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P · T · D symmetry-protected scattering anomaly in optics

Mário G. Silveirinha*
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In time-reversal invariant electronic systems the scattering matrix is antisymmetric. This property enables a
spin-Hall effect, designated here as “scattering anomaly”, such that the electron transport does not suffer from back
reflections independent of the specific geometry of the propagation path or the presence of time-reversal invariant
defects. In contrast, for a generic time-reversal invariant photonic system, the scattering matrix is symmetric and
there is no similar anomaly. Here, it is theoretically proven that despite these fundamental differences there is
a wide class of photonic platforms—in some cases formed only by time-reversal invariant media—in which a
scattering anomaly can occur. It is shown that an optical system invariant under the action of the composition
of the parity, time-reversal, and duality operators (P · T · D) is characterized by an antisymmetric scattering
matrix. Specific examples of photonic platforms wherein the scattering anomaly occurs are given, and it is
demonstrated with full wave numerical simulations that the proposed systems enable bidirectional waveguiding
immune to arbitrary deformations of the propagation path. Importantly, our theory unveils a new class of fully
three-dimensional structures wherein the transport of light is fully protected against reflections and uncovers
unsuspected links between the electrodynamics of reciprocal and nonreciprocal materials.
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I. INTRODUCTION

In recent years, there has been a great interest in different
paradigms for the transport of light immune to the unwanted
effects of reflections created by imperfections, disorder,
obstacles, or other types of deformations of the propagation
path [1,2]. In particular, a lot of attention has been devoted to
the realization of novel topological phases that may allow
for the flow of optical energy with no backscattering. An
important class of solutions is based on (nonreciprocal) media
with a broken time-reversal symmetry [3–13], usually created
by a biasing static magnetic field. It has been shown that
such platforms are inherently topological and characterized
by nontrivial Chern indices [3,4,12]. In parallel, different
research groups have explored alternative solutions that can
offer some form of topological protection using only time-
reversal invariant materials. Different concepts were developed
based on these efforts: Floquet topological insulators [14,15],
systems with a synthetic pseudomagnetic field [16,17], pho-
tonic topological insulators [18–24], photonic crystals and
waveguides with specific spatial symmetries [25,26], and other
related ideas [27,28].

In contrast with most of previous papers here, rather
than focusing on the topological properties of a system, we
investigate the conditions under which a photonic platform can
have propagation channels insensitive to backscattering. This
study is inspired by the fact that in electronics a system that
is invariant under the time-reversal operation is characterized
by an antisymmetric scattering matrix. In some circumstances,
this property creates the conditions for a scattering anomaly
(spin-Hall effect) such that an electron wave can propagate
through rather complex meandering paths totally insensitive
to the effects of disorder, defects, or path deformation [29].
In electronics, this property is intimately linked to a Z2
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topological invariant and to the theory of electronic topological
insulators [29–31].

Different from the electronic case, in optics the scattering
matrix is known to be symmetric for reciprocal systems, and
unfortunately there is no scattering anomaly associated with
such a type of symmetry. Despite this difficulty, we prove here
that there is a wide class of photonic platforms wherein the
scattering anomaly can occur. It is shown that systems invariant
under the action of a P · T · D operator—the composition
of the parity, time-reversal, and duality transformations—are
characterized by an antisymmetric scattering matrix, similar
to the electronic case. Specific examples of such systems
are studied in detail, and it is demonstrated with full wave
simulations that the P · T · D symmetry protection may
enable bidirectional waveguiding totally insensitive to back
reflections. Furthermore, it is highlighted that the P · T · D
invariance can be compatible with the time-reversal invariance,
and hence our designs can rely on reciprocal materials.

Recently, He et al. constructed a fermionic type pseudo-
time-reversal operator to justify the absence of scattering in
photonic topological insulators [24], in a spirit similar to what
is done here. Yet, the operator of Ref. [24] is generally rather
different from ours because it acts only on the fields and not
on the spatial coordinates. Indeed, it is possible to construct
different fermionic-type time-reversal operators, and here, we
explore another solution using the parity operator as one of the
elements of the transformation. Our theory generalizes and
connects several previous works [18,24,26]. In particular, it
includes as a particular case the photonic topological insulators
introduced by Khanikaev et al. [18] and others [19–24] using
different ideas. Indeed, similar to Ref. [18], we find that
reciprocal media with an �-type coupling may enable scatter-
free waveguiding. The studies of Refs. [18–24] are focused on
topological photonic crystals different from ours that is based
on generic electromagnetic continua and wherein the materials
are not required to be topological. Indeed, even though
often there are important connections between the scattering
anomaly and topological concepts, the P · T · D invariance
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is inherently a single-frequency condition, and hence, it is
independent of the detailed material response away from the
spectral region of interest. Thus, the requirements of our theory
are very much relaxed as compared to those of topological
theories, which usually enforce the system to be periodic
and the materials response to have complicated symmetries
in a broadband region. Furthermore, the theoretical concepts
introduced in this paper unveil totally different solutions for the
transport of light not previously explored in the literature and,
in particular, uncover a way to realize three-dimensional (3D)
optical edge waveguides fully protected against backscattering
due to deformations of the propagation path. Remarkably,
our general framework also includes as a particular case
the paradigm discovered in Ref. [26] to have symmetry-
protected light transport in a bulk waveguide—formed by stan-
dard isotropic dielectrics—with special boundary conditions
linked by duality and parity. Thus, our analysis reveals an
unexpected link between the bulk waveguides of Ref. [26] and
the photonic topological insulator edge waveguides, showing
that both correspond to particular cases of P · T · D invariant
systems. Our theory merges and expands these two paradigms
and, in this manner, opens new ways for waveguiding immune
to backscattering.

II. THEORY

For notational convenience, we write Maxwell’s equations
in the frequency domain as

N̂ · f = ωg, with N̂ =
(

0 i∇ × 13×3

−i∇ × 13×3 0

)
. (1)

Here, 13×3 is the 3 × 3 identity matrix, ω is the oscillation fre-
quency, f = (E H)T and g = (D B)T are six-component
vector fields written in terms of the standard electromagnetic
field vectors, and T denotes the transpose operator. It is
assumed that the f and g fields are linked as g = M(r) · f,
where M is a space-dependent material matrix of the generic
bianisotropic form [32]

M(ω) =
(

ε0ε
1
c
ξ̄

1
c
ζ̄ μ0μ̄

)
. (2)

The tensors ε(ω),μ̄(ω),ξ̄ (ω),ζ̄ (ω) are dimensionless and de-
termine the permittivity, permeability, and the magnetoelectric
coupling tensors, respectively.

In this compact formalism, the time-reversal operator T
is defined by T = Kσ z, where K denotes the complex con-
jugation operator and σ z = (13×3 0

0 −13×3

)
. The time-reversal

operation transforms the (frequency domain) electromagnetic
fields as f → T · f and g → T · g. The operatorT is antilinear,
i.e., it is the composition of a linear operator and K.
Importantly, the action of T flips the Poynting vector.

As is well known, in optics the time-reversal operator
satisfies T 2 = 1 [1]. This contrasts sharply with the electronic
case, wherein T 2 = −1, a property that makes it possible to
have a scattering anomaly. The anomaly occurs when the
number of propagating states along a fixed direction, let us
say the +x direction, is odd [29]. What is extraordinary
is that, under these circumstances, it is possible to have
bidirectional waveguiding absolutely insensitive to any form

FIG. 1. Scattering in a T̃ -invariant photonic platform. Two propa-
gation channels (the edge waveguides) are connected by a meandering
path with arbitrary deformations and with T̃ -invariant defects. Each
channel supports a finite number of modes N propagating toward the
waveguide ports (f+

n ). In case of a scattering anomaly, i.e., when N is
odd, and for lossless materials, there is at least a propagation channel
that allows an incoming wave to go through the sinuous path with no
backscattering.

of perturbation that preserves the time-reversal invariance of
the system [29–31].

