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Abstract
In this paper we investigate how the dynamics of a two-level atom is affected by its interaction
with the quantized near field of a plasmonic slab in relative motion. We demonstrate that for
small separation distances and a relative velocity greater than a certain threshold, this interaction
can lead to a population inversion, such that the probability of the excited state exceeds the
probability of the ground state, corresponding to a negative spontaneous emission rate. It is
shown that the developed theory is intimately related to a classical problem. The problem of
quantum friction is analyzed and the differences with respect to the corresponding classical effect
are highlighted.
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1. Introduction

Since the pioneering experimental work of Drexhage [1, 2], it
is well known that an excited atom placed in close vicinity of
a planar metallic surface sees its spontaneous emission rate
strongly affected by the presence of the surface. This
phenomenon plays a role particularly important in modern
nano optics and is partly due to the coupling between the
atom and the surface plasmon polaritons (SPPs) supported by
the metallic surface [3, 4]. In this paper, we are interested in a
related scenario and investigate how the spontaneous emis-
sion rate is modified when the metallic surface and the two-
level atom are in relative translational motion.

The electromagnetic interactions between polarizable
moving matter have been extensively studied in the literature,
notably in the context of the dynamical Casimir effect [5–14].
In particular, it was recently proven that two closely separated
materials in relative translational motion may start to spon-
taneously emit light due to the emergence of optical
instabilities [11, 13, 15], an effect related to the Vavilov–
Cherenkov radiation but for neutral matter [16]. This
phenomenon occurs because of the coupling between the
guided modes supported by the moving bodies, and results

from the conversion of kinetic energy into electromagnetic
energy, originating a quantum friction effect [13, 17–37].
From the quantum mechanical point of view, it can be
understood as a consequence of the existence of oscillators
associated with negative frequencies (due to the Doppler shift
effect) that behave as energy reservoirs, and thereby serve to
pump the wave oscillations and generate the unstable beha-
vior [15, 38–41]. Interestingly, similar optical instabilities
were predicted to appear for a classical electric dipole moving
in the vicinity of a metallic surface supporting surface-plas-
mon polaritons [38]. The objective of this article is to look at
the same problem from the point of view of quantum elec-
trodynamics using the Markov approximation and modeling
the point dipole as a two-level atom. It should be mentioned
that the friction force and spontaneous emission by a neutral
atom interacting with the near-field of a dispersive dielectric
in relative motion was studied by different authors (see a
review in [14, 35]). In particular, in [30, 39] it was shown that
a quantum harmonic oscillator initially in its ground state can
be excited by the quantized field of a moving dielectric slab,
in qualitative agreement with our general findings. Here, we
consider instead that the dipole is a two-level atom and that
the slab has a plasmonic response, and connect the negative
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spontaneous emission rate with the unstable response of the
corresponding classical problem.

The paper is organized as follows. In section 2 we
describe the geometry of the problem and the adopted
formalism. Then, in section 3 the spontaneous emission rate
experienced by the moving atom is determined using the
Fermiʼs golden rule. It is demonstrated that the relative
motion may induce non-conservative transitions, which
eventually lead to a negative rate of spontaneous emission. In
section 4 we use classical electrodynamics to find the decay
rate of the natural oscillations of a point dipole, and show its
relation with the quantum spontaneous emission rate. Then, in
section 5, the time evolution of the atomic operators expec-
tation is characterized, and it is shown that when the rate of
spontaneous emission becomes negative, the system evolves
towards an inversion of population. Moreover, it is verified
that a quantum friction force emerges in the stationary regime.
Finally, in order to illustrate the concepts developed
throughout the paper, section 6 is devoted to numerical
examples in the quasi-static approximation and in particular
the conditions to have a negative spontaneous emission are
given. The friction force dependence on the atom velocity is
also characterized.

2. The system under-study

The system studied here is closely related to that considered
in [38] and consists of an electric dipole (modeled as a two-
level atom in the quantum case) located at a distance d from a
thick metallic surface of infinite extent along the x and y
directions, as depicted in figure 1.

It is assumed that the permittivity of the metallic slab is
described by a lossless Drude model. The relative velocity of
the metal slab with respect to the two-level atom is = vv x̂.
Hence, in the frame of the metal slab the two-level atom has
velocity -v. It is supposed that the velocity is time-inde-
pendent, and hence the effect of the optically induced friction-
type force—which acts to reduce the relative velocity
between the atom and metal—is neglected [14, 35, 38]. It is
assumed here and throughout the paper that the unprimed
coordinates refer to the reference system co-moving with the

slab, and the primed coordinates to the reference system co-
moving with the atom. It is also supposed that the relative
velocity is significantly smaller than the speed of light in
vacuum so that the spacetime coordinates in the two frames
can be linked by a Galilean transformation. Moreover, in
harmonic regime we adopt the time variation w-e ti for the
electromagnetic fields.

