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Abstract—The properties that quantify photonic topological in-
sulators (PTIs), Berry phase, Berry connection, and Chern num-
ber, are typically obtained by making analogies between classical
Maxwell’s equations and the quantum mechanical Schrödinger
equation, writing both in Hamiltonian form. However, the afore-
mentioned quantities are not necessarily quantum in nature, and
for photonic systems they can be explained using only classical
concepts. Here, we provide a derivation and description of PTI
quantities using classical Maxwell’s equations, demonstrate how
an electromagnetic mode can acquire Berry phase, and discuss
the ramifications of this effect. We consider several examples, in-
cluding wave propagation in a biased plasma, and radiation by
a rotating isotropic emitter. These concepts are discussed without
invoking quantum mechanics and can be easily understood from
an engineering electromagnetics perspective.

Index Terms—Berry phase, photonic topological insulator (PTI),
surface wave.

I. INTRODUCTION

PHOTONIC topological insulators (PTIs) are emerging as
an important class of material (natural or meta) that allows

for the propagation of unidirectional surface waves, immune to
backscattering, at the interface with another medium [1]–[5].
There are different types of photonic topological materials; but,
in this paper, we focus on the simplest subclass formed by me-
dia with broken time reversal (TR) symmetry, sometimes also
designated as Chern-type insulators (the analogs of quantum
Hall insulators). The properties of these materials are quantified
by the Berry phase, Berry connection, and an invariant known
as the Chern number [6]–[9]. Berry phase was first proposed
in 1984 [10] for quantum systems undergoing cyclic evolution.
While the occurrence of a phase factor as a quantum system
evolved was long known in quantum mechanics, it was thought
to be nonobservable since a gauge transformation could remove
it. It was Berry who showed that for a cyclic variation, and
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assuming adiabatic (sufficiently slow) evolution, the phase is
not removable under a gauge transformation [10], and is also
observable. It is a form of geometric phase related to parallel
transport of a vector along a curved surface.1 The concept has
been generalized for nonadiabatic evolution [11]. In quantum
mechanics, a prototypical example is the progression of electron
spin as a magnetic field vector rotates in a cyclical manner [12],
[13]. Here, we are interested in electromagnetic propagation and
the Berry phase that a classical electromagnetic wave acquires
as it propagates (wave propagation being a form of cyclic evo-
lution, e.g., the field polarization returning to its initial position
after every wavelength of propagation). See [14]–[18] for some
reviews of optical phenomena related to Berry phase. Although
not discussed here, we mention another effect related to the
Berry phase, the spin Hall effect of light, which is a geometric
Berry-phase counterpart of the Lorentz force. This effect has
been extensively studied and experimentally verified [19]–[21].

Often, Berry properties are obtained using the quantum me-
chanical derivation based on a Hamiltonian and making an
analogy between Maxwell’s equations and the quantum sys-
tem. However, this approach has two drawbacks: it necessitates
knowledge of quantum mechanics, and, more importantly, it ob-
scures the true nature of the phenomena, which in this case is
classical.

There have been previous works considering Berry quanti-
ties for electromagnetics from a classical perspective [15]–[25],
which is intimately connected with spin-orbit interactions in
light [26], and from a relativistic wave-equation perspective in
[27], [28]. However, many previous classical works invoke the
theory of Hermitian line bundles or gauge theory (see, e.g., [16],
[22]), and, here, we avoid those topics and consider Berry prop-
erties from a relatively simple electromagnetic perspective [29].
Furthermore, as described in [30], before the Berry phase was
understood as the general concept it is now, in various fields
this extra phase had been found. In electromagnetics, the most
notable discoveries were by Pancharatnam in 1956 [31], who
studied polarization evolution of light, and Budden and Smith
[32], [33], who considered propagation through the ionosphere,
modeled as an inhomogeneous medium whose parameters var-
ied gradually with height. Further, pioneering works were done

1“One widely used example is moving a swinging pendulum from one point
on a sphere, along some contour, and back to the original point-the geometric
phase is given by the solid angle subtended by the path of movement.” See [12].
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by Rytov in 1938, [34], and Vladimirskii in 1941, [35], de-
scribing geometrical properties of the polarization evolution
of light along curvilinear trajectories; the spin-redirection geo-
metric phase in optics discussed here is sometimes called the
Rytov–Vladimirskii–Berry phase. The topic of parallel transport
of the polarization of light in an inhomogeneous medium was
discussed as early as 1926 by Bortolotti [36].

Thus, we can categorize the geometric phases in optics
into two classes: 1) The spin-redirection/Rytov–Vladimirskii–
Berry) geometric phase, which is the phase associated with
changes in wave momentum (with a conserved polarization
state), and is the subject of this paper and 2) the Pancharatnam–
Berry phase, which appears when the polarization state varies
on the Poincare sphere (while the momentum is unchanged).
Here, we consider electromagnetic propagation through a uni-
form, homogeneous medium, in order to consider perhaps the
simplest possible example where important Berry effects occur.

After the discovery of the Berry phase, an early example of
a photonic systems exhibiting such an effect was given in [37],
[38], which considered the rotation of the polarization vector
of a linearly polarized laser beam traveling through a single,
helically wound optical fiber. More recently, and of more direct
interest here, there has been a lot of work on various photonic
systems that demonstrate nontrivial Berry properties, both for
periodic and continuum materials [39]–[41]. The principal inter-
est in these systems is because at the interface between two re-
gions with different Berry curvatures, a backscattering-immune
(i.e., unidirectional) surface plasmon polariton (SPP) can prop-
agate. If the operational frequency is in a common bandgap
of the two bulk materials, the SPP is also immune to diffrac-
tion, and so even arbitrarily large discontinuities do not scatter
energy.

We also note that one-way SPPs at, e.g., biased plasma inter-
faces, have been observed long before the Berry phase concept
[42], [43], and later, although not within the framework of Berry
properties [44]. One-way SPPs can also be formed at various
other interfaces, such as at the domain walls of Weyl semimetals
with broken TR symmetry [45].

One approach to create PTIs is to use two-dimensional
(2-D) photonic crystals with degenerate Dirac cones in their
band structure [6], [7]. The degeneracy can be lifted by breaking
TR symmetry, which opens a band gap and leads to topolog-
ically nontrivial photonic bands. Continuum materials, either
homogenized metamaterials or natural materials, supporting
topologically-protected unidirectional photonic surface states
have also recently been shown [41]–[47]. Unidirectional sur-
face modes at the interface between a magnetized plasma or
magnetized ferrite and a metal have been recently studied [48]–
[50], where TR symmetry is broken by applying a static mag-
netic field, opening a bandgap and inducing nontrivial Berry
properties.

Unidirectional, scattering-immune surface-wave propagation
has great potential for various waveguiding device applications.
The aim of this paper is to derive and explain all Berry prop-
erties from a classical engineering electromagnetic perspective,
without consideration of the usual quantum mechanics deriva-
tion, appealing to analogies between Schrödinger’s equations
and Maxwell’s equations, or invoking gauge theories.

II. THEORY

A. Maxwell’s Equations as a Momentum-Dependent
Eigenvalue Problem

In order to establish the necessary concepts, we start by con-
sidering a dispersionless material model, but later extend the
results to a lossless dispersive material model.

Source-free Maxwell’s equations are

∇× E (r, t) = − ∂

∂t
B (r, t) ,

∇× H (r, t) =
∂

∂t
D (r, t) , (1)

and working in the momentum–frequency domain (∂/∂t →
−iω and ∇ → ik) and considering a homogeneous, lossless,
bianisotropic material with frequency-independent dimension-
less parameters ε, μ, ξ, ς representing permittivity, perme-
ability, and magnetoelectric coupling tensors, respectively, the
constitutive relations are

(
D (k, ω)
B (k, ω)

)
=

⎛
⎜⎝ ε0ε

1
c
ξ

1
c
ς μ0μ

⎞
⎟⎠ ·
(

E (k, ω)
H (k, ω)

)
. (2)

Defining fn = (E H)T

M =

⎛
⎜⎝ ε0ε

1
c
ξ

1
c
ς μ0μ

⎞
⎟⎠ N =

(
0 k × I3×3

−k × I3×3 0

)
(3)

where N and M are Hermitian (the latter since we consider
lossless media), we can write Maxwell’s equations as a standard
eigenvalue problem

H(k) · fn,k = ωn,kfn,k . (4)

where H(k) = M−1 · N(k). The electromagnetic eigenfields
are of the form f̃n (r) = fn,keik·r , where fn,k (the solution of
(4)) is the envelope of the fields (independent of position). In
the following, we use fn,k = fn (k) interchangeably.