A. The scattering matrix

It would be highly interesting to have bidirectional waveg-
uiding in optics insensitive to backscattering. This requires
finding some antilinear operator T̃ with T̃ 2 = −1 and that
transforms the electromagnetic fields in such a manner that
its action flips the Poynting vector in the relevant propa-
gation directions, similar to the time-reversal operation. To
demonstrate that a photonic platform invariant under the
action of such a hypothetical operator may enable scatter-free
wave propagation, we consider the scenario of Fig. 1, which
represents two generic waveguides connected at some arbitrary
junction corresponding to a perturbation of the system, e.g.,
a sinuous winding path that joins the two waveguides. Each
waveguide supports a finite number of propagating modes at
the frequency of interest. As is well known, sufficiently far
from the junction—in particular, the vicinity of the waveguide
“ports”—it is possible to expand the electromagnetic field in
terms of the propagating modes because other (evanescent-
type) modes play no role.

The “incident” wave that propagates toward the junction
can be written as

f+ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N∑
n=1

a+
n f+

n , waveguide 1

2N∑
n=N+1

a+
n f+

n , waveguide 2,

(3)

where f+
n = f+

n (r; ω) is the electromagnetic field associated
with a given mode, a+

n is the corresponding complex-valued
incident amplitude calculated at the relevant waveguide port,
and N is the number of propagating modes traveling toward
the junction in each waveguide. The f+

n modes are supposed to
be normalized so that they transport the same power. It is also
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supposed that the two waveguides support the same number
of propagating modes. Note that the indices n = 1, . . . N

are associated with the modes of waveguide 1, whereas the
indices n = N + 1, . . . 2N are associated with the modes of
waveguide 2. The incident modes originate scattered waves
that propagate away from the junction. If the waveguides are
invariant under the action of T̃ , the scattered waves can be
expanded as follows:

f− =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N∑
n=1

a−
n T̃ · f+

n , waveguide 1

2N∑
n=N+1

a−
n T̃ · f+

n , waveguide 2.

(4)

Indeed, because by hypothesis T̃ flips the direction of the en-
ergy flow (Poynting vector), it is possible to pick f−

n = T̃ · f+
n

(n = 1, . . . 2N ) as the basis for the expansion of the scattered
waves. Because of the linearity of the problem, the scattered
wave complex amplitudes can be linked to the incident
wave amplitudes through a scattering matrix: [a−

n ] = S · [a+
n ].

The scattering matrix can be written as S = (S11 S12
S21 S22

)
, where

Sij are N × N matrices. Crucially, if the entire structure
(waveguides and junction) is invariant under the action of T̃ ,
then a solution of Maxwell’s equations is transformed by T̃
into another solution. Since T̃ flips the Poynting vector, it
transforms the incident wave f+ into a wave that propagates
away from the junction (T̃ · f+) and the scattered wave f− into
a wave that impinges on the junction. Because T̃ is an antilinear
operator, it follows that the complex modal amplitudes must
satisfy [(a+

n )∗] = −S · [(a−
n )∗], where the * stands for complex

conjugation. The leading minus sign is due to the property
T̃ 2 = −1. Therefore, under these conditions, it follows that
S−1 = −S∗. For a lossless junction, the scattering matrix must
satisfy S† · S = 1 to ensure that the power transported by
the scattered waves is identical to the power transported by
the incident waves:

∑
n |a−

n |2 = ∑
n |a+

n |2. Therefore, for a
lossless T̃ -invariant structure, the scattering matrix must be
antisymmetric

S = −ST . (5)

In particular, this property implies that the matrices S11

and S22—which characterize the reflected waves in each
waveguide—are also antisymmetric. The scattering anomaly
occurs when N—the number of propagating modes in each
waveguide—is odd. In this case, the determinant of S11

and S22 must vanish because the antisymmetry implies that
det(S11) = (−1)N det(S11). Then it is possible to choose the
incident wave, let us say in waveguide 1, in such a manner
that the reflected wave in the same waveguide vanishes.
Thus, due to the conservation of the energy, the incoming
wave in waveguide 1 must be totally transmitted across the
T̃ -invariant lossless junction—independent of its form, shape,
or specific material composition—to the waveguide 2. We note
in passing that the same derivation gives a symmetric scattering
matrix S = ST when the operator T̃ is taken identical to
the standard time-reversal operator (T 2 = 1). In this case,
there is no scattering anomaly because, independent of the
value of N , the null space of the matrices S11 and S22

is generally trivial. The property S = ST is generally valid

for reciprocal electromagnetic networks, even in the case of
material absorption [33]. The difference in the symmetry of
the scattering matrix puts into perspective how the sign of T̃ 2

influences in a decisive manner the wave phenomena.
It is important to underline that the result S = −ST requires

that all the possible propagation channels are included in
the scattering matrix so that the junction can be considered
lossless. For example, if new propagation channels are created
when interfacing two different waveguides, then these must
also be included in the scattering matrix formulation. This may
happen when the input and output waveguides are formed by
different materials. For simplicity, in what follows we restrict
our attention to the case where the input and output waveguides
are identical.

B. Construction of the T̃ operator

To construct an operator T̃ with the desired properties, first
we consider a generalized duality transformation of the form
D = (d1113×3 d1213×3

d2113×3 d2213×3

)
that maps the electromagnetic fields as

f → D · f without affecting the space and time coordinates
[32]. The properties of duality transformations are reviewed
in Appendix A. We are interested in mappings such that
D2 = −1, and hence we restrict our attention to duality
transformations of the form

D = α1σ x + iα2σ y + α3σ z, with α2
1 − α2

2 + α2
3 = −1.

(6)

The constant coefficients αi are required to be real valued
for reasons that will be clear shortly. Here, σ x = ( 0 13×3

13×3 0

)
,

σ y = ( 0 −i13×3
i13×3 0

)
, and σ z (defined as before) are 6 × 6 ma-

trices with the same algebraic properties as the Pauli matrices.
This subclass of duality transformations preserves the structure
of Maxwell’s equations [Eq. (1)] provided the g fields are
transformed as g → −DT · g. Note that the considered duality
transformations have zero trace (d11 = −d22) and determinant
detD = D3 = 1, where D = d11d22 − d12d21 = 1.

The composition of the time-reversal operator T and the
duality transformation D does not give an operator T̃ with the
desired properties. The difficulty is that the operators T and
D do not commute, and because of this (T · D)2 �= −1. To fix
this problem, we need to introduce a third operator, specifically
a parity (inversion) operator that flips the z-spatial coordinate
(x,y,z) → (x,y, − z), i.e., the coordinate perpendicular to the
propagation plane (xoy plane). A parity operation transforms
the electromagnetic fields as f → P · f and g → P · g with
P = (−V 0

0 V

)
, where V is a 3 × 3 diagonal matrix with

diagonal entries V11 = V22 = −V33 = 1. The parity operator
leaves the in-plane (x and y components of the) Poynting
vector unchanged. Evidently, P and T commute and P2 = 1.
Moreover, P · T commutes with the duality transformation
D provided the coefficients αi are real valued. Therefore,
the operator T̃ can be defined as the composition of the
time-reversal, parity, and duality transformations

T̃ = P · T · D. (7)

In summary, it was demonstrated that the above-defined
operator satisfies T̃ 2 = −1 and transforms the electromagnetic
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fields as f(r) → f̃(r) ≡ T̃ · f(V · r) and g(r) → g̃(r) ≡ P · T ·
(−DT ) · g(V · r). As desired, the in-plane components of the
Poynting vector are flipped by this transformation.