2.1. Quantized electromagnetic field

As is well known, the quantized electromagnetic field is
obtained by associating to each normal mode of the classical
problem a quantum harmonic oscillator. For the system of
interest, the electromagnetic modes satisfy:

w=N F M F, 1ˆ · ( )

where =F E H T( ) stands for a six-vector whose compo-
nents are the electric and the magnetic fields. In the above, N̂
is a differential operator
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being e the space-dependent dispersive permittivity of the
system. The relevant materials are assumed non-magnetic. In
our problem the system is invariant to translations along the x
and y directions and hence the transverse wave vector
= k kk , , 0x y( ) determines two good quantum numbers.

Hence, the electromagnetic modes are of the form
= zF r f en nk k

k ri( ) ( ) · where fnk is the field envelope which
depends only on the z coordinate. Then, the quantized fields
in the frame co-moving with the plasmonic slab can be
written as [42–45]:

*å w
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w >

t a t a tF r F r F r,
2

, 4n
n n n n

k
k k k k

0nk

ˆ ( ) ( ˆ ( ) ( ) ˆ ( ) ( )) ( )†

where the sum is restricted to positive oscillation frequencies
wnk and ankˆ and ankˆ † are the photon annihilation and creation
operators for the mode nk, which obey the commutation
relation d d=a a,n m n mk q q k, ,[ ˆ ˆ ]† . In these conditions the field
Hamiltonian is

å w
= +

w >

H a a a a
2

. 5n
n n n n

k
k k k kfield

0nk

ˆ ( ˆ ˆ ˆ ˆ ) ( )† †

For dispersive materials the electromagnetic modes must be
normalized as:

*ò
w
w

á ñ =
¶
¶

=F F r F
M

F
1

2
d 1. 6n n n nk k k k

3∣ · [ ] · ( )

This normalization condition is consistent with [44]. We note
in passing that the time-dependent Maxwell equations in
dispersive media can always be transformed into a general-
ized system with no dispersion using the formalism developed
in [46] (see also appendix B). In this context, the material
dispersion is described by additional variables representing

Figure 1. The system under study: a two-level atom is placed at a
distance d from a thick metallic surface. The two-level atom moves
with a relative velocity −v with respect to the metal.
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the internal degrees of freedom of the material [46–48].
Interestingly, the transformed problem can be readily quan-
tized using standard techniques [45] because the corresp-
onding spectral problem is a standard linear Hermitian
eigenvalue problem. In particular, in this framework the
normalization condition (6) emerges naturally from equation
(10) of [46].

2.2. Interaction with the two-level atom

In the quantum description the electric dipole is modeled as a
two-level atom whose excited and ground states ñe∣ and ñg∣ are
separated by the energy w- =E Ee g 0, where w0 is the
atomic transition frequency. By choosing the energy origin at

+E E 2e g( ) , the Hamiltonian of the atom can be written as


w s=H

2
, 7zat 0ˆ ˆ ( )

with s = ñá - ñáe e g gzˆ ∣ ∣ ∣ ∣ the atomic inversion operator.
For low field intensities and a wavelength far greater than

the Bohr radius, the Hamiltonian representing the interaction
between the two-level atom and the quantized field can be
expressed in the dipole approximation as = - ¢ ¢H p E reint 0

ˆ ˆ · ˆ ( )
[49], where ¢ ¢E r0

ˆ ( ) is the electric field evaluated at the two-
level atom position ¢r0( ) in the atom co-moving frame, and peˆ
is the electric dipole moment operator given by = -ep reˆ ˆ . If
the states ñe∣ and ñg∣ have opposite parities, then the odd
operator r̂ has only non-diagonal components in the ñ ñe g,(∣ ∣ )
basis and the dipole moment is therefore of the form

*s s= ++ -pe eg egγ γˆ ˆ ˆ . Here, s = ñá+ e gˆ ∣ ∣ describes a transition to
the excited state, s = ñá- g eˆ ∣ ∣ describes a transition to the
ground state, and the vector egγ represents the transition
electric dipole moment.

Throughout this paper the non-relativistic regime is
assumed so that the electromagnetic fields in the two refer-
ence frames are simply related by ¢ ¢ ¢ »t tF r F r, ,0 0

ˆ ( ) ˆ ( ) with
= ¢ - tr r v0 0 [50]. Then, with these approximations and

using the six-vector formalism the interaction Hamiltonian
can be written as

*s s» - + ¢ -+ -H tF r v , 8eg egint 0γ γˆ ( ˜ ˆ ˜ ˆ ) · ˆ ( ) ( )

where = 0eg eg
Tγ γ˜ ( ) is a six-vector. Using the expression of

the quantized field (4) and taking into account the dependence
of classical fields in the transverse (x and y) coordinates it
follows that:
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It is important to note that this Hamiltonian induces four types
of transitions. Two transitions are associated with the so-
called energy conserving terms (proportional to s+ankˆ ˆ or
s-ankˆ ˆ † ), and the other two transitions describe non-con-
servative processes that increase (s+ankˆ ˆ † ) or decrease (s-ankˆ ˆ )
both quantum numbers. As shown in the following sections,

the non-conservative processes—which play no role when the
relative velocity vanishes—can become dominant for large
velocities and small separation distances.