The matrix H(k) is not itself Hermitian even through both
M−1 and N are Hermitian, since M−1 and N do not commute.
However, viewed as an operator, H is Hermitian under the inner
product [51]

〈fn |fm 〉 = f †
n (k) · M · fm (k) (5)

where the superscript † denotes the conjugate transpose matrix.
Thus, by defining a new set of eigenvectors [6]

wn,k = M1/2fn,k (6)

and the inner product
〈wn |wm 〉 = w†

n (k) · wm (k) (7)

then
H̃(k) · wn,k = ωn,kwn,k (8)

forms a Hermitian eigenvalue problem, where

H̃(k) = M1/2 H(k) M−1/2 (9)

(that is, H̃(k) is a Hermitian matrix). In the following, because
of (6), we can work with either the eigenfunctions wn,k or fn,k .
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It is crucially important in what follows to note that (8) and the
normalization condition 〈wn |wn 〉 = 1 define the eigenmodes
only up to a phase factor.

Maxwell’s equations in the form (8) is a Hermitian eigenvalue
equation with eigenvalue ωn,k and eigenvector wn,k , which
contains the electric and magnetic fields, and, hence, the polar-
ization. The matrix H̃(k) plays the role of the Hamiltonian in
quantum mechanics, i.e., it describes how the systems evolves as
momentum changes. In considering the development of various
Berry properties, what is important is to have an eigenprob-
lem involving two or more related quantities (here, we have
momentum and polarization). Although momentum and polar-
ization can be put on an equal footing [22], it is usually easier
to consider momentum as the parameter, and consider how po-
larization changes with momentum.

Briefly stated, the Berry phase is the cumulative effect of
the relative phase difference between an eigenfunction at k and
at a nearby point k + dk. Therefore, if the system changes
momentum from some initial value ki to some final value
kf , the normalized eigenfunctions change correspondingly;
wn (ki) → wn (kf ). If the final momentum equals the initial
momentum, then H̃ (ki) = H̃ (kf ), and the system environ-
ment returns to its initial value. However, the eigenfunction
may not return to its initial value since eigenfunctions are de-
fined only up to a phase factor, and for the case ki = kf it may
occur that wn (kf ) = eiγn wn (ki). This anholonomy is repre-
sented by a possible additional phase factor, where γn is called
the Berry phase. Berry phase and related quantities in a classical
electromagnetics context is the topic of this paper.

A first simple example of a nontrivial Berry phase, one in
which the effect is quite evident, arises from considering a
curved circular waveguide supporting the dominant TE11 mode,
as shown in Fig. 1(a) (similar to the case of the helically wound
optical fiber considered in [37] and [38]. See also [52], which
considered this effect before the Berry phase was understood.).
As the mode propagates, it follows the waveguide, retaining the
TE11 profile. During this evolution, the magnitude of the mode
momentum, kTE

2 = k2
x + k2

y + k2
z , is fixed, while its direction

changes; thus, the mode traverses a path on the surface of the
momentum sphere depicted in Fig. 1(b). Note, that the direction
of propagation for each point of the path is normal to the sphere,
and thus the electric field is necessarily tangent to the sphere. At
the first bend, the direction of momentum changes from z toward
x (traversing the green path on the momentum sphere), at the
second bend the momentum rotates from x toward y (traversing
the red path on the momentum sphere), and at the last bend the
momentum changes back to its initial direction z (traversing
the black path on the momentum sphere). Thus, the momentum
has traversed a closed path on the momentum sphere. During
this evolution, the polarization (locked to be transverse to the
momentum) changes from y to x.

In this case, the change in polarization is described by a
geometric phase, the Berry phase, due to parallel transport of
a vector on a curved surface (a mathematical description is
provided later, see also [29]). The phase determines the angle
between the initial and final polarizations, and depends on the
area subtended by the closed path (the phase is geometrical). In-

Fig. 1. (a) Curved circular waveguide demonstrating polarization rotation due
to Berry phase effects and (b) momentum sphere.

deed, when a vector is parallel transported along a closed path,
the angle between the initial and final vectors is given by the
integral of the Gaussian curvature over the surface enclosed by
the path [53]. For a sphere, this corresponds to the solid angle
Ω subtended by the path. In this example, Ωsphere = 4π and so
the subtended angle is Ωsphere/8 = π/2, which represents the
change from y to x polarization. Traversing a closed path along
a noncurved surface does not lead to this additional angle, and
so we see that a nonzero Berry phase has its origin in the cur-
vature of momentum space (in the present case, the Gaussian
curvature). Furthermore, the geometric-phase evolution of the
polarization of light shown in Fig. 1 is valid when the “adiabatic
approximation” holds true, i.e., the helicity (degree of circular
polarization) is conserved in the evolution. Nonadiabatic cor-
rections were discussed by Ross [52] and Berry [29].

Note that, for this case of transverse polarization, the polariza-
tion is normal to the momentum (i.e., we have the transversality
condition k · p̂ = 0, where p̂ is the polarization unit vector), and
so at any point on the momentum sphere the polarization is al-
ways tangential to the momentum sphere, as shown in Fig. 1(b),
leading to rotation of the polarization as the momentum evolves
along a closed contour. If we were to consider a waveguide sup-
porting a mode with a longitudinal component, the polarization
of the longitudinal component is aligned along the direction of
momentum (i.e., k × p̂ = 0), and so is always normal to the
momentum sphere; in this case, as the momentum evolves, this
component of polarization will not incur any additional phase.
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B. Berry Quantities From an Electromagnetic Perspective

In momentum (k) space, we suppose that the eigenmode
wn (k) is initially at some point ki . In the quantum mechan-
ical case one considers evolution of a system, implicitly as
time progresses, during which some time-dependent parame-
ter comes back to its initial value. Since, here, we explicitly
consider time-harmonic wave phenomena, rather then system
evolution, we simply consider wave propagation along some
path such that the mode ends up at kf . If we suppose that the
traversed path is closed, then ki = kf . Assuming well-defined
and single-valued eigenmodes, we have the boundary condi-
tion wn (ki) = eiγn (k)wn (kf ). At every point k on the path,
the eigenvalue problem defines the mode up to a phase factor,
which can depend on the momentum and mode index. We con-
sider two continuous points k and k + dk and corresponding
eigenmodes wn (k) and wn (k + dk). We define the differential
phase dγn between the two eigenmodes as [54]

ei(dγn ) =
〈wn (k + dk)|wn (k)〉
|〈wn (k + dk)|wn (k)〉| =

w†
n (k + dk) · wn (k)∣∣∣w†
n (k + dk) · wn (k)

∣∣∣ .
(10)

The denominator is present as a normalization factor, and if the
modes are already normalized, the denominator is unity since
|dk| � |k|. The above definition is intuitive; if the eigenfunction
has a k -dependent phase, wn (k) = eiζ (k)gn (k), then wn (k +
dk) = eiζ (k+dk)gn (k + dk), and so

w†
n (k + dk) · wn (k) = e−iζ (k+dk)g∗

n (k + dk) · eiζ (k)gn (k)

= e−iζ (dk) (g∗
n (k + dk) · gn (k))

= e−iζ (dk) (11)

assuming gn are normalized in the limit |dk| → 0.
We expand wn (k + dk) in a Taylor series up to first order in

dk and we expand the exponential to first order. Considering

∇k 〈wn |wn 〉 = ∇kw†
n · wn + w†

n · ∇kwn = 0

→ ∇kw†
n · wn = − w†

n · ∇kwn (12)

we obtain

1 + idγn = w†
n (k) · wn (k) − w†

n (k) · ∇kwn (k) · dk (13)

such that dγn = iw†
n (k) · ∇kwn (k) · dk, and we have

γn =
∮

C

dk · An (k). (14)

The quantity

An (k) = iw†
n (k) · ∇kwn (k) = if †

n (k) · M · ∇kfn (k)
(15)

is called the Berry connection since it connects the eigenmode
wn,k at point k and at point k + dk ; connections arise natu-
rally in gauge theories [55]. This is also called the Berry vector
potential, as an analogy to the magnetic vector potential. Be-
cause eigenmode wn (k) is the envelope of the electromagnetic
field, in calculating the Berry phase the usual electromagnetic
propagator eik·r does not contribute, and the extra phase γn is a
result of the curved geometry of momentum space.

Therefore, in addition to all other phases, the electric and
magnetic fields can acquire an additional phase eiγn (k) during
propagation, due to anholonomy in momentum space (from
(12), it is easy to show that An (k) and γn are real-valued for
real-valued k, so that eiγn (k) is a phase, not a decay term).

1) Gauge Considerations and Real-Space Field Analogies:
The electric and magnetic fields (measurable quantities) are in-
variant under any electromagnetic gauge transformation. The
eigenvalue equation defines the eigenmodes up to a multiplica-
tive phase factor, which is the well-known gauge ambiguity
of the complex Hermitian eigenproblem. Associated with each
eigenmode is a (gauge) field in momentum space, which is the
Berry connection.

