S+
ω in the waveguide

cross section is given in Fig. 6(c) for different frequencies. For
ω = 1/2(ωgL + ωgU ) and ω = ωgU , S+

ω varies approximately
linearly with z. In contrast, near the lower band gap edge
ω = 1.001ωgL, the Poynting vector is strongly depleted near
the waveguide center. This property is a consequence of the
enhanced confinement of the topological edge modes near
ω = ωgL [see Fig. 4(b)].

Figure 6(d) depicts S+
ω as a function of frequency in the band

1.001ωgL < ω < ωgU for different values of z. As expected,
for z > d/2 (z < d/2), the spectral density of Sx is positive
(negative). Interestingly, in the considered interval, S+

ω varies
slowly with the frequency, except near ω = ωgL where, as
previously discussed, the guided mode confinement changes
dramatically, leading to a depletion of the Poynting vector
lines near the waveguide center and an enhancement near the
metallic plates.

It is relevant to estimate the amount of power that flows
in the upper waveguide region. To this end, we may use
the approximation S+

ω ≈ 0.06ST
ω (2z/d − 1), which is quite

satisfactory away from ω = ωgL. Then, ignoring contributions
outside the spectral region ωgL < ω < ωgU , it is found that the
peak value of the Poynting vector is dSx = S+

ω=1.2ωp
|z=ddω ≈

0.06εT,1.2ωp
(ωp/c)2(ωgU − ωgL). For example, if ωp/2π =

0.1 THz and T = 300 K one obtains dSx ≈ 0.1 mW/m2. The
magnetic field required to have ω0 = 0.5ωp is of the order
of B0 = 1.8 T. Notably, in the limit of a zero temperature,
the expectation of the Poynting vector may be still of the

order of dSx ≈ 1 μW/m2. Thus, it seems that the described
effect may be within the reach of an experimental verification,
perhaps even in the T → 0+ limit. Generically, the spectral
density S+

ω in the band gap always increases with ωp, if the
ratio of ω0/ωp is kept fixed. In practice, the strength of the
heat current is limited by the cyclotron frequency and thereby
by the static magnetic field, which realistically can hardly be
made larger than a few tesla. A possible experiment may be
based on a directional coupler (e.g., created by inserting slots
on the top wall of the waveguide [63]) that can be used to
detect the imbalance between the heat flows along the +x and
−x directions near the top wall.

V. DISCUSSION AND CONCLUSION

In summary, it was demonstrated that in a gyrotropic
topological waveguide in thermal equilibrium, there is a
permanent heat flow in closed orbits. The effect persists even
in the limit of a zero temperature, where the field fluctuations
are purely quantum mechanical. This phenomenon is deeply
rooted in the nontrivial topological properties of the gyrotropic
material, which lead to the formation of unidirectional edge
states near each metallic wall. In particular, it was highlighted
that in a thermal equilibrium, the electromagnetic field has
a nontrivial angular momentum and that the Poynting vector
orbits mimic the electron skipping orbits due to an incomplete
cyclotron motion. The effect appears to be strong enough to
allow for an experimental verification.
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We highlight that the considered system is equivalent to
a metallic cavity with closed walls in all directions of space
and hence is electromagnetically closed. One may wonder
what happens in a system with a single infinitely wide
metallic plate. A conceptual problem with such a configuration
is that it is not electromagnetically closed, and for open
systems it is not reasonable to assume that there is a thermal
equilibrium to begin with. Nevertheless, the structure can
be mathematically closed with periodic boundaries, which
impose a cyclic variation of the fields and would make
the single-plate geometry effectively equivalent to a torus
waveguide with a very large radius of curvature. In that case,
it is expected that similar to the example studied in the paper,
there is a heat flow in closed orbits (the orbits of the torus) at
equilibrium. For a single plate with finite dimensions along
x and y, the same conclusion holds, and the heat flux is
expected to circulate around the plate in closed orbits (note
that in this scenario, the topological modes propagating to
the left on the top face of the metallic plate are forced to
propagate in the opposite direction on the bottom face). Thus,
we believe that quantum or thermally induced fluctuations in
“one-way” topological systems may lead to exciting physics,
and we hope that this paper may stimulate further studies in
related directions.
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APPENDIX A: PLANE WAVE PROPAGATION IN A
GYROTROPIC MEDIUM