3. Quantum spontaneous emission rate

Next, the Fermiʼs golden rule is used to obtain the sponta-
neous emission rate experienced by the two-level atom when
moving in the vicinity of the plasmonic slab. According to the
Fermiʼs golden rule [51], the number of transitions per unit
time R i f from an initial state ñi∣ with energy w=Ei i to a
final state ñf∣ with energy w=Ef f can be expressed as


ò

=
á ñ ¢w w

ñ ñ
¥

- ¢

R
f H i t

t
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e d
, 10i f

t

t t

0 int
i 2

2
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( )∣ ∣

( )

where the states are assumed to belong to a continuum. We
are interested in two competing processes. The first process is
the usual spontaneous emission transition between the excited
state of the atom to an excited state of the field with a single
photon: ñ  ñe g, 0 , 1nk∣ ∣ (here the second index refers to the
field state). Using the interaction Hamiltonian (9) in
equation (10) and summing over all possible radiation chan-
nels it is found that the transition rate for this process is

*
å p
w d w wG = ¢ - ¢

w

+

>

F r , 11n eg n nk k k
0

0
2

0

nk

γ∣ ˜ · ( )∣ ( ) ( )

where w w¢ = + k vn nk k · is the Doppler shifted frequency in
the reference frame of the two-level atom. Evidently, the
described mechanism drives the atom to its ground state.

The second process of relevance corresponds to a trans-
ition between the ground state of the atom to an excited state
of the field: ñ  ñg e, 0 , 1nk∣ ∣ . A priori this process may seem
impossible because ñg, 0∣ is the ground state of the non-
interacting atom and field, but a simple calculation shows that
its time rate is determined by:

* *
å p
w d w wG = ¢ + ¢

w

-

>

F r . 12n eg n nk k k
0

0
2

0

nk

γ∣ ˜ · ( )∣ ( ) ( )

Evidently, this process drives the atom (and the field) to an
excited state, even though there is no photon absorption.
When the relative velocity between the atom and the metal
vanishes, G =- 0, as expected. However, when there is
relative motion the Doppler shifted frequencies w¢nk may be
negative, and hence the relative motion may induce transi-
tions to the excited state.

In general, transitions between ñ  ñe g, 0 , 1k∣ ∣ involve
only positive Doppler shifted frequencies such that w w¢ =nk 0.
These transitions are generated by the energy conserving
terms in equation (9). On the other hand, transitions between

ñ  ñg e, 0 , 1k∣ ∣ involve only negative Doppler shifted fre-
quencies such that w w¢ = -nk 0, and thus it follows that they
can only occur when the relative velocity between the slab
and the atom is large enough to provide w¢ < 0nk . Such
transitions are induced by the non-conservative terms in the
interaction Hamiltonian (9), and the conservation of the total
energy in the system implies that they should be associated
with a reduction of the kinetic energy [13, 38, 52, 53].
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We define the total spontaneous emission rate Ggr from
the excited state to the ground, ñ  ñe g∣ ∣ , as the difference
between the transition rates of the two competing processes:

*

* *

 åp
w d w w

d w w

G = G - G

= ¢ ¢ -

- ¢ ¢ +
w

+ -

>

F r

F r . 13

n eg n n
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k k

gr

0
0

2
0

0
2

0

nk

γ

γ

[∣ ˜ · ( )∣ ( )

∣ ˜ · ( )∣ ( )] ( )

The physical meaning of Ggr will be further elaborated later.
Of course, in a situation with no relative motion the
contribution of G- vanishes and the spontaneous emission
rate Ggr reduces to the usual result for a dipole located near a
stationary metallic surface [4]. Notably, it will be shown
ahead that it is possible to find a regime in which G > G- +

i.e. a situation where the interaction with the negative Doppler
shifted frequencies is dominant, such that the total sponta-
neous emission rate becomes negative, implying that the state

ñg, 0∣ becomes less likely of being occupied than the
state ñe, 0∣ .

4. The decay rate for the classical problem

In order to link the spontaneous emission rate Ggr with a
classical result, we note that a neutral two-level atom can be
modeled classically as an electric dipole (with dipole moment
pe) with a polarizability (along the relevant direction of space)
given by the semi-classical formula [38, 54]
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where w0 is the transition frequency of the two-level atom, egγ

is the transition dipole moment and


G =
pe

w
c0 6

3eg
2

0

0( )γ∣ ∣
. When

the electric dipole is in the vicinity of the plasmonic slab, the
natural frequencies of oscillation, w w w= ¢ + ¢¢i , are deter-
mined by the solutions of