Multiplication of the eigenfunction wn by a phase factor
(a unitary transformation) represents a gauge transformation
of the Berry connection; with wn → eiξ(k)wn , being eiξ(k) an
arbitrary smooth unitary transformation, the Berry connection
transforms to

A′
n = iw†

n (k)e−iξ(k) · ∇k

(
wn (k)eiξ(k)

)

= iw†
n (k) · ∇kwn (k) −∇kξ(k)w†

n (k) · wn (k)

= An −∇kξ(k) (16)

which means that the Berry connection/vector potential is gauge
dependent like the electromagnetic vector potential. However,
if we consider paths C that are closed in momentum space, a
gauge change in (14) can only change the Berry phase by integer
multiples of 2π [50]. Note that the unitary transformation eiξ(k)

is required to be a smooth single-valued function of the wave
vector in the vicinity of the relevant contour C, but its logarithm
may not be single-valued, leading to the ambiguity of modulo
2π (gauge dependence) in the Berry phase.

Equation (14) is a momentum-space analog to the magnetic
flux Φmag in terms of the real-space magnetic field and magnetic
vector potential Amag in electromagnetics

Φmag =
∫

S

dS · B (r) =
∮

C

dl · Amag(r). (17)

A corresponding phase for a charged particle in a magnetic
vector potential can be obtained upon multiplying Φmag by e/�c
and is known as the Dirac phase. This phase was first described
in [56] and underpins the Aharonov–Bohm effect [10] (the real-
space analog to the Berry phase).

The real-space magnetic flux density is obtained as the curl
of the vector potential

B(r) = ∇r × Amag(r) (18)

and, similarly, a momentum-space vector field can be obtained
from the curl of the Berry vector potential/Berry connection

Fn (k) = ∇k × An (k). (19)

This field is called the Berry curvature, and can be viewed as
an effective magnetic field in momentum space. In contrast to
Berry connection, this field is clearly gauge independent. When
the Berry connection is smoothly defined inside the surface
enclosed by some contour C, it follows from Stokes’ theorem
that
∮

C An (k) · dl =
∫

S Fn (k) · dS. In such a case, the Berry
phase is completely determined by the Berry curvature. This
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TABLE I
ANALOGY BETWEEN REAL-SPACE (EM) AND

MOMENTUM-SPACE (BERRY) QUANTITIES

Real space (r) Momentum Space (k)

Potential Am a g (r) Connection A(k)
Field B(r) = ∇× Am a g (r) Curvature F(k) = ∇× A(k)
Flux Φm a g =

∮
C dl · Am a g (r) Phase γ =

∮
C dk · A(k)

result is the counterpart of that discussed earlier, where the
geometric Berry phase is determined by the Gaussian curvature
of the momentum space. Yet, it is important to highlight that,
in general, An (k) may not be globally defined in all space.
Moreover, in some systems it turns out that it is impossible to
pick a globally defined smooth gauge of eigenfunctions (even
though the whole space can be covered by different patches of
smooth eigenfunctions), and it is this property that leads to the
topological classification of systems as further detailed ahead.

As a partial summary, the gauge ambiguity of the Hermitian
Maxwell eigenvalue problem allows for several quantities in
momentum space: a geometric gauge-independent (modulo 2π)
Berry phase, a gauge-dependent Berry vector potential/Berry
connection (analogous to the magnetic vector potential in real
space), and a gauge-independent Berry curvature (analogous to
the real-space magnetic flux density). This correspondence is
depicted in Table I. These quantities arise, in part, from the
material medium, and in part from the type of electromagnetic
mode being considered.

C. Topological Classification

From an applied electromagnetic perspective, one of the
most important consequences of having nontrivial topological
properties is the occurrence of one-way, back-scattering-
immune surface waves at the interface between two materials
with different Berry properties, specifically two materials that
are topologically different. The topological classification of a
system is determined by the Chern number. The Chern number
is an integer obtained by integrating the Berry curvature over
momentum space

Cn =
1
2π

∮
S

dS · Fn (k). (20)

In systems for which it is possible to pick a globally defined
smooth gauge of eigenfunctions, and when the momentum
space has no boundary (e.g., in periodic systems), it follows
from Stokes’ theorem that the Chern number vanishes. Hence, a
nonzero Chern number indicates an obstruction to the applica-
tion of Stokes’ theorem to the entire momentum space. Notably,
when momentum space has no boundary, the Chern number is
quantized such that Cn = 0,±1,±2, . . ., is an integer. Being an
integer, Cn must remain invariant under continuous transforma-
tions, and hence Cn is a topological invariant and can be used to
characterize different topological phases. It is worth noting that,
in general, Berry phase, connection, and curvature are geometric
phenomena, while the Chern number is topological. However,
the Berry phase can be topological in 2-D systems, where it is

quantized and takes values of 0 or π, and in 1-D systems, where
it is also known as the Zak phase [57].

The integer nature of Cn arises from the smoothness of the
equivalent Hamiltonian and from the fact that the momentum
space has no boundary. In the following, we will primarily be
concerned with electromagnetic (EM) propagation in the 2-D
(kx, ky ) plane, for which the integration in (20) is over the en-
tire 2-D wavenumber plane. Even though the 2-D (kx, ky ) plane
does not directly fit into the category of momentum spaces with
no boundary, it can be transformed into a space with no bound-
ary by including the point k = ∞. Within this perspective, the
momentum space can be mapped to the Riemann sphere, which
has no boundary [41]. However, even with such a construc-
tion the equivalent Hamiltonian is generally discontinuous at
k = ∞, and, as a consequence, the Chern number cannot be
guaranteed to be an integer. In practice, this problem can be
fixed by introducing a spatial cutoff in the material response, as
discussed in detail in [41].

In an electromagnetic continuum, it is often possible to choose
the eigenfunctions globally defined and smooth in all space with
exception of the point k = ∞. In this case, taking C to be the
perimeter of the infinite 2-D (kx, ky ) plane and taking into
account that the Berry phase for a contour that encloses a single
point (in this case k = ∞) is always a multiple of 2π, it follows
that 1 = ei

∮
C dk·An (k) = ei

∫
S dS·Fn (k) and so

∫
S dS · Fn (k) =

2πn.
From an electromagnetic perspective, the Chern number can

be interpreted in an intuitive way. From elementary electromag-
netics, Gauss’s law relates the total flux over a closed surface S
to the total charge within the surface∮

S

ε0E(r) · dS = QT = mq (21)

where assuming identical charged particles, m is the number
of particles and q is the charge of each particle (although often
approximated as a continuum, QT is quantized). To keep things
simple, we will assume a monopole charge of strength mq lo-
cated at the origin. The electric field is given by Coulomb’s
law

E =
(

mq

4πε0

)
r
r3 . (22)

The magnetic form analogous to Gauss’s law∮
S

B (r, t) · dS = 0 (23)

indicates that there are no magnetic monopoles. However, if
magnetic monopoles existed, the right side of (23) would be an
integer mqmag and the magnetic flux would be

B =
(mqmag

4π

) r
r3 . (24)

In momentum space, the flux integral over a closed man-
ifold of the Berry curvature is quantized in units of 2π,
indicating the number of Berry monopoles within the surface.
Berry monopoles are the momentum-space analog of a mag-
netic monopole, and serve as a source/sink of Berry curvature,
just as the electric charge monopole mq serves as a source/sink
of electric field. If the Chern number is n, the net number of
Berry monopoles (whose charges do not cancel each other) is n.
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The Chern number is a bulk property and is particularly im-
portant because, being an integer, it cannot be changed un-
der continuous deformations of the system. In particular, the
Chern number Cgap =

∑
n<ng

Cn associated to a subset of
bands with 0 < ω < ωgap , with ωgap some frequency in a com-
plete bandgap, is unaffected by a perturbation of the material
response (e.g., by a change of its structural units) unless the
gap is closed. This property has remarkable consequences. In-
deed, let us assume that two materials that share a common
bandgap are topologically different, so that the Chern numbers
associated with the bands below the gap for each material are
different. This means that it is impossible to continuously trans-
form one of the materials into the other without closing the gap.
Then, if one of the materials (let us say in the region y < 0)
is continuously transformed into the other material (let us say
in region y > δ) then necessarily somewhere in the transition
region (0 < y < δ) the bandgap must close. Thus, the transi-
tion region enables wave propagation, and because the region
y < 0 and y > δ share a common band gap, a waveguide is
formed, leading to the emergence of topologically protected
edge states. It turns out that the argument is valid even in the
limit δ → 0 and that the number of edge states traveling in
the +x and −x directions are generally different. Remarkably,
the difference between the Chern numbers of the two materials
(Cgap,Δ = C2 − C1 
= 0) gives the difference between the num-
ber of states propagating in the two directions. This property is
known as the bulk-edge correspondence principle. Importantly,
due to the difference in the number of propagating states, it is
possible to have unidirectional propagation with no backscat-
tering in a number of physical channels that equals the Chern
number difference. In the case of an electromagnetic contin-
uum, the application of the bulk-edge correspondence requires
special care, namely, it is crucial to mimic the high-frequency
spatial cutoff that guarantees that the Chern numbers are
integer [58].