C. T̃ -invariant photonic systems

A photonic system is invariant under T̃ when the material
matrix satisfies

M(x,y,z,ω) = [−P · T · DT ]

·M(x,y, − z,ω) · [P · T · D]−1. (8)

This condition ensures that the T̃ -transformed fields (f̃ and
g̃) satisfy Maxwell’s equations in the same material structure
as the original fields (f and g). In order that the structure is
lossless, it is also required that the material matrix is Hermitian
symmetric M = M† [32]. Hence, using M∗ = MT and D−1 =
−D, it is readily found that these properties imply that(

ε0ε
1
c
ξ̄

1
c
ζ̄ μ0μ̄

)
(x,y,z)

= DT ·
(

V · ε0ε
T · V 1

c
V · ζ̄ T · V

1
c
V · ξ̄ T · V V · μ0μ̄

T · V

)
(x,y,−z)

· D. (9)

For a fixed D defined as in Eq. (6), a lossless system is T̃
invariant if and only if it satisfies the above equation. In
general, T̃ -invariant systems may include nonreciprocal media
because T̃ �= T . For simplicity, this paper deals only with
duality transformations of the form

D =
(

0 Aη013×3

−A−1η−1
0 13×3 0

)
, (10)

where η0 = √
μ0/ε0 is the free-space impedance, and A is an

arbitrary nonzero dimensionless real parameter. In this case,
the T̃ invariance reduces to the two simple conditions

ε(x,y,z) = 1

A2
V · μ̄T (x,y, − z) · V,

(11)
ξ̄ (x,y,z) = −V · ξ̄ T (x,y, − z) · V.

It is implicitly assumed that M = M† so that all the materials
are lossless, and in particular, ζ̄ = ξ̄ †. It is important to
highlight that these conditions need to be satisfied only at
the frequency of interest, i.e., they are not required to hold
for all frequencies. Moreover, except for the special z = 0
symmetry plane, the conditions in Eq. (11) link the material
parameters at different points in space. This property turns
out to be quite important because it gives us increased design
flexibility. Finally, it is underlined that different from typical
topological theories, the constraints in Eq. (11) apply as well to
generic 3D structures and hence offer the possibility to design
a 3D waveguide insensitive to backscattering. This idea will
be developed ahead.

At this point, it is worth noting that the pseudo-time-reversal
operator Tp = T · σ x introduced in Ref. [24] is not equivalent
to T̃ = P · T · D. Indeed, while the latter operator acts on the
spatial coordinates through the action of the parity operator,
the former does not. For two-dimensional (2D) problems with
∂/∂z = 0, the operator T̃ reduces to [taking Aη0 = −1 in

Eq. (10)] T̃ = T · (0 V
V 0

)
, which has a form alike but not

equivalent to Tp = T · σ x .
It is also important to highlight that for standard

isotropic materials the T̃ invariance reduces to ε(x,y,z) =
1
A2 μ(x,y, − z). This condition coincides precisely with that
derived in Ref. [26] to ensure symmetry-protected light
transport in bulk waveguides. Our theory extends the result
of Ref. [26] to general anisotropic and bianisotropic photonic
platforms.

D. T̃ -invariant materials

In systems uniform along the z direction, the constraints
in Eq. (11) must be individually satisfied by all the materials
in the system, or in other words, all the media need to be T̃
invariant. The parameters of a T̃ -invariant lossless material are
linked by

ε = 1

A2
V · μ̄T · V,

ξ̄ = −V · ξ̄ T · V, (T̃ −invariant material). (12)

A magnetoelectric tensor compatible with the above conditions
is necessarily of the form

ξ̄ = ξyx ẑ × 13×3 + [ξxz(x̂ ⊗ ẑ + ẑ ⊗ x̂)

+ ξyz(ŷ ⊗ ẑ + ẑ ⊗ ŷ)], (13)

with ξyx,ξxz,ξyz arbitrary complex-valued numbers. The first
term determines an antisymmetric-type coupling and the
second term a symmetric-type coupling.

III. SCATTERING ANOMALY WITH
GYROTROPIC MEDIA

To begin with, we restrict our attention to structures
uniform along the z direction and consider wave propagation
with ∂/∂z = 0 (2D problem). The simplest example of a
scattering anomaly occurs in a system with no magnetoelectric
response (ξ̄ = ζ̄ = 0). In this case, the T̃ invariance [Eq. (12)]
reduces simply to ε = 1

A2 V · μ̄T · V for some fixed scaling
parameter A. As illustrated in Fig. 2(d), a 2D waveguide with
this symmetry can be realized by pairing two homogeneous
materials. The material interface is at the plane y = 0 so
that the propagation is along the x direction. The material
in the region y > 0 is assumed to have a gyrotropic response
described by (for simplicity we fix A = 1 from here on)

ε =
⎛
⎝ ε11 ε12 0

−ε12 ε22 0
0 0 ε33

⎞
⎠, μ̄ = εT , (14a)

ε11 = ε22 = 1 + ω2
p

ω2
0 − ω2

,

ε12 = −ε21 = −iωgω

ω2
0 − ω2

, ε33 = 1. (14b)

Here, ω0 is the resonance frequency, ωp determines the
resonance strength, and ωg determines the nonreciprocal
response strength; the three parameters must satisfy ωp �√

ω0|ωg|. The proposed gyrotropic material is nonreciprocal:
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FIG. 2. Scattering anomaly with gyrotropic media. (a) Band diagram ω vs k for a T̃ -invariant gyrotropic material with ωg = 0.6ω0 and
ωp = √|ωg|ω0. The insets indicate the Chern numbers for each band and for each polarization. (b) Similar to (a) but for a T̃ -invariant anisotropic
dielectric with ω0,a = 0.5ω0 and ωe,a = 3ω0. (c) Dispersion of the guided modes supported by an interface of the two materials. The common
bandgap is delimited by the two dot-dashed horizontal gray lines. (d) Sketch of the waveguide geometry. In panels (a) and (b), all the bands
are doubly degenerate. In panel (c), the guided modes are not degenerate, and there is a single mode propagating along the positive x axis,
corresponding to a scattering anomaly with N = 1.

it has an electric response analogous (but not equivalent) to
that of an electric-plasma biased with a static magnetic field
[34] and a magnetic response equivalent (with a suitable choice
of the relevant parameters) to that of a lossless ferrite biased
with a static magnetic field [33]. The parameter ωg can be
either positive or negative, depending on the orientation of the
biasing field. The material in the region y < 0 is taken as an
anisotropic-type dielectric with

ε = μ̄ = εa,||(x̂x̂ + ŷŷ) + εa,zzẑẑ, with

εa,|| = 1 + ω2
e,a

ω2
0,a − ω2

, and εa,zz = 1. (15)

In the proposed waveguide, the condition in Eq. (11) holds
for every frequency, but it is underlined that the T̃ invariance
only needs to be satisfied in a narrowband frequency region.
Indeed, the key feature of the scattering anomaly is that the
scattering matrix is antisymmetric, and the number of modes
N is odd at the frequency of interest.

Figures 2(a) and 2(b) represent the band diagrams of the two
bulk materials for in-plane propagation. The band structure of
the gyrotropic material is calculated as in Ref. [12]. Note
that the band structure is independent of the direction of
propagation in the xoy plane. Because of the T̃ invariance,
all the bands are doubly degenerate, and the s-polarized waves
(with Ez �= 0 and Hz = 0) and the p-polarized waves (with
Ez = 0 and Hz �= 0) are completely decoupled. The insets
of the figures indicate the Chern numbers for each band

subset and for each polarization (Cs and Cp for s and p

polarizations, respectively). The Chern numbers are computed
using a high-frequency spatial cutoff in the material response,
as detailed in Refs. [12,13]. First of all, we note that for all
bands Cs + Cp = 0. This property is a consequence of the
invariance of the material response under the T̃ transformation
[Eq. (12)], which can be shown to imply that the Berry
curvature is an odd function of the wave vector, similar to
the electronic case. Note that T̃ maps the eigenmodes as
fnk → T̃ · fnk, such that the frequency and wave vector are
transformed as (ωnk,k) → (ωnk,−k). As expected, the Chern
numbers of the anisotropic dielectric are trivial. In contrast,
the Chern numbers of the gyrotropic material are nonzero for
a fixed polarization. The property Cp = −Cs can be intuitively
understood as a consequence of μ̄ = εT , which implies that the
nonreciprocal coupling of the electric and magnetic responses
is opposite for the s and p polarizations (note that the matrix
transposition swaps the sign of the nondiagonal elements).