* a w w- =- C 0, 15eg e eg
1

intγ γ· [ ( ) ( )] · ( )

where C int is an interaction dyadic that relates the local field
acting on the dipole with the electric dipole moment:

e¢ = CE peloc int 0· [38]. The local field is the total field
excluding the self-field radiated by the dipole, and depends on
the metal slab and on the relative velocity. The resonances of
atomic systems are characterized by large quality factors, and
hence the solution of (15) can be obtained with perturbation
theory. The solution is of the form w w w» + ¢¢i0 with the
imaginary part given by [38]:
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It is convenient to rewrite this result as:

*


w
e

w » - C
1

Im . 17eg eg
0

tot 0γ γ{ · ( ) · } ( )

where C tot is the interaction dyadic that relates the total
electric field (including the self-field of the dipole) with the

electric dipole moment: e¢ = CE petot 0· . Noting that the

electromagnetic energy is proportional to w¢¢e t2 , it follows that
the classical decay rate of the dipole is wG = - ¢¢2cl , or more
explicitly

*
e

wG » C
2

Im . 18eg egcl
0

tot 0γ γ{ · ( ) · } ( )

As expected, in the absence of interactions with the metallic
slab ( =C 0int ), the classical decay rate reduces to the free

space spontaneous emissionʼs rate:


G =
p e

w
csp 3

3eg
2

0

0( )γ∣ ∣
. Next,

we demonstrate that this result is generally valid and that Gcl is
coincident with the quantum spontaneous emission rate Ggr

determined in the previous section (equation (13)).
In appendix A, the field radiated by the moving classical

dipole is explicitly calculated based on an eigenmode
expansion. Using a non-relativistic approximation, it is shown
that in the reference frame co-moving with the dipole the field
is determined by equation (A11). Let us introduce an 6×6
interaction dyadic C tot

g defined in such a manner that:

w¢ ¢ = CF r p, 190 tot
g( ) ( ) · ( )

where =p p 0e
T( ) is the generalized dipole moment (a six-

vector). From equation (A11), it is clear that:
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where⊗ denotes the tensor product of two six-vectors, M0 is
the material matrix in the free-space region and the positive
frequency eigenmodes are normalized as in equation (6). Note
that eC tot 0 is the electric sub-component of C tot

g (the 3×3
sub-block matrix in the upper-left corner). Using

 pd w w= 
w w w w 

 i n
1 1

n n
( ) (where  stands for the

principal value operator), it follows that the anti-Hermitian
part of the interaction dyadic is
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Hence, by direct comparison with the quantum emission rate
obtained with the Fermiʼs golden rule (13) and recalling that

= 0eg eg
Tγ γ˜ ( ) , it is seen that:

*


wG = C
2

Im . 22eg eggr tot
g

0γ γ{ ˜ · ( ) · ˜ } ( )

We used the property * *= -w A w w wIm A A
2i

{ · · } · ·
†

. It
is evident that the right-hand side of equations (18) and (22) is
the same, and hence the desired result G = Gcl gr is demon-
strated: the quantum spontaneous emission rate is exactly
coincident with the decay rate of the corresponding classical
problem.
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5. Time evolution of the atomic operators

To further characterize the dynamics of the two-level atom, in
this section we study the time evolution of the atomic
operators and find their vacuum expectation values using the
Markov approximation. In the Heisenberg picture, the time
evolution of an operator Â that does not depend explicitly on
time is


=

A

t
H A

d

d

i
, . 23

ˆ
[ ˆ ˆ ] ( )

It is important to note here that even though the interaction
Hamiltonian depends explicitly on time the relevant com-
mutation relations are preserved for all t.

Using = + +H H H Hfield at int
ˆ ˆ ˆ ˆ in equation (23) it is

easily found that the time evolution of the atomic inversion
operator is determined by:
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s
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d

d

2i
. 24z

eg eg0 γ γˆ ˆ ( ) · ( ˜ ˆ ˜ ˆ ) ( )

To make additional progress, in the next sub-section we
characterize the field operators.

5.1. Evolution of the field operators

Using again equation (23) and the standard commutation
relations, one finds that the annihilation operators satisfy:
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where we introduced the operator *s s= ++ -p eg egγ γˆ ( ˜ ˆ ˜ ˆ ). This
differential equation can be written in an integral form as:
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where u denotes the Heavisideʼs step function. To make
further progress and obtain a closed form solution we use the
Markovʼs approximation [55]:
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Moreover, for large t one has the approximate identities
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where the imaginary part of the last integral is dropped.

Hence, from here we finally conclude that:
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Here it is worth pointing out that in [56] it was argued that the
Markov approximation might be inadequate to characterize
the stationary state regime (  ¥t ) in the presence of mat-
erial dissipation. In principle, our theory is not affected by
such a result (at least in the quasi-static limit considered later)
because we deal with an ideal lossless system.