D. Isofrequency Surfaces in Momentum Space

Let us now focus in the interesting case wherein the momen-
tum space is a isofrequency surface, so that the relevant eigen-
states are associated with the same oscillation frequency ω.

In line with a previous discussion, wn (k + dk) can always
be expanded in terms of the basis {wm (k)}m=1,...,n,... . In this
manner, one obtains an expansion of the form wn (k + dk) =
· · · + e−idγn wn (k) + · · · . (only the leading term of the expan-
sion is shown), dγn = Ank · dk being the Berry phase for the
path determined by dk. Hence, the projection of wn (k + dk)
onto wn (k) is determined by the coefficient e−idγn , consistent
with (10).

Because it is assumed that the eigenstates oscillate with the
same frequency in real space, it follows that the infinitesimal
Berry phase dγn may be regarded as a tiny time advance (or time
delay). In other words, it determines if neighboring eigenstates
(in the same isofrequency surface) oscillate in phase or not.
When dγn is nonzero the relative difference between the two
neighboring eigenstates in the time domain is minimized when
the eigenstates are calculated at different time instants, with a
time advance/delay determined dγn . Within this perspective, the
Berry curvature flux (∇k × Ank · n̂ds) gives the accumulated

Berry phase (accumulated delay, from point to point) for a small
loop in the isofrequency surface with normal n̂.

In the particular case wherein one restricts the analysis to
the 2-D plane, the isofrequency surface reduces to some closed
contour. The corresponding Berry phase is determined (modulo
2π) by the integral of the Berry curvature over the surface en-
closed by the loop and determines the accumulated phase delay
between neighboring eigenstates.

We can now revisit the first example of a curved waveguide, as
shown in Fig. 1, from a mathematical perspective. Using Ank =
if †

nk · M · ∇kfnk , where M = diag (ε0 3x3, μ0 3x3) and as-
suming a circularly polarized (CP) field envelope

f±nk =
1√
2ε0

(
e±

∓ 1
η0

ie±

)
(25)

(where η0 =
√

μ0/ε0), with e± =
(
θ̂ ± iϕ̂

)
/
√

2, then A±
kθ =

if †±
nk · M · (1/k) ∂θf

±
nk = 0 and

A±
kϕ = if †±

nk · M · (1/k sin θ) ∂ϕf±
nk = ± 1

k sin θ
cos θ (26)

leading to

F±
k = ∓ k̂

k2 . (27)

Thus, we have a Berry monopole at k = 0, and the radial compo-
nent of the Berry curvature is precisely the Gaussian curvature
of the isofrequency surface. Because the accumulated phase
for each CP state is symmetric (one suffers a time delay, and
the other, a time advance), the linearly polarized state in Fig. 1,
decomposed into two counter-propagating CP states, incurs a ro-
tation after transversing the curved waveguide. Note that in this
example, the relevant eigenspace is doubly degenerate, which
is why for linear polarization the final state can be different
from the initial state. For waveguides with a single mode (such
as a TE10 mode in a rectangular waveguide), the final state is
always identical to the initial state. Finally, we can note that cur-
vature (27) together with the spherical isofrequency surface in
k-space naturally yields nonzero Chern numbers for free-space
light ((27) substituted into (20) leads to Cn = ±2 for the two
helicity states ± [59]).

Another intuitive physical example is the following. Con-
sider an hypothetical isotropic emitter radiating with oscillation
frequency ω in an unbounded electromagnetic material. The
far-field pattern is determined by the isofrequency contour of
the material. For simplicity, let us suppose that the isofrequency
contours are spherical surfaces. In that case, the far field in the
direction r̂, it is determined by a mode with wave vector par-
allel to r̂. Hence, in the far-field one has f = fkeik·r/r, where
k depends on the observation direction, and fk is the envelope
of a plane wave propagating along k. Because the radiator is
isotropic, the modes fk have all the same normalization (the
3-D radiation pattern intensity is independent of the observa-
tion direction). Hence, for example, the ϕ component of the
Berry connection (tangent to the isofrequency contour) deter-
mines the differential phase delay between the emitted fields
for neighboring observation directions ϕ and ϕ + dϕ. Note that
the Berry connection may depend on the considered isotropic
emitter. Moreover, the relevant gauge is fixed by the emitter.
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To further illustrate the idea and discuss the implications of
a nontrivial Berry phase, let us consider the case where the
relevant medium is air and that the isotropic emitter has a far
field determined by fk ≡ fE (r̂). Note that in the present problem
k̂ can be identified with r̂. Because the emitter is isotropic, one
has 〈fk |fk〉 = const., independent of the observation direction.

Let us suppose that a polarization matched receiving antenna
is placed in the far field of the emitter, let us say along the
direction θ = π/2, ϕ = 0. Then, the voltage induced at the open
terminals of the receiver is of the form

Voc ≡ Voc,0 = −hR
e · EE

= −
(
hR

e,θEE ,θ + hR
e,ϕEE,ϕ

)∣∣
ϕ=0,θ=π/2 (28)

where hR
e is the (vector) effective length of the receiving antenna

and EE is the incident electric field. Since the receiving antenna
is polarization matched, there is some constant A such that
hR

e = AE∗
E .

Consider that the isotropic emitter can rotate around the
polar (z) axis. When the emitter is rotated by an angle dϕ,
the induced voltage at the terminals of the emitter is Voc =
−(hR

e,θ |ϕ=0
EE,θ |ϕ=−dϕ + hR

e,ϕ |ϕ=0EE,ϕ |ϕ=−dϕ ), so that for a
small angle it is possible to write Voc = Voc,0 + δVoc with

δVoc =
(
hR

e,θ∂ϕEE,θ + hR
e,ϕ∂ϕEE,ϕ

)∣∣
ϕ=0,θ=π/2dϕ. (29)

Taking into account that for θ = π/2, ϕ = 0 one has ∂ϕ θ̂ = 0
and ∂ϕϕ̂ = −r̂ one may write the induced voltage perturbation
as (note that hR

e · r̂ = 0)

δVoc = hR
e · ∂ϕEE dϕ. (30)

Using the fact that the receiving antenna is polarization matched
(when dϕ = 0), one obtains

Voc = Voc,0

(
1 − E∗

E · ∂ϕEE

E∗
E · EE

dϕ

)
. (31)

In free-space the term in brackets can be written as a function
of the six-vector fE that determines the far field of the isotropic
emitter: E∗

E ·∂ϕ EE

E∗
E ·EE

= 〈fE |∂ϕ fE 〉
〈fE |fE 〉 . Hence, the induced voltage is

expressed in terms of the Berry connection associated with fE

Voc = Voc,0 (1 + iAϕk0dϕ) . (32)

Here, k0 = ω/c is the free-space wavenumber and Aϕ is the az-
imuthal component of the Berry connection. It is interesting to
note that dγ = −Aϕk0dϕ corresponds exactly to the infinitesi-
mal Berry phase (note that as the emitter is rotated by an angle
dϕ the wave vector—from the point of view of the receiver—is
effectively rotated by an angle −dϕ). From here, one can write
Voc ≈ Voc,0e

−idγ , so that in the time domain (without loss of
generality, Voc,0 is assumed to be real-valued)

Voc (t) ≈ Voc,0 cos (ωt + dγ) . (33)

The physical interpretation is the following: as the isotropic
emitter is rotated around the z-axis, the polarization matched
receiver probes the far field in a different azimuthal direction.
As neighboring states in a isofrequency contour differ approx-
imately by a time-advance determined by the Berry phase, the
induced voltage gains the phase advance dγ.

Notably, this discussion shows that a nontrivial Berry phase
can have remarkable physical consequences in the considered
radiation scenario. Indeed, suppose that the emitter vibrates with
frequency Ω so that dϕ changes with time as dϕ = dϕ0 cos (Ωt).
In such a case, the frequency spectrum of the voltage at the
terminals of the matched receiver gains two spectral components
due to the voltage perturbation δVoc (t) ≈ −Voc,0 sin (ωt) dγ.
Thus, a nontrivial Berry phase leads to the appearance of two
spectral lines at ω ± Ω, reveling the analogy between the Berry
phase and angular Doppler (or Coriolis) effect [59]–[65], [69].
This effect can occur only when either EE,θ and/or EE,ϕ vary
with ϕ in the equatorial line (θ = π/2), for example, when the
spherical field components have a ϕ dependence of the type einϕ

with n 
= 0. Even though in the previous discussion the emitter
was assumed to be isotropic, in practice it is enough that the
radiation intensity is constant in some solid angle that contains
the observation direction (ϕ = 0 and θ = π/2).