Consider a generic electric gyrotropic material described
by the relative permittivity tensor

ε = εt1t + εaûû + iεgû × 1, (A1)

where 1t = 1 − ûû. The unit vector û determines the direc-
tion of the bias static magnetic field. The elements εt ,εa

determine the transverse and axial (with respect to the bias
field) permittivity components, whereas εg determines the
gyrotropic response. A plane wave in the gyrotropic medium
satisfies

k × E = ωμ0H, k × H = −ωε0ε̄ · E, (A2)

where k = kt + kuû is the wave vector, with ku = k · û and
kt = û × (k × û) as its longitudinal and transverse com-
ponents. Thus, it follows that k × (k × E) + ω2

c2 ε̄ · E = 0.
Looking for solutions of the form E = α1k × û + α2kt + α3û,
it is found after some algebra that the electric field must be of
the form

E ∼ iεg
ω2

c2

ω2

c2 εt − k2
k × û + kt + −kuk

2
t

ω2

c2 εa − k2
t

û (A3)

and that the wave vector satisfies the following dispersion
equation:

(
ε2
t − ε2

g

)
εa

ω4

c4
− [(

εt (εt + εa) − ε2
g

)
k2
t + 2εtεak

2
u

]ω2

c2

+(
εtk

2
t + εak

2
u

)(
k2
t + k2

u

) = 0. (A4)

APPENDIX B: MODES OF THE GYROTROPIC
WAVEGUIDE

Here, we determine modes in a gyrotropic waveguide with
the geometry of Fig. 1. It is supposed that the bias magnetic
field is parallel (or antiparallel) to û = ŷ. The waveguide
modes depend on x and y as eikxxeikyy ; hence, in the region
between the metallic plates, the fields can be written as a
superposition of four plane waves of the bulk gyrotropic
medium (see Appendix A) with wave vector components
ku = ky and kt = kx x̂ ± kz,i ẑ (i = 1,2). From Eq. (A4), one
finds that kz,i is required to satisfy

k2
z,i = −k2

x + 1

2εt

[(
εt (εt + εa) − ε2

g

)ω2

c2
− (εa + εt )k

2
y

]

± 1

2εt

√[(
εt (εt + εa) − ε2

g

)ω2

c2
− (εa + εt )k2

y

]2

− 4εt

[(
ε2
t − ε2

g

)
εa

ω4

c4
− 2εtεak2

y

ω2

c2
+ εak4

y

]
. (B1)

Each of the four possible solutions ±kz,i(i = 1,2) is associated with a plane wave with electric field determined by Eq. (A3).
Hence, the electric field in the gyrotropic waveguide is of the form (the variation on x and y is omitted)

E = (�1k+
1 × ŷ + k+

t,1 + θ1ky ŷ)A+
1 eikz,1z + (�1k−

1 × ŷ + k−
t,1 + θ1ky ŷ)A−

1 e−ikz,1z

+ (�2k+
2 × ŷ + k+

t,2 + θ2ky ŷ)A+
2 eikz,2z + (�2k−

2 × ŷ + k−
t,2 + θ2ky ŷ)A−

2 e−ikz,2z, (B2)

where k±
t,i = kx x̂ ± kz,i ẑ is the transverse wave vector (with respect to the bias field), k±

i = k±
t,i + ky ŷ is the wave vector,

A±
i (i = 1,2) are coefficients of the expansion, and the parameters θi and �i are defined as