5.2. The inversion operator expectation

To determine the time evolution of the expectation of the
inversion operator, it is convenient to decompose the
electromagnetic field operator as = +- +F F Fˆ ˆ ˆ such that the
annihilation part is

å w
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, 30n
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with a tnkˆ ( ) given by the approximate expression (29) and
=+ -F Fˆ ( ˆ )†. Calculating now the expectation of both sides of

equation (24) and using normal ordering
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to eliminate the contribution of the free field part of the
electromagnetic field (first term in the right-hand side of
equation (29)) [55], it is found after some simplifications that:

s
s s s s

á ñ
= G á ñ - G á ñ-

- +
+

+ -
t

d

d
2 2 , 32zˆ ˆ ˆ ˆ ˆ ( )

where G+ and G- are defined exactly in the same manner as in
section 3. The above equation assumes that the field is initi-
ally in its ground state. Using relations s s s= -+ -2 1zˆ ˆ ˆ and
s s s s= -- + + -1ˆ ˆ ˆ ˆ , it is found that the time evolution of the
excited state probability,  s sº á ñ+ -e ˆ ˆ , is determined by


= G - G + G- - +

t

d

d
. 33e

e ( ) ( )

The general solution of this differential equation is





=
G

G + G
-

+

-

- +
- G +G

- G +G

- +

- +

t 1 e

0 e , 34

e
t

e
t

( ) ( )

( ) ( )

( )

( )

where  0e( ) is the initial excited stateʼs probability. In part-

icular, this result shows that 


- = G - G
=

+ -t

t

d d

0

e

e
when

 =0 1 2e( ) . Thus, G = G - G+ -
gr determines the initial

time decay rate of the excited population in an ensemble of
two-level atoms with an identical number of atoms in the
excited and ground states at t=0. This shows that the total
spontaneous emission rate Ggr has a definite physical meaning
also in the quantum problem.
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As expected, equation (34) predicts that in the absence of
relative motion (when G =- 0) the excited state probability
decays exponentially to zero, so that the atom decays to the
ground state ñg∣ in a standard spontaneous emission process
and in accordance with the results of section 3. More inter-
estingly, for velocities for which G- differs significantly from
zero, the probability of the excited state evolves towards a
stationary value  º = ¥ = G G + G¥

- - +te e, ( ) ( ) that
depends on the relative strength of the decay rates G+, G- and
that determines some sort of dynamic equilibrium of the two-
level atom. Note that in the stationary regime (  ¥t ) it is
possible to write  G - - G =¥

+
¥

-1 0e e, ,( ) , such that the
number of transitions to the excited state induced by the
relative motion - G¥

-1 e,( ) equals the number of transi-
tions to the ground state induced by the emission pro-
cesses  G¥

+
e, .

The picture that emerges from this result is that the limit
 ¥t may have a dynamical character, such that energy is

continuously extracted from the kinetic degrees of freedom
and emitted as light. Indeed, the fact that  ¥e, is non-zero
proves that in the Schrödinger picture the atomic wave
function is a mixed state for large t, and the expectation of the
dipole moment is non-zero for any mixed state ( sá ñ ¹- 0ˆ ).

Notably, when the classical decay rate
G = G = G - G+ -

cl gr is negative, i.e., the transitions with
negative Doppler shifted frequency dominate over the emis-
sion processes with positive Doppler shifted frequency, then
 >¥ 1 2e, . In this situation, a population inversion takes
place, independently of the initial atomic state.

Importantly, a two-level atom is a system with an
intrinsic saturation mechanism, because its energy is bounded
from above. Moreover, the dipole moment amplitude is also
bounded, and reaches the maximum for mixed-states with
 =¥ 1 2e, , i.e., at the onset of the classical instability.
Hence, different from the classical case, in the quantum
problem the dipole moment cannot grow exponentially, and
the maximum oscillation amplitude is reached for
 =¥ 1 2e, . This suggests that classical situations leading to
strong instabilities should correspond in the quantum case to
 ¥e, marginally larger than 1/2. In section 6 it will be shown
with a numerical example that this is indeed the case. The fact
that  >¥ 1 2e, suggests that if a ladder of energy levels
would be accessible then the dipole oscillations would grow
exponentially in time, similar to the classical problem.

In summary, the picture that emerges from our quantum
optics analysis is that the two-level atom evolves towards a
dynamical equilibrium state, such that the number of transi-
tions in the ascending direction equals the number of transi-
tions in the descending direction.