It is interesting to point out that, in the same manner as the
Kane-Mele model corresponds to two copies of the Haldane
model [35], our system corresponds as well to a duplication
of the response of a standard gyrotropic material (e.g., a
duplication of the response to s-polarized waves of a biased
ferrite). The two uncoupled polarizations are linked by the
T̃ operator. Similar to the theory of electronic topological
insulators [29–31,35], when the T̃ invariance holds for all fre-
quencies, as in the present example, it is possible to introduce
a Z2 topological index defined by 
 = [(Cp − Cs)/2] mod 2.
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Clearly, with this classification, the T̃ -invariant gyrotropic
material is topologically nontrivial because, for the lower band
subset (below the bandgap), one has 
 = 1. Totally different,
the anisotropic dielectric is topologically trivial (
 = 0). Even
though this topological classification is illuminating, it should
be underlined that the calculation of topological invariants
depends on the global properties of the band structure,
whereas our general scattering anomaly condition [Eq. (9)]
is intrinsically a single-frequency property and thus relies on
simpler assumptions easier to test and to meet. Moreover,
it does not require a detailed knowledge of the material
dispersion, and it is not necessary that the material is lossless
or T̃ invariant for all frequencies below the band gap.

The dispersion of the edge modes for p-polarized waves is
determined by the equation [12,13,36]

γa

εa

+ γg

εef

= 1

εef

ε12ikx

ε11
, (p−pol.). (16)

Here, kx is the edge state propagation constant, ε11,ε12 describe
the response of the gyrotropic material [Eq. (14)], εef =
ε2

11+ε2
12

ε11
, γg =

√
k2
x − (ω/c)2εef , and γa =

√
k2
x − (ω/c)2εa .

The dispersion equation for s-polarized waves is given by
a similar expression with the symbol ε replaced by the
symbol μ in all the formulas. When ε̄ = μ̄T , the dispersion
equation of the s-polarized waves can be simply written as
γa

εa
+ γg

εef
= − 1

εef

ε12ikx

ε11
(notice the change of the leading sign in

the right-hand side term). Figure 2(c) depicts the calculated
edge state dispersion for the system under study. Crucially,
in the intersection of the material bandgaps, there is a single
edge mode (N = 1) propagating along the +x direction. Thus,
this system provides a remarkable example of a scattering
anomaly in optics. Because of the T̃ invariance, there is also
a single edge mode propagating in the opposite direction. The
two modes have distinct polarization states and are evidently
uncoupled. In this example, p-polarized waves propagate
exclusively toward the −x direction, while s-polarized waves
propagate exclusively toward the +x direction [see Fig. 2(d)].
Thus, provided the T̃ invariance is unbroken, that the materials
are lossless, and that the two edge modes remain the only
allowed propagation channels, the edge waveguide can be
deformed at will, and still the energy will flow along the edges
with no backscattering.

To illustrate this, consider a sinuous and meandering
deformation of the waveguide, as shown in Fig. 3. The
fields radiated by an emitter placed in the vicinity of the
interface in the gyrotropic region were calculated using a
full wave commercial electromagnetic simulator [37]. For
simplicity, in the numerical simulation it is assumed that the
anisotropic dielectric is an opaque material with permittivity
and permeability tensors as in Eq. (15) and εa,|| = μa,|| →
−∞. The edge states supported by a planar interface of
this opaque anisotropic dielectric and the original gyrotropic
material have a dispersion ω vs kx completely analogous to
that of the example of Fig. 2(c). In particular, at the frequency
ω = 1.4ω0—which lies in the bandgap of both materials—the
edge modes have the guided wave number kx = ±0.86ω0/c.

Figures 3(a) and 3(b) show time snapshots of the fields
emitted by a magnetic line source and by an electric line source,

FIG. 3. Waveguiding immune to backscattering in a T̃ -invariant
meandering structure. The gyrotropic material (below the interface)
has the same parameters as in Fig. 2, and the anisotropic dielectric
(above the interface) is an opaque material characterized by εa,|| =
μa,|| → −∞ and εa,zz = μa,zz = 1. The width of the plot region is
9.3λ0 (free-space wavelengths) at ω = 1.4ω0. (a) Snapshot in time
of the p-polarized field (Hz) emitted by a magnetic line source at
ω = 1.4ω0. (b) Snapshot in time of the s-polarized field (Ez) emitted
by an electric line source at ω = 1.4ω0. (c) Similar to (a) but for
ω = 1.8ω0.

respectively. A magnetic (electric) line emitter excites only p-
(s-) polarized waves in the waveguide. Clearly, the radiated
waves propagate with no backscattering along the edge, being
totally insensitive to the effect of bending. Indeed, due to the
scattering anomaly, the edge states that propagate in opposite
directions are totally decoupled. Moreover, consistent with
the analytical results, the p-polarized waves propagate toward
the −x direction, whereas the s-polarized waves propagate
toward the +x direction. The field animations of the emitted
fields can be found in the Supplemental Material [38].

Quite differently, when the oscillation frequency is outside
the bandgap of the gyrotropic material [Fig. 3(c)], a contin-
uum of propagation channels becomes available in the bulk
gyrotropic material. In this case, the emitted wave consists
of both space and surface waves. Distinct from Figs. 3(a)
and 3(b), the surface wave is highly sensitive to the bending
effect because the deformation of the waveguide leads to
radiation leakage due to the coupling with the radiation
continuum.

One may argue that the role of the T̃ invariance in this
system is a bit artificial because, other than ensuring that the
counterpropagating edge modes have identical dispersions,
the T̃ invariance does not play a relevant role. Indeed, the
bidirectional backscattering-free waveguiding can evidently
be achieved in similar material platforms even when ε �= μ̄T

due to the intrinsic topological properties of the electric and
magnetic responses taken separately. It will be shown in the
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next section that T̃ -invariant gyrotropic materials have other
unique properties that make, indeed, this class of materials
rather special.

It is relevant to discuss the microscopic mechanisms that
may enable a dual gyrotropic response with ε = μ̄T at some
frequency of operation using a biasing magnetic field B0. The
gyrotropic magnetic response is typically due to the precession
of magnetic dipoles around some axis determined by the
biasing field [33]. On the other hand, the gyrotropic electric
response may be due to the action of the magnetic (Lorentz)
force on the free carriers of a plasma [34]. The interesting point
is that for typical material dispersions the sign of iε12 (iμ12)
in the bandgap depends only on the sign of the cyclotron
frequency ω0 = qB0/m0, where q is the electric charge of
the current carriers and m0 is the corresponding mass. In
particular, when all the microscopic currents are due to the
motion of electrons, it follows that to have ε12 = −μ12, it is
necessary that the charge carriers that determine the electric
response feel a biasing field symmetric to that felt by the
currents loops (magnetic dipoles) that create the magnetic
response. In this case, it seems that the biasing field is required
to vary in space at the microscopic level. Alternatively, one
can imagine that the electric gyrotropic response is due to
the motion of positively charged particles (ions or holes),
whereas the gyrotropic magnetic response is due to the motion
of electrons (current loops) with negative charge. In this
situation, it is in principle possible to ensure that ε = μ̄T

using a constant biasing magnetic field. Any of the outlined
mechanisms is evidently rather complex from a practical
standpoint. Notably, it will be proven in the next section that
there is a relatively simple way to mimic the electromagnetic
response of T̃ -invariant gyrotropic materials without a biasing
magnetic field.

IV. SCATTERING ANOMALY WITH
RECIPROCAL MEDIA

Next, it is demonstrated that it is possible to have a
scattering anomaly even when all the involved (lossless) media
are reciprocal, i.e., invariant under the usual time-reversal
operation T .

At first sight, the invariance of an optical system under
both T̃ and T may appear to lead to a contraction. Indeed,
as demonstrated in Sec. II, the invariance of a system under
the operator T̃ implies that the scattering matrix satisfies S =
−ST . On the other hand, the invariance under the time-reversal
operator T implies that S = +ST . This may suggest that,
when a system is simultaneously invariant under T and T̃ ,
one obtains the paradoxical result S = 0, which is evidently
inconsistent with the conservation of energy in the lossless
junction. This might be interpreted as an indication that the
invariance under T is incompatible with the invariance under
T̃ . However, that conclusion is wrong.