Considering, e.g., EE = Eθ (θ, ϕ) θ̂ where Eθ (θ, ϕ) =
h (θ) eig(ϕ) , then Aϕ = (−1/k0) ∂g/∂ϕ. Thus, in this case, the
Berry phase is proportional to the slope (Berry-phase gradient)
[65] of the emitter antenna far-field phase.

E. Dispersive Material Model

For the dispersion-less material model Maxwell’s equations
can be written in the form of a standard Hermitian eigenvalue
problem (8). However, for a dispersive lossless material model
this is not the case since H̃ = H̃ (k, ω). This nonstandard eigen-
value problem was considered in [6] for periodic materials (with-
out magnetooptic coupling parameters), and in [41] for contin-
uum models of dispersive lossless materials and a subclass of
nonlocal materials M = M (ω,k(ω)) including magnetooptic
coupling. The details are fairly involved [41], yet the result is
that defining the eigenvectors as

wn (k) = [∂ω (ωM (ω,k))]1/2 · fn (k) (34)

and the inner product 〈wn |wm 〉 = w†
n · wm = f †

n (k) ·
∂ω (ωM (ω,k)) · fm (k) (both of which reduce to the disper-
sionless case, (6) and (5) for M a constant matrix), it is possible
to define a standard Hermitian eigenvalue equation in terms of
auxiliary parameters. The end result is that the formulas devel-
oped for the dispersionless case work for the dispersive case if
we replace M with ∂ω(ωM(ω,k)) in ( 5)–(9), leading to

An (k) = Re
{
if †

n (k) · ∂ω(ωM(ω,k)) · ∇kfn (k)
}

(35)

where the operator Re {·} is unnecessary for the dispersionless
case.

1) Symmetry Conditions Leading to Nontrivial Berry Con-
nection and Curvature: In the Appendix, we show that for the
lossless case, a reciprocal medium is a medium with TR sym-
metry and vice-versa. We also show that for TR (T ) invariant
materials, Fn (k) = −Fn (−k), and for inversion (I) symmetric
materials, Fn (k) = Fn (−k).

In (20) the integral is taken over the entire plane of propaga-
tion from k → −∞ to k → +∞ and, therefore, Berry curvature
Fn is comprised of both forward (k > 0) and backward (time
reversed) (k < 0) modes. Given the odd symmetry of Fn for
a T -invariant material, in 2-D (e.g., the (kx, ky ) plane) the z
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component of the Berry curvature is an odd function of kx and
ky , leading to a zero Chern number upon summing over all k
values. In this case, in order to have nonzero Chern number one
must break TR symmetry using, for example, a nonreciprocal
material. However, as detailed in Section II-D, integration over
an equifrequency surface for free-space light leads to a nonzero
Chern number despite the presence of T -invariance. Obviously,
if we have both T - and I-symmetry for a considered mode, then
Fn (k) = 0.

III. EXAMPLE AND DISCUSSION:
MAGNETOPLASMA MATERIALS

A prominent example of a nonreciprocal medium is obtained
when we apply a magnetic field to a medium with free charges.
Consider a magnetooptic medium characterized by

ε = ε0

⎡
⎢⎣

ε11 iε12 0
−iε12 ε11 0

0 0 ε33

⎤
⎥⎦ μ = μ0I3×3 (36)

which can be realized using a plasma biased with a static mag-
netic field along the z direction. The elements of the permittivity
tensor are dispersive

ε11 = 1 −
ω2

p

ω2 − ω2
c

ε12 =
−ωcω

2
p

ω (ω2 − ω2
c )

ε33 = 1 −
ω2

p

ω2

(37)
where the cyclotron frequency is ωc = (qe/me) Bz and the
plasma frequency is ω2

p = Neq
2
e /ε0me . In the above-mentioned

equation, Ne is the free electron density, qe = −1.6 × 10−19 C,
and me = 9.1 × 10−31 kg are the electron charge and mass, re-
spectively. A biased plasma has a Hermitian permittivity matrix
but does not satisfy the requirements provided in the Appendix
for being TR invariant.

For a biased magnetoplasma, there are two principle configu-
rations for wave propagation, propagation along the biasing field
and propagation perpendicular to the biasing field. Considering
wave propagation in the bulk of a magnetoplasma medium, the
associated electromagnetic waves envelopes can be obtained by
finding the solution, fn , of (4), H(k, ω) · fn = ωnfn⎛
⎜⎜⎝

−I3×3 − ε−1

ωnε0
· k × I3×3

1
ωnμ0

· k × I3×3 −I3×3

⎞
⎟⎟⎠ ·
(

E
H

)
= 0.

A. Propagation Parallel to the Static Bias

First, we suppose that the field propagates along the bias field
(z -direction), which leads to the well-known Faraday rota-
tion. From Faraday’s and Ampere’s law, assuming a sourceless
medium, the electric field is e± = E±

x (x̂ ± iŷ), such that CP
eigenfunctions are

f±
nk =

(
e±

∓iY±e±

)
(38)

where k± = k0
√

ε11 ∓ ε12 , kz = (k+ + k−) /2, and Y± =√
ε11 ∓ ε12/η0 [66]. Based on (25)–(27), it can be seen that

for a CP wave traveling along a straight path where k is con-
stant, there is no Berry phase effect.

B. Propagation Perpendicular to the Static Bias

For the case of wave propagation perpendicular to the biasing
field (no variation along z-direction, (∂/∂z = 0)), it can be
shown that the modes decouple into a TE mode (Ez , Hx , Hy )
and a TM mode (Ex , Ey , Hz ).

For TE modes, E = ẑEz → H = k
ωμ0

× ẑ such that the
eigenmodes (6 × 1 vectors) are

fTE
nk =

⎛
⎝ ẑ

k
μ0ωnk

× ẑ

⎞
⎠Ez (39)

and the dispersion equation is k2
x + k2

y = ε33 (ωn/c)2 .
For TM modes H = ẑHz , E = ε−1 · (ẑ × k) / (ωnε0)

fTM
nk =

⎛
⎝ε−1 · ẑ × k

ε0ωn
ẑ

⎞
⎠Hz (40)

with dispersion relation

k2
x + k2

y = εeff

(ωn

c

)2
(41)

where εeff =
(
ε2

11 − ε2
12
)
/ε11 .

For TE modes, there is no Berry phase (in the considered
gauge the eigenfunctions are real-valued, and so A = F = 0).
For TM modes, eigenfunctions are complex-valued due to the
material permittivity, allowing nontrivial Berry properties. De-
noting the frequency derivative of the material response matrix,
∂ω (ωM) as β11 = ∂ω (ωε0ε11), β12 = ∂ω (ωε0iε12), it can be
shown [50] that the Berry connection is

An =
Re{if †

nk · 1
2

∂
∂ω (ωM(ω))∂kfnk}

f †
nk · 1

2
∂

∂ω (ωM(ω))fnk

=
Re{Nx x̂ + Ny ŷ}

D
(42)

where
Nx = i

(ε0 ωn )2 {−2α11α12 [kxβ12 + kyβ11 ]

+(|α11 |2 + |α12 |2)[kxβ11 − kyβ12 ]}
Ny = i

(ε0 ωn )2 {2α11α12 [kxβ11−kyβ12 ]

+(|α11 |2 +|α12 |2)[kxβ12 +kyβ11 ]}

D =
|k|2

(ε0ωn )2 [(|α11 |2 + |α12 |2)β11 − 2α11α12β12 ] + μ0

(43)

and

α11 =
ε11

ε2
11 − ε2

12
α12 =

−iε12

ε2
11 − ε2

12
(44)

and for the Berry curvature

Fn =
ẑ

D(ε0ωn )2 Re{i{4α11α12β11 + 2(|α11 |2 + |α12 |2)β12}}.
(45)

Fig. 2 shows the band diagram for TM modes for ωp/2π =
10 THz and various values of ωc . It is clear that as ωc → 0
(no magnetic bias, TR symmetry/reciprocity respected) the two
modes become degenerate k = 0, ω = ωp . As the bias is turned
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Fig. 2. Dispersion behavior of bulk TM modes for a magnetoplasma for
various values of ωc . Except for the case ωc = 0, the upper (lower) bands have
Chern number +1 (−2).

on the material breaks TR symmetry ε12 
= 0, and the two modes
split apart, creating a bandgap. Note that ∇ · F 
= 0 in general,
and so the “monopole” singularity discussed previously is a
distributed source for this example, due to the 2-D nature of the
eigenfunctions.