5.3. Friction force

As discussed in section 3, the transitions associated with
oscillators with negative frequencies must be accompanied by
a conversion of kinetic energy into light. The optical friction
force responsible for this exchange of energy can be calcu-
lated in the frame co-moving with the two-level atom using
 = ¶ ¢ = ¶ ¢¢ ¢p E p Fx e x x· · , where the partial derivative acts

over the spatial coordinate along the direction of motion [56].
Promoting all the relevant physical quantities to operators and
using normal ordering, it is follows that the quantum expec-
tation of the force is:

á ¢ ñ = á ¶ ¢ ¢ ñ¢
-Fr p r2 Re . 35x x0 0( ) { ˆ · ˆ ( ) } ( )

Using equations (29) and (30) and assuming that at initial
time the field is in the vacuum state it follows that in the non-
relativistic limit the force is given by:

* *

* *

 å

å

pw

d w w s s pw

d w w s s

á ¢ ñ = ¶ ¢ Ä ¢

- ¢ á ñ +

¶ ¢ Ä ¢ + ¢ á ñ

w

w

>
¢

+ -
>

¢ - +

r F r F r

F r F r

Re i

Re i

.
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γ γ

γ

ˆ ( ) { ˜ · [ ( ) ( )]

· ˜ ( ) ˆ ˆ } { ˜

· [ ( ) ( )] · ˜ ( ) ˆ ˆ }
( )

The system is invariant to translations along the direction of
motion and thus for the mode nk one has ¶ =¢ kix x, being kx
the x-component of the wave vector. Hence, writing the
expectation of the atomic operators in terms of e, one finally
finds that the friction force is

*

*

* *

 



å
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p w

d w w

p w

d w w
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w

w
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>

k

k

r

F r F r

F r F r
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1 Re

. 37

x e x n eg

n n eg n

e x n eg

n n eg n

k

k k k

k

k k k

0
0

0 0 0

0

0 0 0

n

n

k

k

γ

γ
γ

γ

ˆ ( ) { ˜

· [ ( ) ( )] · ˜ ( )}

( ) { ˜
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It is demonstrated in the next section that in the quasi-static
limit the friction force can be directly written in terms of the
transition rates G- and G+.

6. The quasi-static limit

6.1. Analytical development

To illustrate the concepts developed throughout this paper and
link them to the classical results of [38], next we derive
explicit formulas for the spontaneous emission rates and
friction force using a quasi-static approximation for the
quantized electromagnetic fields.

In a quasi-static approximation the fields are purely
electric »F E 0n

T
k k( ) [57], and the electric field

f= -Ek k is written in terms of an electric potential that
satisfies e w f  =z, 0k· ( ( ) ) . Assuming that the plas-
monic slab is located in <z 0 region (so that the metal–air
boundary is at z=0), it follows that the electric potential
must be of the form

f = -A e e , 38k z
k k

k ri ( )· ∣ ∣∣∣ ∣∣

where = + k kk x yx yˆ ˆ is the wave vector (here, we use the
subscript  to highlight that the wave vector is parallel to the
interface) and Ak is a normalization constant. Moreover, the
relevant eigenfrequency is w w=k sp where wsp corresponds to
the surface plasmon resonance e w e= -sp 0( ) .
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To determine the value of Ak, we use the normalization
condition (6) that gives

ò
we w

w
¶

¶
=-


A k

z
rd e

,
1. 39k z

k
2 3 2 2∣ ∣ [ ( )] ( )∣ ∣

Considering that the permittivity of the plasmonic slab is
modeled by a lossless Drude model, e e w w= -1 20 sp

2 2( ),
one has

⎧⎨⎩
we w

w

w w e
e

¶
¶

¾ ¾¾
= >

<
z z

z
, , 0

3 , 0
40

sp 0

0

[ ( )] ( )

and hence (39) gives that

e
=


A

k S

1

2
, 41k

0 0
∣ ∣ ( )

where S0 is surface area of the plasmonic slab.
Substituting the quasi-static electric field into

equations (11), (12), (21) and (37), it is now straightforward
to determine the spontaneous emission rates, the interactionʼs
dyadic and the friction force. For simplicity, in what follows it
is supposed that the electric dipole is oriented along the z-
direction so that = zeg egγ γ ˆ . In this case the transition rate to
the ground state (11) simplifies to:

å
pw

e
d w wG = + -+ - 

k

S
k v

2
e , 42eg

k d
x

k

sp

0 0

2 2
sp 0γ∣ ∣ ( ) ( )∣∣

∣∣

where d is the distance between the two-level atom and the
plasmonic slab. The sum over k can be transformed into an

integral by substituting å 
p

k kd d .
S x yk
1 1

20
2 ∬( )

This gives:

⎛
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⎞
⎠⎟e

w w
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d
G

d

v

d

v

2 1
, , 43
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2

0
3
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where we introduced the function

òp
= + -

´

¥

- + -

G a b
b

u a b

u

,
8

e d . 44u a b

0

2 2

2 2 2

( ) ( )

( )( )

Similarly, using equation (12) it is readily verified that the rate
of transitions to the excited state is

⎛
⎝⎜

⎞
⎠⎟e

w w
G =

--

d
G

d

v

d

v

2 1
, . 45

eg
2

0
3

0 spγ∣ ∣
∣ ∣ ∣ ∣

( )

Now, using the fact that G = G - G+ -
cl and equation (18)

one sees that the zz component of the interaction dyadic
satisfies:

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
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-

C
d
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d

v

d

v

G
d

v

d

v

Im
1

,

, . 46

zzint, 3
0 sp

0 sp

{ }
∣ ∣ ∣ ∣

∣ ∣ ∣ ∣
( )

This result is exactly coincident with equation (15) of [38],
which was derived using a totally different approach. This
agreement provides an independent check of the theoretical
concepts introduced in this article. It should be noted that in
the quasi-static approximation, the free spaceʼs contribution

to the interaction constant is lost ( =C CIm Imtot int{ } { }).
However, as demonstrated in [38], this contribution is tiny as
compared to the imaginary part of C zzint, and hence can be
safely neglected.