The flaw in the reasoning is that the definition of the
scattering matrix depends on the basis of modes used to expand
the fields. Indeed, similar to Sec. II, let us suppose that the
incident wave is expanded in terms of some f+

n modes. The
property S = −ST requires the T̃ invariance of the system
and assumes that the scattered wave is expanded in terms of
the basis T̃ · f+

n (see Sec. II). Similarly, the property S = +ST

relies on T invariance of the system and assumes that the
scattered wave is expanded in terms of the basis T · f+

n .
Evidently, the two bases T̃ · f+

n and T · f+
n are different, and

hence the scattering matrix that satisfies S = −ST is not the
same as the scattering matrix that satisfies S = +ST . Note
that both scattering matrices describe equally well the relevant
wave phenomena, but they are computed using two different
bases of outgoing modes. In summary, this discussion shows
that the symmetries S = −ST and S = +ST are compatible
and that the invariance of a system under both T and T̃ does
not lead to inconsistencies. In the following, we present an
example of a reciprocal system invariant under T̃ .

A. T̃ -invariant reciprocal materials

To begin with, we consider the subclass of reciprocal
media that satisfies Eq. (12). For lossless reciprocal media, the
permittivity and permeability tensors are required to be real
valued and symmetric, whereas the magnetoelectric coupling
tensors ζ̄ = −ξ̄ T are required to be purely imaginary [28,32].
Thus, from Eq. (12), the permittivity and permeability of
T̃ -invariant materials must satisfy

ε̄ = 1

A2
V · μ̄ · V. (17a)

Moreover, since for reciprocal media ξyx,ξxz,ξyz are purely
imaginary, the magnetoelectric coupling tensor in Eq. (13) can
be written as

ξ̄ = −i� ẑ × 13×3 + [−iχxz(x̂ ⊗ ẑ + ẑ ⊗ x̂)

− iχyz(ŷ ⊗ ẑ + ẑ ⊗ ŷ)], (17b)

with �,χxz,χyz real valued. Materials with a traceless mag-
netoelectric coupling were originally proposed by Saadoun
and Engheta and generically can be realized as metamaterials
formed by �-shaped inclusions [39,40]. Following Ref. [32],
we refer to a traceless asymmetric coupling—corresponding
to the first term in the right-hand side of Eq. (17b)—as
an �-type coupling. On the other hand, the second term
in Eq. (17b) determines a different type of magnetoelectric
response that, to the best of our knowledge, was not previously
discussed in the context of topological materials. We refer
to this type of traceless symmetric magnetoelectric coupling
as “pseudochiral” coupling [32]. In this paper, we focus our
attention on the �-type coupling.

Notably, the class of T̃ -invariant systems includes as a
particular case the topological photonic insulators discovered
in Ref. [18] using an analogy with the Kane-Mele model [35].
Specifically, the structures studied in Ref. [18] turn out to be
photonic crystals formed by T̃ -invariant �-materials, wherein
the operator V plays no role, and the material parameters are
independent of z. Importantly, the crucial point that a material
response consistent with Eq. (12) implies that the scattering
matrix is antisymmetric was missed in earlier papers. In
addition, it is stressed that our general theory applies to 3D
photonic platforms, whereas earlier studies on the � medium
were restricted to 2D systems.
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B. Scattering anomaly with � media

Let us consider an �-type coupling such that the material
matrix is of the form

M =
(

ε0ε̄ −i� 1
c

ẑ × 13×3

−i� 1
c
ẑ × 13×3 μ0μ̄

)
, (18)

with ε = μ̄ = ε||(x̂x̂ + ŷŷ) + εzzẑẑ, ε|| = 1 + ω2
p

ω2
0−ω2 , and � =

ωω�

ω2
0−ω2 . The parameters ω0,ωp,ω� determine the resonance

frequency, the electric and the magnetic resonances strength,
and the �-coupling strength, respectively. These parameters
are required to satisfy ωp �

√|ω�|ω0 so that the energy stored
in the medium is bounded from below [12] (∂(ωM)/∂ω must
be a positive definite matrix), and ω� can be either a negative
or a positive number. For simplicity, the zz component of
the material parameters is assumed constant and identical
to the unity: εzz = μzz = 1. Metamaterial designs that may
implement the required response (at least at a single frequency)
can be found in Refs. [18,41].

As illustrated in Fig. 4(d), we consider a waveguide formed
by pairing the anisotropic � medium with an anisotropic
dielectric with material dispersion as in Eq. (15). Evidently,
both materials are simultaneously reciprocal and T̃ invariant
with A = 1. The band structures of the two materials are
depicted in Fig. 4(a) for the � medium and in Fig. 4(b) for the
anisotropic dielectric. It turns out that due to the � coupling
the plane waves supported by the bulk � medium do not split
into s and p modes [28,40]. Nevertheless, it is possible to
classify the plane waves as “s-type” and “p-type”, and these
have the following dispersions for in-plane (xoy) propagation

[28,40]:

k2 = ω2

c2

(
εzzμ|| − εzz

ε||
�2

)
, (s−type), (19a)

k2 = ω2

c2

(
ε||μzz − μzz

μ||
�2

)
, (p−type). (19b)

Here, μ||,μzz are the in-plane and zz components of the
permeability of the � medium. Evidently, when the � medium
is T̃ invariant, one has εzz = μzz and ε|| = μ|| so that the two
polarizations are degenerate. Hence, each photonic band in
Figs. 4(a) and 4(b) is doubly degenerate. The band structure
of the � medium is calculated using Eq. (19).

Detailed calculations show that the dispersion of the edge
states supported by the planar waveguide of Fig. 4(d) is
determined by (the derivation is omitted for conciseness)(

γ�,s+γa,s

n2
�,s

μa,||εzz

)(
γ�,p+γa,p

n2
�,p

εa,||μzz

)
− �2

ε||μ||
k2
x = 0,

(20)

where kx is the propagation constant of the guided mode,
the parameters ε||,μ||,εzz,μzz,� determine the response of the
� medium, and εa,||,μa,||,εa,zz,μa,zz determine the response
of the anisotropic dielectric. In the above, we define γ�,i =√

k2
x − n2

�,iω
2/c2 (i = s,p) with n2

�,s = εzzμ|| − εzz

ε||
�2 and

n2
�,p = μzzε|| − μzz

μ||
�2 and γa,i =

√
k2
x − n2

a,iω
2/c2 (i = s,p)

with n2
a,s = εa,zzμa,|| and n2

a,p = μa,zzεa,||. The edge modes
are usually hybrid modes and cannot be classified as either s

or p polarized.
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FIG. 4. Scattering anomaly with � media. (a) Band diagram ω vs k for a T̃ -invariant � medium with ω� = 0.5ω0 and ωp = 1.5
√|ω�|ω0.

(b) Similar to (a) but for a T̃ -invariant anisotropic dielectric with ω0,a = 0.5ω0 and ωe,a = 2.5ω0. (c) Dispersion of the guided modes supported
by an interface of the two materials. (d) Sketch of the waveguide geometry.
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Interestingly, when both materials are T̃ invariant and the zz

components of the permittivity and permeability are identical
to the unity, the dispersion equation simplifies to

γ�

n2
�

+ γa

εa,||
= ± 1

n2
�

�

ε||
kx, (21)

with n2
� = ε|| − �2/ε||, γ� =

√
k2
x − n2

�ω2/c2, and γa =√
k2
x − εa,||ω2/c2. Analogous to Ref. [18], the edge modes

associated with the + sign are polarized in such a way
that Ez = +η0Hz, whereas edge modes associated with the
− sign satisfy Ez = −η0Hz. This property assumes that
the � material fills the region y > 0. A justification of
this result will be given in Sec. IV C. We designate the
polarizations Ez = +η0Hz and Ez = −η0Hz as spin up (↑)
and spin down (↓), respectively. The numerically calculated
dispersion of the edge modes is represented in Fig. 4(c). As
seen, the � medium waveguide supports a single edge state
(with spin-down polarization) for propagation along the +x

direction. Thus, the considered waveguide is characterized by
a scattering anomaly (N = 1). Hence, despite the time-reversal
invariance of the involved media, it follows from Sec. II that
the interface of the two materials can be arbitrarily bent, and
still the edge modes are totally insensitive to the deformations,
analogous to the simulations of Fig. 3. The electromagnetic
response of the � medium is not implemented in commercial
electromagnetic solvers [37]. Surprisingly, it is proven in
the next subsection that the wave propagation in T̃ -invariant
� waveguides is intrinsically related to the propagation in
T̃ -invariant gyrotropic waveguides, such that the numerical
solution of a problem involving the dual-symmetric � medium
can be obtained from the numerical solution of a problem
involving a dual-symmetric gyrotropic-medium.