�i = iεg
ω2

c2

ω2

c2 εt − (
k2
y + k2

t,i

) , θi = −k2
t,i

ω2

c2 εa − k2
t,i

, (B3)
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MÁRIO G. SILVEIRINHA PHYSICAL REVIEW B 95, 115103 (2017)

with k2
t,i = k2

x + k2
z,i . Imposing that the tangential components (Ex,Ey) of the electric field vanish at the metallic plates (z = 0

and z = d), it is found that (for ky �= 0)⎛
⎜⎜⎜⎝

−kz,1�1 + kx kz,1�1 + kx −kz,2�2 + kx kz,2�2 + kx

(−kz,1�1 + kx)eikz,1d (kz,1�1 + kx)e−ikz,1d (−kz,2�2 + kx)eikz,2d (kz,2�2 + kx)e−ikz,2d

θ1 θ1 θ2 θ2

θ1e
ikz,1d θ1e

−ikz,1d θ2e
ikz,2d θ2e

−ikz,2d

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

A+
1

A−
1

A+
2

A−
2

⎞
⎟⎟⎟⎠ = 0 (B4)

In particular, by setting the determinant of the matrix equal to zero, one obtains the modal dispersion equation:

1

k2
t,1k

2
t,2

[
�2

1k
2
z,1θ

2
2 + �2

2k
2
z,2θ

2
1 − k2

x(θ1 − θ2)2] sin (kz1d)

kz1

sin (kz2d)

kz2
+ 2

θ1θ2�1�2

k2
t,1k

2
t,2

(cos (kz1d) cos (kz2d) − 1) = 0 (B5)

For each solution of the modal equation, one can find the
null space of the matrix in Eq. (B4), and in this manner,
the electric field. The magnetic field can be obtained from
Eq. (B2), taking into account that for each plane wave
H = k × E/(ωμ0).

APPENDIX C: LINK WITH THE
FLUCTUATION-DISSIPATION THEOREM

Here, it is shown that the right-hand side of Eq. (6) can be
written in terms of a (retarded) Green function G that satisfies
N̂ · G − ωM · G = 1

ω
16×6δ(r − r′). To prove this property, we

use the fact that the electrodynamics of a lossless system
is determined by a Hermitian operator, even in presence of
material dispersion [19,64,65]. Thus, the Green function can
be expanded in terms of modes as follows (the details can be
found in Appendix B of Ref. [58]):

G(r,r′) = 1

2ω

∑
nk

1

ωnk − ω
Fnk(r) ⊗ F∗

nk(r′)

= 1

2ω2

∑
ωnk �=0

ωnk

ωnk − ω
Fnk(r) ⊗ F∗

nk(r′)

− 1

ω2
M−1

∞ δ(r − r′). (C1)

The modes Fnk are normalized as in Eq. (5), and in the
first identity the summation includes all modes (positive,
negative, and zero frequencies). The second identity restricts
the summation to modes with nonzero frequencies and is
obtained using 1

2

∑
nk Fnk(r) ⊗ F∗

nk(r′) = M−1
∞ δ(r − r′); see

Ref. [58], Eq. (A8). The matrix M∞ is defined as M∞ =
limω→∞M(ω). From Eq. (C1), it is simple to check that

G(r,r′) − G
†
(r′,r) = iπ

ω

∑
ωnk �=0

δ(ω − ωnk)Fnk(r) ⊗ F∗
nk(r′)

= iπ

ω

∑
ωnk>0

[δ(ω − ωnk)Fnk(r) ⊗ F∗
nk(r′)

+ δ(ω + ωnk)F∗
nk(r) ⊗ Fnk(r′)]. (C2)

The rightmost identity is obtained noting that the reality of
the electromagnetic fields implies that negative frequency
modes are linked to positive frequency modes by complex
conjugation. Thus, it follows from Eq. (6) that

1

(2π )2 〈{F̂(r,ω)F̂†(r′,ω′)}〉0

= δ(ω − ω′)ε0,ω

ω

2πi
[G(r,r′,ω) − G

†
(r′,r,ω)]. (C3)

This equation is fully consistent with the fluctuation-
dissipation theorem result [59].
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