On the other hand, it can be shown that within the same
approximations the friction force acting on the two-level atom
(37) simplifies to

  

 

w w

w w

á ñ =- G
-

+ - G
+

+

-

v

v
1 , 47

x e

e

0 sp

0 sp

ˆ

( ) ( )

and in the stationary state (  ¥t ) it further reduces to


w

á ñ =
G G

G + G
¥

+ -

+ -v

2
. 48x,

spˆ ( )

Note that the signs of the friction force and atom velocity are
opposite because the velocity of the atom is -v in the refer-
ence frame of the metal slab (v represents the relative velocity
of the metal with respect to the atom). Interestingly, the above
expression shows that whenever the rate of ascending tran-
sitions G- is non-zero then the friction force will also be non-
zero, even if the corresponding classical problem is stable (i.e.
G > G+ -). This situation contrasts with the case of sliding
lossless slabs, where a friction force implies an unstable
response [13]. The difference is that in the latter problem the
‘emitter’ is infinitely extended in space and hence without
absorption the emitted energy will necessarily build up,
leading to an exponential growth. On the other hand, for a
moving atom the emitted light can be radiated away and thus
it does not necessarily increase the stored energy in the
vicinity of the atom.

Similarly, the energy emitted per unit of time is given by
  wá ñ = G¥ ¥

+v 2x e, sp ,
ˆ (in agreement with the transition

rates evaluated in section 5.2; the leading factor of ‘2’ can be
understood noting that both the ascending and descending
transitions emit a plasmon). Hence, the emitted power satu-
rates at some value rather than growing exponentially as in
the classical case.

6.2. Numerical study

We are now ready to study how the dynamic equilibrium state
 = G G + G¥

- - +
e, ( ) induced by the interaction with the

SPPs varies with the relative velocity. The excited state
probability in the limit  ¥t depends only on the normal-
ized parameters w d v0 ∣ ∣ and w d vsp ∣ ∣. A density plot of  ¥e,

as a function of the two normalized variables is represented in
figure 2(a) in a parametric range near to the maximum of the
function. As seen, the maximum value of  ¥e, occurs exactly
for w w=0 sp, i.e., when the atomic transition frequency is
coincident with the SPP resonance. Furthermore, as expected,
for small velocities (which correspond to large values of the
normalized parameters) the value of  ¥e, is negligible. A
detailed variation of  ¥e, in the interesting case w w=0 sp is
depicted in figure 2(b). The optimal value that maximizes
 ¥e, is w =d v 0.148sp and corresponds to the optimal
velocity w»v d6.72 sp .
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Notably, there is a range of parameters for which
 >¥ 1 2e, implying a negative spontaneous emission
G < 0gr . Moreover, consistent with the discussion of
section 5.1, in such a regime the maximum value (about
0.515) reached by  ¥e, is only marginally larger than 1/2.
This ensures that the dipole oscillation amplitude in the
dynamical equilibrium has the largest possible value, when
the associated classical problem is characterized by an
unstable response. Indeed, whereas in the classical case [38]
the dipole moment amplitude may reach arbitrarily large
values (in the linear regime), in a two-level atom it saturates
for mixed states with  » 1 2e .

It is interesting to look at an example with a realistic
material with more detail. Here, as in [38] we consider that
the metal is silver, which is assumed to be modeled by a
Drude model with a plasma frequency w p =2 646sp ( ) THz
[58]. The effect of metallic loss is not included in our calc-
ulation, but as shown in [38] it does not change the qualitative

picture, and only acts to reduce the strength of the negative
spontaneous emission rate.

Figure 2(c) shows the variation of  ¥e, with the relative
velocity for a distance =d 3nm between the two-level atom
and the silver slab, and an atomic transition frequency
w w=0 sp. As seen for low velocities (typically <v c0.05 ),
 ¥e, remains near zero meaning that the processes involving
negative Doppler shifted frequencies are negligible in agree-
ment with the conclusions of sections 3 and 5. Crucially, for
higher velocities the situation changes, and as we enter in the
range of parameters shown in figures 2(a) and (b), the excited
state probability in the dynamical equilibrium reaches a value
around 50%. In addition, as can be seen in the inset, the
probability reaches a maximum for the velocity »v c0.273 .