C. Relation with dual-symmetric gyrotropic-materials

So far, we have used duality transformations as a tool
to construct an antilinear operator T̃ that flips the relevant
components of the Poynting vector and satisfies T̃ 2 = −1.
This theory has enabled us to identify photonic platforms (e.g.,
waveguides formed by an � medium or a gyrotropic medium
and an anisotropic dielectric) wherein the wave propagation is
immune to backscattering.

Crucially, duality theory can be used to discover alternative
photonic systems wherein the wave propagation is also
protected against backscattering. Indeed, a generic duality

mapping D = (
d1113×3 d1213×3
d2113×3 d2213×3

)
transforms a solution f = f(r)

of Maxwell’s equations in some system characterized by
a material matrix M(r) into another solution of Maxwell’s
equations f′ = f′(r) in a structure characterized by a material
matrix M′(r). Here, D is determined by arbitrary real-valued
coefficients dij independent of the spatial coordinates and such
that D = d11d22 − d21d12 = 1 (the matrix D considered here
is totally unrelated to the matrix D used to define the operator
T̃ , and in particular, D is not required to be traceless). The
explicit relation between M and M′ is given by Eq. (A2) of
Appendix A. The important point is that the wave phenomena
in the original structure have precisely the same features as the
wave phenomena in the corresponding duality transformed

structure, independent of the mapping D. Indeed, because the
duality transformation does not affect either the space or time
coordinates, it turns out that any dispersion equation (e.g., the
band structure of a bulk medium or the modal dispersion of
a waveguide) is precisely the same in the original problem
as in the duality transformed problem [42–44]. In particular,
the number of edge modes and their dispersion ω vs k is
exactly the same in the two problems. Even more important,
the wave propagation in the original problem is protected
against backscattering if and only if the duality transformed
structure has the same property. Indeed, the solutions of
Maxwell’s equations in the two systems are linked by a duality
mapping, and the appearance of “reflected waves” in one of
the problems implies the appearance of reflected waves in
the other problem. This is so because space and time are
unaffected by the duality transformation, and the Poynting
vector is transformed as S → S′ = DS so that a duality
transformation with D = 1 leaves the energy density flux
invariant.

These simple but rather powerful ideas enable us to
construct new systems with protection against backscattering
from other known photonic platforms with that property. Note
that, in general, the duality transformed system may not be T̃
invariant, even if the original system is. Nevertheless, even in
such a case, duality theory guarantees propagation immune to
backscattering. Thus, duality mappings allow us to extend the
family of systems with protection against backscattering in a
nontrivial manner.

One interesting property of a duality transformation is that
in general it maps a reciprocal medium into a nonreciprocal
medium [32,42,43]. Conversely, it is known that in some
cases it is also possible to reduce propagation and radiation
problems in nonreciprocal bi-isotropic structures to equivalent
problems in standard reciprocal materials [32,42,43,45]. For
example, it is well known that a Tellegen (axion) type
nonreciprocal response can be reduced with a duality mapping
to the response of a conventional dielectric material [32,42].
Such relations between reciprocal and nonreciprocal media
are highly interesting and nontrivial because they connect
the electrodynamics of reciprocal and nonreciprocal systems,
which usually are regarded as fundamentally different, e.g.,
in terms of the scattering properties or in terms of “one-way”
propagation (asymmetric light flows).

Now the interesting question is: Can we transform with
a duality mapping some nonreciprocal photonic platform
wherein the wave propagation is protected against backscat-
tering into some equivalent reciprocal photonic platform?
Astonishingly, it turns out that the answer is yes and
that the T̃ -invariant waveguides based on gyrotropic media
considered in Sec. III are fundamentally equivalent to the
T̃ -invariant waveguides based on time-reversal invariant �

media. To demonstrate this result, let us consider the duality
transformation

D = 1√
2

(
13×3 η013×3

−η−1
0 13×3 13×3

)
. (22)

Noting that the permittivity and the permeability of a dual-
symmetric gyrotropic material [Eq. (14)] can be written as ε =
εR − ε12ẑ × 1 and μ = εR + ε12ẑ × 1, εR = ε11(x̂x̂ + ŷŷ) +
ẑẑ being the real part of the permittivity tensor, it is simple to

035153-9
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check using Eq. (A3) that the duality transformed gyrotropic
material is characterized by the following material parameters:

ε̄′ = μ̄′ = εR, ξ̄ ′ = −ζ̄ ′T = ε12ẑ × 1. (23)

Remarkably, the transformed medium is reciprocal and
is characterized by an �-type coupling as in Eq. (18) with
� = iε12. Moreover, the dispersive model of Eq. (14) is exactly
transformed into the dispersive model of Eq. (18) such that
the parameters ω0,ωp have the same meaning in the two
models and the parameter ωg is mapped into the parameter
ω�. Therefore, we conclude that the electrodynamics of the
� medium is strictly equivalent to the electrodynamics of the
T̃ -invariant gyrotropic medium, which is evidently strongly
nonreciprocal.

Furthermore, similar calculations show that the same
duality transformation leaves an anisotropic dielectric material
with dispersion as in Eq. (15) invariant. Hence, the duality
mapping in Eq. (22) transforms the waveguide depicted in
Fig. 2(d) into a similar waveguide with the gyrotropic material
replaced by the � material, i.e., into the waveguide of Fig. 4(d).
Therefore, the wave propagation in the two structures is
completely equivalent. Consistent with this property, both
waveguides support propagation immune to backscattering
and are characterized by a scattering anomaly. Likewise, the
meandering waveguide depicted in Fig. 3 can be transformed
with the same duality transformation into a waveguide wherein
the gyrotropic region is replaced by the corresponding duality
transformed medium, i.e., an � material. Therefore, the full
wave simulations of Fig. 3 also provide direct evidence of the
insensitivity of T̃ -invariant �-type waveguides to the effect of
bending.

In the waveguide of Fig. 2(d), the edge modes are either p or
s polarized. From this property, it is immediate to characterize
the polarization of the edge modes in the waveguide of
Fig. 4(d). Indeed, since the two structures differ by a duality
transformation and the fields are linked as f′ = D · f, it follows
that p-polarized waves (with E = Et ≡ Ex x̂ + Ey ŷ and H =
Hzẑ) are transformed into waves with f′ = 1√

2

( Et+η0Hz ẑ
−η−1

0 Et+Hz ẑ

)
.

In particular, the duality transformed fields have E′
z = η0H

′
z.

Hence, it follows that the p-polarized edge modes are
transformed into edge modes with spin-up (↑) polarization.
Similarly, the s-polarized edge modes are transformed into
edge modes with spin-down polarization (↓).

The connection between a T̃ -invariant � medium and a
T̃ -invariant gyrotropic medium also provides a simple way
to compute the Chern numbers associated with the photonic
bands of the bulk � medium [Fig. 4(a)]. It can be shown
that a duality transformation always leaves the Chern numbers
invariant. Since p-polarized plane waves in the T̃ -invariant
gyrotropic medium are transformed into spin-up polarized
plane waves in the bulk � medium, it follows that the Chern
numbers of the two systems are linked as C↑ = Cp. The same
argument shows that C↓ = Cs . We used these properties to
calculate the Chern numbers of the T̃ -invariant � medium
[see the insets of Fig. 4(a)]. Consistent with the results of
Sec. III, it is found that, for each degenerate band, one has
C↑ = −C↓. Moreover, for the same reason as in Sec. III, it is
possible to assign to the low frequency bands (first and second
bands) of the � medium a nontrivial Z2 topological index

defined by 
 = [(C↑ − C↓)/2] mod 2. It is relevant to mention
that to compute the Chern numbers one needs to introduce a
high-frequency spatial cutoff in the material response [12,13]
and that such a cutoff always closes the gap between the first
and the second bands. Thus, as shown in Fig. 4(a), it is possible
to assign a Chern number to the combined first and second
bands, but not to the individual bands.