Details of the Chern number calculation are provided in [48]
and [50], following the method presented in [41]. Using (37),
the upper band has an integer Chern number, but the lower
band does not. As carefully explained in [41], this is due to
ill behavior of the Hamiltonian for large wavenumber. Integer
Chern numbers for both branches are obtained using a nonlocal
material response with a high-wavenumber spatial cutoff

Mreg (ω,k) = M∞ +
1

1 + k2/k2
max

{M(ω) − M∞} (46)

where M∞ = lim
ω→∞

M(ω) and the spatial cutoff kmax deter-

mines the strength of nonlocality such that as kmax → ∞
the material model becomes local. For this nonlocal material
response, the band diagram and Chern numbers have been
obtained using kmax = 100|ωc |/c (the Chern number calcula-
tion is insensitive to the value of kmax ). The resulting Chern
numbers for the two bands are +1 for the upper band and −2
for the lower band. Note that

∑
n Cn = 0 since there is also

a mode near ω = 0, not shown, that has Chern number 1 [58].
The Chern numbers are the same for all values ωc > 0. Fig. 2
was obtained using the local model, but in Fig. 5 the nonlocal
dispersion behavior is shown.

In light of the distinction between the 1) spin-
redirection/Rytov–Vladimirskii–Berry geometric phase and the
2) Pancharatnam–Berry phase discussed in Section I, it is worth-
while to note that the spin-redirection phase can be divided into
several classes: (a) evolution along one ray as the wave propa-
gates in an inhomogeneous medium, or a curved medium, such
as the curved waveguide example of Fig. 1, and (b) relative
phases between different rays (k-vectors) with different direc-
tions, such as considered here for the biased plasma. Other

Fig. 3. Electric field radiated by a horizontal dipole (black circle) in a homo-
geneous plasma having ω/2π = 10 THz, ωp /ω = 0.84, and ωc /ω = 0.15.

examples of case (b) are shown in [26] and [65] where the Berry
phase between different rays results in the spin Hall effect and
other spin-orbit phenomena.

The components of the electric field along the x and y axes
in terms of Hz are

Ex =
−ε11ky − iε12kx

ε0ωn (ε2
11 − ε2

12)
Hz Ey =

−iε12ky + ε11kx

ε0ωn (ε2
11 − ε2

12)
Hz .

(47)

Converting to a polar coordinate system (r, ϕ) where ϕ is mea-
sured from k

E = Eϕ

(
ϕ̂ + r̂

(
−iε12

ε11

))
(48)

where Eϕ = kHz/ε0εeff ωn . It can be seen that there is a quadra-
ture phase relation between the components of the electric field,
which will produce a rotation of the electric field in the plane of
wave propagation (x − y). Generally, an elliptical polarization
is produced due to nonequal ε11 and ε12 . The instantaneous
electric field is

E = Eϕ

(
cos(ωnt − kr)ϕ̂ +

ε12

ε11
sin(ωnt − kr)r̂

)
(49)

where r =
√

x2 + y2 . Fig. 3 shows the electric field vector due
to a horizontal source in a biased magnetoplasma at a fixed
instant of time, computed using CST Microwave Studio, for
ω/2π = 10 THz, ωp/ω = 0.84, and ωc/ω = 0.15. The ellipses
span one wavelength, and highlight how the field rotates as
the wave propagates (at a fixed point in space, the field also
rotates as time progresses). If the bias is turned off (ε12 = 0), the
material is reciprocal (ε12 = 0), the longitudinal electric field
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Fig. 4. Q(t) versus ωt for four different momentum angles δϕn = nπ/180
radians, n = 1, 2, 3, 4, for ω/2π = 10 THz, ωc /2π = 1.73 THz, and ωp /2π =
9 THz.

is zero so that the field does not rotate as described above, the
eigenfunctions are real-valued, and all Berry quantities vanish
(A = F = 0).

The Berry connection and phase are defined solely in terms
of the envelope of the eigenmodes (47); the propagation factor
eik·r is not involved in computing the Berry phase. As described
in Section II-A, the incremental Berry phase is the relative phase
difference between an eigenfunction at k and at a nearby point
k + dk. Therefore, consistent with the operation ∇k used in
computing A, we consider a small change in k to observe the
Berry phase. Since the bulk dispersion behavior is isotropic in
the (kx, ky ) plane, to change the value of k we need to move
along an azimuthal arc at fixed radial wavenumber.

Defining the incremental Berry phase as δγ = A · kdϕ̂ =
Aϕkδϕ, and writing E = E (r, ϕ, t), we can form a quantity

Q (t) =
E (r, 0, 0) · E (r, δϕ, t)
|E (r, 0, 0) · E (r, δϕ, t)| (50)

where r is an arbitrary fixed far-field distance, that measures the
similarity between the electric field at (t, ϕ) = (0, 0) and the
field at (t, ϕ) = (t, δϕ); when the fields are the same, Q (t) = 1.
For a given small change in k represented by a small change
in the angle δϕ, we expect Q (t) to be maximized when ωt =
δγ, indicating that the incremental Berry phase δγ leads to the
correct time shift between nearby eigenfunctions.

As a numerical example, for ω/2π = 10 THz, ωc/2π =
1.73 THz, and ωp/2π = 9 THz, we have bulk propagation since
εeff > 0. We consider four small angles, δϕn = nπ/180 radi-
ans (i.e., no), n = 1, 2, 3, 4. For these values of δϕn the Berry
phases are δγ1 = 0.017 rad, δγ2 = 0.034 rad, δγ3 = 0.052, and
δγ4 = 0.069 rad, respectively. Fig. 4 indeed shows that for each
angle, the Berry phase leads to the correct time shift between
eigenfunctions separated by δk.

Furthermore, it should be noted that we can have Berry phase
with no field rotation. For example, consider an antenna that
radiates a linearly polarized plane wave that propagates along
z. The antenna radiates different frequencies (in time, the fields
form a traveling pulse). Assume that the amplitude of all har-
monics is the same, but that the phase differs. Depending on
the relative phase between harmonics, one can have a nontriv-

ial Berry connection Az because A is gauge dependent, and
the relative phase (between one k value, associated with one
frequency, and a nearby k value, associated with a different fre-
quency) effectively changes the gauge. Therefore, one can have
nontrivial Berry quantities in realistic physical scenarios even
with linear polarizations, due to the gauge dependence (chang-
ing the phase of an eigenmode is a gauge change), and because
the Berry connection along a single (nonclosed) line does not
determine an invariant.

C. Edge Plasmons

SPPs are electromagnetic modes localized near the bound-
ary between two materials, typically a material having negative
permittivity and one having positive permittivity. For simple ma-
terials, these edge modes can travel in any direction along the
edge. If, however, the edge mode is sufficiently nonreciprocal,
it can be unidirectional. This was realized long ago for biased
plasma interfaces [42]–[44]; here, we recognize the effect to be
subsumed with the Berry phase/Berry curvature framework and
to the topological properties of the involved materials.

The occurrence of gap Chern number Cgap,Δ = 1 predicts the
presence of a single, unidirectional surface mode. This can be
confirmed by directly solving Maxwell’s equation for surface
modes at the interface of a biased plasma and a trivial medium
with permittivity εs . Assume fields invariant along z and prop-
agating along x, so that in the dielectric (y > 0) we have field
variation eiksp p xe−αs y , and in the plasma (y < 0), eiksp p xeαp y .
The condition αp, αs > 0 define the proper Riemann sheets for
the wavenumber. Plugging into Maxwell’s equations leads to
the TM SPP fields⎛

⎝Ex

Ey

Hz

⎞
⎠ =

⎛
⎝E0x

E0y

H0z

⎞
⎠ eiksp p x

{
e−αs y , y > 0

eαp y , y < 0
(51)

E0x =
iαs

ωε0εs
H0z Es

0y =
−kspp

ωε0εs
H0z (52)

Ep
0y =

1
ωε0

ε12αp − ksppε11

ε2
11 − ε2

12
H0z (53)

where k2
s = ω2με0εs , with the SPP dispersion equation [47],

[49]

αs

εs
+

αp

εeff
= ε12

kspp

ε11εeff
(54)

where kspp is the propagation constant of the SPP

along the interface, αs = k0

√
(kspp/k0)

2 − εs and αp =

k0

√
(kspp/k0)

2 − εeff and εeff = (ε2
11 − ε2

12)/ε11 are the at-
tenuation constants in the simple and gyroelectric media, re-
spectively. For the general case, (54) cannot be solved analyti-
cally.

1) Limit |εs | → ∞: In the limit that |εs | → ∞ (implement-
ing a perfect conductor), the dispersion equation can be solved
to yield kspp = k0

√
ε11 , such that αp = k0ε12/

√
ε11 . For this

case, E0x → 0 and the generally TM SPP becomes a TEM mode
[42]. It is easy to see that we require ε11 > 0 to have a solu-
tion, and so we need to operate such that ω > ωp . For ε12 > 0
there are no solutions kspp < 0, since if we take the negative
root of

√
ε11 then αp < 0 and the mode exponentially increases
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Fig. 5. Dispersion behavior of bulk (blue and dashed red) and SPP (purple)
modes for the interface between perfect conductor and biased nonlocal plasma.
Biased plasma has ωc /ωp = 0.2 and for nonlocal case km ax = 100ωc /c.

Fig. 6. Confinement factor for SPP mode for the interface between a plasma
having ωp /ω = 0.97 and a perfect conductor.

away from the interface (i.e., it is on the wrong Riemann sheet).
Similarly, if we have ε12 < 0 there are no solutions kspp > 0.
Therefore, we have a unidirectional SPP. For the unbiased case
(ε12 = 0), there is no SPP solution.

2) |εs | Finite: For finite values of εs < 0, an SPP is also
obtained for ω > ωp , where ε11 > 0. For εs > 0, an SPP occurs
for ω < ωp , but this case is not of interest since at a discontinuity
radiation into the upper bulk region would occur.

Fig. 5 shows the bulk modes (blue and dashed red) for a
biased plasma having ωc/ωp = 0.2, for both the local and non-
local (46) models. Also shown is the SPP dispersion (purple) for
the interface between the plasma and a perfect conductor. The
SPP line crosses the gap (denoted by green lines) of the magne-
toplasma with monotonic slope (∂kω = vg > 0). Fig. 6 shows
the SPP confinement factor αp as a function of frequency and
bias, also for the magnetoplasma–PEC interface. As the bias is
increased, the SPP becomes more confined to the interface, and
as frequency increases the mode becomes less well confined.

Maximum confinement occurs at ω =
(
ωp

2 + ωc
2
)1/2

. Fig. 7

Fig. 7. SPP excited by a vertical 2-D source at the interface between a biased
plasma having ω/2π = 10 THz, ωp /ω = 0.97, and ωc /ω = 0.173 and an
opaque material having εs = −2.

shows the electric field distribution at an interface between a
biased plasma and a medium having εs = −2. Although the
interface has several sharp discontinuities, since the SPP is uni-
directional it cannot backscatter, and since we operate in the
bandgap of the plasma, there can be no diffraction/radiation
into the bulk (the εs = −2 region is opaque).

This example nicely illustrates the implications of the
bulk-edge correspondence principle to topological continua.
In this case, the bulk-edge correspondence works even dis-
regarding the impact of the spatial cutoff in the waveguiding
problem. In general, such effects cannot be neglected and the
high-frequency cutoff needs to be mimicked in the realistic
physical scenario by introducing a small air-gap in between the
two materials [41], [58].

IV. CONCLUSION

The most celebrated property of PTIs is their capability
to support one-way SPPs at an interface that are immune to
backscattering from defects or imperfections. These effects
were first developed at the electronic level in quantum me-
chanics, by systems evolving in time in a cyclic fashion. In this
paper, we have demonstrated that all Berry quantities (Berry
phase, connection/potential, and curvature) can be analytically
obtained and interpreted from a fully classical electromag-
netic perspective. We have discussed the physical meaning of
the Berry phase, connection, and curvature, how these quan-
tities arise in electromagnetic problems, and the significance
of Chern numbers for unidirectional, scattering-immune SPP
propagation.

APPENDIX

Here, we show how TR and inversion symmetry affects the
Berry connection and curvature, and that for a loss-free medium,
a reciprocal medium is a medium with TR symmetry and vice
versa.
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A. Time Reversal

TR transformation (e.g., changing t → −t) for electromag-
netic quantities arise from the fact that charges move in opposite
directions under TR, which leaves the electric field unchanged
but changes the direction of the magnetic field. Maxwell’s equa-
tions are invariant under TR, and we have [67], [68]

T E (r, t) = E (r,−t) , T D (r, t) = D (r,−t)

T B (r, t) = −B (r,−t) , T H (r, t) = −H (r,−t)

T J (r, t) = −J (r,−t) , T ρ (r, t) = ρ (r,−t) (55)

where T is the TR operator.
To see the effect of TR on momentum–frequency domain

quantities, taking the Fourier transform of the time-reversed
field E (r,−t) leads to

T E (k, ω) ≡
∫

r

∫ t=∞

t=−∞
T E (r, t) eik·re−iω tdrdt

=
∫

r

∫ t=∞

t=−∞
E (r,−t) eik·re−iω tdrdt

= −
∫

r

∫ −τ =∞

−τ =−∞
E (r, τ) eik·reiωtdrdτ

=
∫

r

∫ τ =∞

τ =−∞
E (r, τ) eik·reiωtdrdτ

= E (k,−ω) = E∗ (−k, ω) (56)

where we note that applying T to a quantity that is not a function
of time, e.g., T E (k, ω), means applying T in the time domain
and then taking the appropriate transform. Therefore, the pre-
scription is that applying TR in the time domain is equivalent
to taking complex conjugate and reversing momentum (or, not
taking complex conjugate and reversing ω). For the magnetic
field, we get T H (k, ω) = −H∗ (−k, ω).

For a source-driven problem, k and ω are independent pa-
rameters. However, for a source-free (eigenmode) problem,
k = k(ω), and the momentum and frequency variables are
linked by a dispersion equation (and for a trivial dispersion
equation like k = ω

√
με, reversing k and reversing ω are equiv-

alent). In this case

T E (k, ω) ≡
∫

r

∫ t=∞

t=−∞
T E (r, t) eik(ω )·re−iω tdrdt

=
∫

r

∫ t=∞

t=−∞
E (r,−t) eik(ω )·re−iω tdrdt

= −
∫

r

∫ −τ =∞

−τ =−∞
E (r, τ) eik(ω )·reiωτ drdτ

=
∫

r

∫ τ =∞

τ =−∞
E (r, τ) eik(ω )·reiωτ drdτ

= E∗ (−k, ω)

=
(

E (k,−ω) if k(ω) = keven(ω)
E (−k,−ω) if k(ω) = kodd(ω)

)
. (57)

Therefore,

T fn,k(ω ) =
(

E∗ (−k(ω))
−H∗ (−k(ω))

)
= T6×6 · f ∗

n,−k(ω )

=
(

T6×6 · fn,k(−ω ) if k(ω) = keven(ω)
T6×6 · fn,−k(−ω ) if k(ω) = kodd(ω)

)
(58)

where

T6×6 =

(
I3×3 0

0 −I3×3

)
(59)

is the Poynting vector reversing operator (applying this op-
erator to fn reverses the direction of the group velocity)
[67], such that T6×6 · T6×6 = I6×6 . Note that T6×6 = σz ,
the 6 × 6 form of the Pauli spin matrix. If the system is
T -invariant, T6×6 · f ∗

n,−k(ω ) = eiζ (k)fn,k(ω ) , where we can
include an arbitrary phase since eigenfunctions are defined
up to a phase factor. As an example, for a simple plane
wave in vacuum (which is T -invariant), let E = x̂E0e

ik0 z ,
where k0(ω) = ω

√
ε0μ0 . Then, H = ŷE0(k0/ωμ0)eikz , and

fn,k(ω ) = (eik0 z , 0, 0, 0, k0
ωμ0

eik0 z , 0)T , and it is easy to see that
T fn,k(ω ) = T6×6 · f ∗

n,−k(ω ) = fn,k(ω ) .
Starting with (34), we can obtain a TR eigenfunction

T wn,k(ω ) by considering that in the time domain w is a convo-
lution of the inverse temporal transforms of the two terms. TR
of each term leads to, by the convolution theorem, the product
of the individual time-reversed temporal transforms. Using (78)

T wn,k(ω )

= T6×6 · [∂ω (ωM∗ (ω,−k))]1/2 · T6×6 · T6×6 · f ∗
n,−k(ω )

= T6×6 · w∗
n,−k(ω ) . (60)

Then, it can be shown that

T An (k) = An (−k) (61)

and that, if a system is T -invariant

An (−k) = An (k) + ∇kξ(k) (62)

where ξ (k) is an arbitrary phase. To see this, consider that

T An (k) = i (T wn,k)† · ∇k (T wn,k)

= i
(
T6×6 · w∗

n,−k

)† · ∇k
(
T6×6 · w∗

n,−k

)
= iwT

n,−k · ∇kw∗
n,−k

= −i
(
w†

n,−k · ∇−kwn,−k

)
= An (−k) (63)

since w†
n,k · ∇kwn,k is pure imaginary, proving (61). To prove

(62), note that if a system is T -invariant

T wn,k(k) = eiζ (k) wn,k (64)

from which (62) follows using the same arguments as in (16).
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From this, for the Berry curvature

T Fn (k) = ∇k × (T An (k))

= ∇k × (An (−k)))

= −∇−k × (An (−k)))

= −Fn (−k). (65)

Thus, for a system that respects TR, one can have nonzero
Berry curvature, but, from (20) the Chern number will be zero
(T C = −C, such that if TR symmetry is respected, C = −C
and so C = 0).