D. Relation with moving-type media

The previous subsection shows that there is a deep unex-
pected link between the � media and nonreciprocal gyrotropic
media. Next, it demonstrated that, in some scenarios, the
response of � materials is also profoundly related to another
form of nonreciprocal coupling, namely with a moving-
medium type electromagnetic response.

To begin with, we recall that, when standard dielectrics are
set into motion, their electromagnetic response—as seen from
a laboratory frame wherein the medium moves with a con-
stant velocity—is bianisotropic [46–48]. The magnetoelectric
coupling characteristic of dielectrics moving with a constant
velocity along the z direction is of the form ξ̄ = −ζ̄ = ξ ẑ × 1
[46–48]. In the nonrelativistic regime, the parameter ξ is
proportional to the velocity of motion and depends also on
the material response in the comoving frame [46–48]. This
type of magnetoelectric response is strongly nonreciprocal.

Here, we are interested in a material response of the form

M =
(

ε0ε̄
1
c
ξ ẑ × 13×3

− 1
c
ξ ẑ × 13×3 μ0μ̄

)
, (24)

with a uniaxial permittivity and permeability of the form ε =
ε||(x̂x̂ + ŷŷ) + εzzẑẑ and μ̄ = μ||(x̂x̂ + ŷŷ) + μzzẑẑ. We refer
to this type response (with ξ real valued and possibly frequency
dependent) as a moving-medium type coupling [32,49]. We
note in passing that, for moving media, the constitutive
parameters are required to be evaluated at the Doppler shifted
frequency [50,51]. When the direction of mechanical motion
(z) is perpendicular to the plane of wave propagation—as
considered in this section—there is no Doppler shift.

Comparing the response of the reciprocal � medium
[Eq. (18)] with that of a nonreciprocal moving-type medium
[Eq. (24)], some similarities are evident. One point that is
worth underlining is that an � medium is not the same as
a moving medium with ξ = −i�. Indeed, the two types of
response are fundamentally different because, while for an �

medium ξ̄ = +ζ̄ , for a moving medium ξ̄ = −ζ̄ .
Despite these differences, it is shown in Appendix B that,

for rather arbitrary 2D scenarios and wave propagation with
∂/∂z = 0, it is always possible to transform an �-medium
region into a moving-medium region, without affecting the
relevant wave phenomena (e.g., without changing the dis-
persion of the electromagnetic modes). Different from the
previous subsection, this result does not rely on a duality
mapping, and the transformation can be done even when the �

medium is not T̃ invariant. Thus, the electrodynamics of an �

medium are intrinsically intertwined with the electrodynamics
of a nonreciprocal moving medium. Moreover, the relevant
transformation does not change ε and μ̄, and alters the
�-type coupling into a moving-type coupling with ξ = �.
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In particular, any uniaxial dielectric is unaffected by the
transformation, even if ε and μ̄ are different.

For example, in the scenario of Fig. 4(d), the �-type
coupling can be replaced by a moving-type coupling with
ξ = � (leaving the anisotropic dielectric invariant) such that
dispersion of the edge states is unchanged. We verified this
property with explicit calculations that are omitted for brevity.
Moreover, the wave phenomena in the two structures are
fundamentally the same, even when the interface is deformed
in an arbitrary way. Thus, if the original structure (with
the � medium) has protection against backscattering, then
the transformed structure (with the moving-type medium)
also has. Notably, it can be easily checked that, when
the � medium is T̃ invariant (i.e., when ε = μ̄), then the
corresponding moving-type material is also T̃ invariant, i.e., it
satisfies Eq. (12). Thus, T̃ -invariant moving media waveguides
determine another paradigm for a scattering anomaly in optics,
which from the previous discussion is seen to be deeply
related to the scattering anomaly in �-media waveguides
and, from Sec. IV C, to the scattering anomaly in gyrotropic
waveguides.

In summary, it was demonstrated that, in a rather general
context, the electrodynamics of an � medium are equivalent to
the electrodynamics of a nonreciprocal moving-type medium.
In addition, it was highlighted that moving-type media provide
a different route to a scattering anomaly in optics and for wave
propagation immune to backscattering.

E. T̃ -invariant 3D waveguides

The previous sections were focused on 2D waveguides
formed by T̃ -invariant media and assumed wave propagation
with ∂/∂z = 0. However, perhaps the most important novelty
of our general result [Eq. (11)] is that it unveils a way to design
fully 3D edge waveguides totally immune to backscattering.

To demonstrate this outstanding feature, we consider again
the 2D gyrotropic waveguide depicted in Fig. 2(d). This waveg-
uide enables the bidirectional transport of electromagnetic
radiation to be totally insensitive to the effects of bending.
Nonetheless, the electromagnetic fields are infinitely extended
along the z direction. Is it possible to close the waveguide
so that the fields are spatially confined around some region
of the z axis without losing the immunity to backscattering?
One obvious way to close the waveguide would be to use
two metallic plates, let us say two perfect electric conducting
(PEC) walls. However, a PEC wall (ε = −∞, μ = 1) is not
a T̃ -invariant material with A = 1. Crucially, as discussed in
Sec. II, the T̃ invariance of a system does not require that
the involved materials are T̃ invariant. The reason is that
Eq. (11) connects the material parameters in points of space
linked by a parity transformation. This observation unlocks
the solution for the problem. For example, one may use as
the bottom wall of the waveguide (z = −h/2) a PEC material,
provided the top wall of the waveguide (z = +h/2) is made
of a material that satisfies the conditions in Eq. (11), i.e.,
it must be a perfect magnetic conducting (PMC) wall with
(ε = 1, μ = −∞). We note in passing that, even though
challenging, it may be feasible to mimic a PMC wall at
some desired frequency of interest using metamaterials [52].

More generally, it is also feasible to use as the bottom wall
any negative permittivity material (εbot < 0, μbot > 0) and as
the top wall a negative permeability material (εtop = μbot,
μtop = εbot). For simplicity of modeling, in the following,
the material combination PEC-PMC is adopted to close the
waveguide [see Fig. 5(c)]. It is underlined that, even though
the materials forming the waveguide—specifically the PEC
and PMC walls—are not T̃ invariant, the waveguide itself is
T̃ invariant. Hence, provided the only propagation channel is
along the interface and provided the number of edge modes
N is odd, the light flow is guaranteed to be insensitive to
backscattering for both propagation directions. Unfortunately,
it does not appear feasible to calculate the edge modes
supported by the waveguide of Fig. 5(c) using analytical
methods, even when the interface is planar.

Nevertheless, using a full wave numerical simulation,
it is possible to confirm that the proposed waveguide is
indeed insensitive to backscattering. In the Microwave Studio
simulation [37], the emitter is a short vertical electric dipole,
and the height of the waveguide is h = 0.28λ0, λ0 being the
free-space wavelength at the oscillation frequency ω = 1.4ω0.
The gyrotropic material and the anisotropic dielectric have
the same material dispersions as in the example of Fig. 3.
Figures 5(a) and 5(b) show snapshots in time of the radiated
fields when the emitter is placed at two different positions
near the meandering lateral wall (meandering interface). The
vertical dipole emits radiation both toward the left and right
directions. The simulation domain is terminated with lossy
regions (indicated in Fig. 5) that absorb the wave radiated by
the emitter. The detailed time dynamics of the fields can be seen
in the animations available as Supplemental Material [38]. The
numerical simulations confirm that the only available radiation
channel is along the interface between the gyrotropic material
and the anisotropic dielectric. Crucially, independent of the
position of the dipole, the emitted edge mode propagates along
the meandering path with no backscattering. This property
is especially clear in the time animations (see Supplemental
Material [38]), where it is seen that the phase of the edge modes
advances steadily along the propagation path. The numerical
simulations also reveal that there is a single mode (N = 1)
propagating along a fixed direction (let us say to the right),
and hence the system is characterized by a scattering anomaly.