B. Inversion

Inversion (parity) transformation means replacing r with −r.
Under the inversion symmetry operator I, [68]

I E (r, t) = −E (−r, t) I D (r, t) = −D (−r, t)

I B (r, t) = B (−r, t) I H (r, t) = H (−r, t)

I J (r, t) = −J (−r, t) I ρ (r, t) = ρ (−r, t) (66)

To see the effect of I on momentum–frequency domain quan-
tities, taking the Fourier transform of the parity-reversed field
E (−r, t) leads to

I E (k, ω) ≡
∫

r

∫
t

I E (r, t) eik·re−iω tdrdt

= −
∫

r

∫
t

E (−r, t) eik·re−iω tdrdt

= −
∫

x

∫
t

E (x, τ) e−ik·xe−iω tdxdt

= −E (−k, ω) = −E∗ (k,−ω) . (67)

Therefore, the prescription is that applyingI in the space domain
is equivalent to taking complex conjugate and reversing fre-
quency (or, not taking complex conjugate and reversing momen-
tum). For the magnetic field, we get I H (k, ω) = H∗ (k,−ω).
For the source-free case,

I E (k, ω) ≡
∫

r

∫ t=∞

t=−∞
I E (r, t) eik(ω )·re−iω tdrdt

= −
∫

r

∫
t

E (−r, t) eik(ω )·re−iω tdrdt

=
∫
−x

∫
t

E (x, t) e−ik(ω )·xe−iω tdxdt

= −E (−k(ω))

= −
(

E∗ (k (−ω)) if k(ω) = keven(ω)
E∗ (−k (−ω)) if k(ω) = kodd(ω)

)
.

(68)

Therefore,

I fn,k(ω ) =
(
−E∗ (k (−ω))
H∗ (k (−ω))

)
= −T6×6 · fn,−k(ω )

= −
(

T6×6 · f ∗
n,k(−ω ) if k(ω) = keven(ω)

T6×6 · fn,−k(−ω ) if k(ω) = kodd(ω).

)
(69)

If the system is I-invariant, −T6×6 · fn,−k(ω ) = eiζ (k)fn,k(ω ) .
Starting with (34) the effect of I can be seen by considering

that in the space domain w is a convolution of the inverse spatial
transforms of the two terms. Space inversion of each term leads
to, by the convolution theorem, the product of the individual
transforms evaluated at −k. Using (81),

wn,k(ω ) = T6×6 · [∂ω (ωM (ω,−k))]1/2 · T6×6

·
(
T6×6 · fn,−k(ω )

)
= T6×6 · wn,−k(ω ). (70)

The effect of inversion on the Berry connection is

I An (k) = i (I wn,k)† · ∇k (I wn,k) (71)

= i (T6×6 · wn,−k)† · ∇k (T6×6 · wn,−k) (72)

= −iw†
n,−k · ∇−kwn,−k

= −An (−k) (73)

and that, if a system is I-invariant

−An (−k) = An (k) + ∇kξ(k). (74)

From this, for the Berry curvature

I Fn (k) = ∇k × (I An (k))

= ∇k × (−An (−k)))

= −∇−k × (−An (−k)))

= Fn (−k) (75)

and so if a system is invariant under I
Fn (k) = Fn (−k).

For the Chern number, IC = C. Obviously, if a system is invari-
ant under both T and I, Fn (k) = 0.

C. T and I Relations for Material Parameters and Reciprocity

1) Time Reversal: From (58), T fn,k(ω ) = fTR
n = T6×6 ·

f ∗
n,−k(ω ) , and so for gn,k(ω ) = [D B]T we have gTR

n = T6×6 ·
g∗

n,−k(ω ) . Considering gn,k(ω ) = M (ω,k) · fn,k(ω ) , conjugat-
ing and changing the sign of momentum, and multiplying by
the Poynting vector reversing operator yields

T6×6 · g∗
n,−k(ω ) = T6×6 · M (ω,−k)∗ · f ∗

n,−k(ω )

= {T6×6 · M (ω,−k)∗ · T6×6}
·T6×6 · f ∗

n,−k(ω ) (76)

such that

gTR
n = MTR · fTR

n (77)
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where

MTR (ω,k) = T6×6 · M∗ (ω,−k) · T6×6 (78)

=

⎛
⎜⎝ ε0ε

∗ (ω,−k) −1
c
ξ∗ (ω,−k)

−1
c
ς∗ (ω,−k) μ0μ

∗ (ω,−k)

⎞
⎟⎠

is the time reversed material constitutive tensor. If we have
M = MTR then the medium is TR symmetric/invariant. Note
that a lossy medium is never T -invariant.

2) Space Inversion: For the inversion operator, from (69)
I fn,k(ω ) = f I

n = −T6×6 · fn,−k(ω ) , and so for gn,k(ω ) =
[D B]T , we have gI

n = −T6×6 · gn,−k(ω ) . From gn,k(ω ) =
M (ω,k) · fn,k(ω ) , changing the sign of momentum and multi-
plying by (−T6×6) results in

− T6×6 · gn,−k(ω ) = −T6×6 · M (ω,−k) · fn,−k(ω )

= {T6×6 · (−M (ω,−k)) · T6×6}
·T6×6 · fn,−k(ω ) (79)

such that

gI
n = MI · f I

n (80)

where

MI(ω) = T6×6 · (−M (ω,−k)) · T6×6

=

⎛
⎜⎝ ε0ε (ω,−k) −1

c
ξ (ω,−k)

−1
c
ς (ω,−k) μ0μ (ω,−k)

⎞
⎟⎠ (81)

is the space inverted material constitutive tensor. Chirality
(ξ, ξ 
= 0), for example, breaks inversion symmetry.

3) Reciprocity: The Maxwell’s equations in the frequency
domain in the presence of an excitation may be written in a
compact form as

N̂ · F = ωM · F + ij (82)

where N̂ is a differential operator and M is the material ma-
trix operator [41]. For spatially dispersive media the action of
the material matrix on the electromagnetic fields F = (E H )T

should be understood as a spatial convolution. The six-vector
j = ( je jm )T is written in terms of the electric current den-
sity je and of the magnetic current density jm (for the sake of
generality we consider that both excitations are possible). In
conventional media, the reciprocity theorem establishes that if
F′ and F′′ are the fields radiated by the localized (in space)
currents j′ and j′′, respectively, then∫

j′ · T6×6 · F′′ − j′′ · T6×6 · F′dV = 0. (83)

In the following, we study in which conditions this result gener-
alizes to spatially dispersive media. As a starting point, we note
that Parseval’s theorem establishes that the condition (83) is
equivalent to

∫
j′k · T6×6 · F′′

−k − j′′−k · T6×6 · F′
kd3k = 0,

where F′
k represents the Fourier transform of F′, etc. The spec-

tral domain fields satisfy N̂ (k) · Fk = ωM (ω,k) · Fk + ijk
which generalizes the formulation of Section II-A. Hence, it

follows that∫
d3k
{
F′′

−k · T6×6 ·
[
N̂ (k) − M (ω,k)

]
· F′

k − F′
k

·T6×6 ·
[
N̂ (−k)−M (ω,−k)

]
· F′′

−k

}
=0. (84)

Since the sources are arbitrary, the above equation can be satis-
fied only when

T6×6 ·
[
N̂ (k) − M (ω,k)

]

=
[
T6×6 ·

[
N̂ (−k) − M (ω,−k)

]]T
. (85)

Using the explicit expression of the matrix N̂ (k) [(3)] it is
found after some manipulations that a material is reciprocal only
when the respective material matrix satisfies

M (ω,k) = T6×6 · MT (ω,−k) · T6×6 . (86)

Comparing the requirements for TR symmetry and reciprocity,
we conclude that a reciprocal material is T -invariant, and a
T -invariant material is reciprocal, provided that

M∗ = MT → M = M† (87)

i.e., that the material tensor is Hermitian. Since all lossless
materials must have Hermitian matrix representations, in the
loss-free case a reciprocal medium also has TR symmetry, and
vice versa.
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