Notably, using the same duality transformation as in
Sec. IV C, it is possible to transform the waveguide of
Fig. 5 into a waveguide wherein the gyrotropic material is
replaced by an � medium, whereas all the remaining materials
(PEC, PMC, and anisotropic dielectric) are left unchanged.
Thus, the proposed 3D waveguide can also be realized using
only reciprocal media. Again, it is stressed that a duality
transformation does not change in any manner the wave
phenomena, and hence the full wave simulations of Fig. 5
do guarantee that, if the gyrotropic medium is replaced by
the duality-transformed � medium, the emitted wave has
similar features and that the propagation remains immune
to backscattering. Finally, we note that, in this design, it
is not possible to transform the � medium into a moving-
type medium because the field transformation discussed in
Sec. IV D can only be used in scenarios wherein the fields are
independent of the z coordinate, which is not the case here.
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FIG. 5. 3D waveguide immune to backscattering. (a) Time snapshot of the field (Ez) radiated by a vertical electrical dipole placed within
a 3D T̃ -invariant waveguide. The width of the plot region is 4.2λ0 at ω = 1.4ω0. The wave radiated toward the x direction propagates with
no reflections until it reaches an absorber. (b) Similar to (a), but the same emitter is placed in a different location. (c) Perspective view of the
waveguide (without showing the details of the interface meandering).

V. CONCLUSIONS

It was theoretically shown that a wide class of photonic plat-
forms invariant under P · T · D—the composition of parity,
time-reversal, and duality operators—may enable bidirectional
waveguiding immune to back reflections when the number
of propagating channels (N ) is odd. When the materials
are P · T · D invariant for all frequencies, this scattering
anomaly has a deep topological nature [18] and, similar
to the theory of electronic topological insulators [29–31],
is associated with a Z2 topological index. Importantly, the
scattering anomaly effect only requires that the system is
P · T · D invariant at the frequency of interest and that N

is odd. Hence, our result relies on much weaker assumptions
than topological theories, wherein the topological numbers
depend on the global symmetries of the system, on the
global band structure, and often require the periodicity of
the materials. We theoretically demonstrated the emergence
of a scattering anomaly in three different photonic platforms
formed by gyrotropic media, � media, or moving-type media.
Surprisingly, it was shown that such apparently diverse systems
have unsuspected and profound connections and may be linked
by field mappings (e.g., a duality mapping) that transform the
systems on one another leaving the relevant wave phenomena
unchanged. This property is especially striking because �-type
media are time-reversal invariant, whereas gyrotropic media
and moving-type media are strongly nonreciprocal.

Crucially, the condition of P · T · D invariance does not
require that all the involved materials are P · T · D invariant.
It was shown how this property unlocks a solution to design

fully 3D photonic platforms that enable waveguiding free of
backscattering due to any deformations of the propagation
path or P · T · D-invariant defects. It is relevant to mention
that general defects or impurities that break the P · T · D
invariance may create reflections. Nevertheless, unlike in
electronic systems, the presence of impurities in photonic
platforms can be controlled rather precisely so that, in practice,
their effect is of secondary importance. Moreover, it was
highlighted that the P · T · D invariance is compatible with
the time-reversal invariance, and in particular, we proposed
a 3D edge waveguide immune to back reflections formed
exclusively by reciprocal materials. Finally, we would like
to note that the examples discussed in this paper are far from
exhausting the solutions that may enable a scattering anomaly
in time-reversal invariant photonic platforms, and hence one
may expect further exciting developments in this direction in
future works.
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APPENDIX A: DUALITY TRANSFORMATIONS

A generalized duality transformation D = (
d1113×3 d1213×3
d2113×3 d2213×3

)
is a linear mapping that transforms the electromagnetic fields
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as [32,42]

f → f′ = D · f, (A1a)

g → g′ = D(D−1)T · g =
(

d2213×3 −d2113×3

−d1213×3 d1113×3

)
· g,

(A1b)

with D = d11d22 − d12d21 so that the transformed fields f′, g′
satisfy Maxwell’s equations [Eq. (1)]. The coefficients dij are
fixed constants. If the original (unprimed) fields are linked by a
material matrix M (which in general may depend on frequency
and on the spatial coordinates), the transformed (primed) fields
are linked by a material matrix M′ given by [32,42]

M′(r) = D(D−1)T · M(r) · D−1. (A2)

Note that, in the particular case D2 = −1 discussed in Sec. II,
one has D−1 = −D.

It can be easily verified that when the material matrix is
written as in Eq. (2) and the duality transformation has D = 1,
the transformed material parameters are given by

ε0ε′ = d2
22ε0ε − d22d21

1

c
(ζ̄ + ξ̄ ) + d2

21μ0μ̄, (A3a)

μ0μ̄
′ = d2

12ε0ε − d12d11
1

c
(ζ̄ + ξ̄ ) + d2

11μ0μ̄, (A3b)

1

c
ξ̄ ′ = −d22d12ε0ε + d11d22

1

c
ξ̄ + d21d12

1

c
ζ̄ − d21d11μ0μ̄.

(A3c)

APPENDIX B: TRANSFORMATION OF AN �-TYPE
COUPLING INTO A MOVING-TYPE COUPLING

Here, we show that the solution of Maxwell’s equations
in arbitrary 2D scenarios involving media with an �-type
coupling [Eq. (18)] (with constitutive parameters varying in
space in an arbitrary manner) can always be reduced to the
solution of Maxwell’s equations in a transformed structure
wherein the � coupling is replaced by a moving-medium type
coupling [Eq. (24)].

The idea is to consider some field transformation that
maps an � medium into a moving-type material. We note in
passing that the transformation cannot be a duality mapping.
Indeed, it can be checked that duality transformations do
not act on a moving-medium type coupling, and hence this
type of magnetoelectric response cannot be eliminated with
a duality mapping. Here, we propose a transformation of the
electromagnetic fields of the form

f → f′ =
(

Pθ 0
0 eiθ P−θ

)
· f, g → g′ =

(
Pθ 0
0 eiθ P−θ

)
· g,

(B1)

with Pθ being a diagonal matrix such that Pθ,11 = Pθ,22 = 1
and Pθ,33 = eiθ , and θ is some angle independent of the
coordinates to be fixed ahead. Explicit calculations show
that, provided the unprimed fields are solutions of Maxwell’s
equations independent of the z coordinate (∂/∂z = 0), then the
transformed (primed) fields also satisfy Maxwell’s equations
[Eq. (1)]. Since the unprimed fields are linked as g = M(r) · f,
it follows that the primed fields are linked as g′ = M′(r) · f′
with the transformed material matrix given by

M′(r) =
(

Pθ 0
0 eiθP−θ

)
· M(r) ·

(
P−θ 0

0 e−iθ Pθ

)

=
(

ε0Pθ · ε · P−θ
1
c
Pθ · ξ̄ · e−iθ Pθ

1
c
eiθ P−θ · ζ̄ · P−θ μ0P−θ · μ̄ · Pθ

)
. (B2)

Clearly, the wave phenomena in the original and trans-
formed structures are precisely the same. Let us now consider
the case wherein the original medium has diagonal permittivity
and permeability tensors and ξ̄ = ζ̄ = −i� ẑ × 13×3 (an �

medium). Note that ε,μ̄,� may depend on the spatial coordi-
nates (x and y) in an arbitrary manner. In this scenario, it is
readily verified that the transformed medium is characterized
by the parameters

ε̄′ = ε̄, μ̄′ = μ̄, ξ̄ ′ = −i�e−iθ ẑ × 13×3, and

ζ̄ ′ = −i�eiθ ẑ × 13×3. (B3)

Therefore, choosing θ = −π/2, the �-type coupling
is transformed into a moving-medium coupling with
ξ̄ ′ = −ζ̄ ′ = � ẑ × 13×3, which demonstrates the desired
result.
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photonics, Nat. Photon. 8, 821 (2014).

[2] L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological states
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[43] F. R. Prudêncio, S. A. Matos, and C. R. Paiva, Asymmetric band
diagrams in photonic crystals with a spontaneous nonreciprocal
response, Phys. Rev. A 91, 063821 (2015).
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