To have a clear idea of the range of parameters needed
for a negative spontaneous emission we represent in
figure 2(d) a density plot of  ¥e, as a function of the velocity
and of the distance, for the same scenario as in the previous

Figure 2. Plot of the probability  ¥e, in different situations: (a) density plot of  ¥e, as a function of the dimensionless parameters w d v0 and
w d vsp . (b)  ¥e, as a function of w d vsp for w w=0 sp. (c)  ¥e, as a function of the velocity v for a two-level atom located at a distance
=d 3nm from a lossless silver slab with w p =2 646sp ( ) THz and an atomic transition frequency w w=0 sp. The inset shows a zoom of the

same curve near  =¥ 1 2e, . (d) Density plot of  ¥e, as a function of the velocity and of the distance, for w p =2 646sp ( ) THz and w w=0 sp.
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example. Obviously, increasing the distance between the
atom and the slab weakens the interaction, and in particular
the effect of the quantum oscillators with negative Doppler
shifted frequencies. As a consequence, the threshold velocity
to obtain a population inversion is higher. We note that the
effects of time-retardation and relativistic corrections are not
expected to change the general conclusions of the article, as it
was shown in [38] that they generally correspond to small
corrections in the classical case.

Next, we characterize the quantum friction force.
Figure 3 shows the equilibrium friction force á ñ¥x,

ˆ as well as
the power radiated by the system á ñ¥ vx,

ˆ as a function of the
normalized parameters w d v0 ∣ ∣ and w d vsp ∣ ∣. As expected, the
force and the emitted power are significant only for suffi-
ciently high velocities and small distances. Comparing the
plot of  ¥e, (figure 2(a)) with the plots in figure 3, it is
somewhat surprising that the maxima of  ¥e, and á ñ¥x,

occur in rather different regions of the parameter space.
Indeed, the maxima of the friction force and power occur for
w w0 sp, whereas the maximum of  ¥e, occurs for
w w=0 sp. Yet, it is possible to see from equations (43) and
(45) that a case with w w0 sp corresponds to G » G+ - and
hence to  »¥ 1 2e, . Thus, even though the maximum of
friction force does not fall within the region wherein  ¥e,

exceeds 1/2, the value of  ¥e, is actually only marginally
smaller than the maximum. For example, at the maximum of
the friction force (w = -d v 00 and w »d v 1.62sp ) one has
 = +¥

-1 2 0e, . The key point that shows there is no lack
of consistency is that if the atom had an infinite number of
energy levels the quantum friction would likely grow expo-
nentially with time, and hence in such a case the peak friction
force would necessarily fall within the region wherein the
total spontaneous emission rate is negative.

We verified that within our model the friction force
becomes exponentially small in the v 0 limit. This prop-
erty is consistent with a result obtained by Pendry for lossless

plasmonic slabs in a shear motion [25]. In contrast, for dis-
sipative materials with a non-zero conductivity in the static
limit, the friction force exhibits a power law dependence on
the velocity [14, 37, 56]. Indeed, it is important to highlight
that in our problem the friction force is exclusively due to the
conversion of kinetic energy into electromagnetic radiation
(plasmons) because the system is lossless. This process is
particularly efficient when w ~d v 1sp (see figure 3). On the
other hand, lossy materials provide additional channels for
dissipation, namely enable the conversion of kinetic energy
into heat, and this explains why the friction force is stronger
in the v 0 limit in dissipative systems.

7. Conclusion

It was demonstrated that the rate of spontaneous emission by
a moving two-level atom interacting with the near-field of a
plasmonic slab is, in the most general case, determined by
two concurrent processes: the conservative ones involving
only positive Doppler shifted frequencies and the non-con-
servative processes involving only negative Doppler shifted
frequencies. The transitions associated with negative Doppler
shifted frequencies are due to the conversion of kinetic energy
into light [16].

It was proven that when the non-conservative processes
are dominant, the system is characterized by a negative
spontaneous emission meaning that the transition rate to the
excited state exceeds the transition rate to the ground state. In
this regime, the corresponding classical problem is char-
acterized by an unstable response. Different from the classical
situation, in the quantum case the dipole moment oscillations
are intrinsically bounded. It was shown with a numerical
example that the unstable regime corresponds in the quantum
system to a saturation of the dipole moment amplitude.

Figure 3. Plot of the expectation value of (a) the normalized friction force á ñ pe
¥x

d
,

4

eg

0
4

2·
γ∣ ∣

and (b) the normalized radiated power á ñ pe
w

d4

eg

0
3

sp
2·

γ∣ ∣

as a function of the dimensionless parameters w d v0 and w d vsp .
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The links between the quantum theory presented here and
the classical theory of [38] were investigated. In particular, it
was shown that the classical decay rate is exactly coincident
with the quantum spontaneous emission rate. Using a quasi-
static approximation for the electromagnetic field, the typical
range of distances and velocities to observe negative spon-
taneous emission and an inversion of population have been
detailed. Additionally, we studied the phenomenon of
quantum friction. Different from its classical counterpart [38],
the quantum friction effect in the considered system has no
velocity threshold and in particular may occur even when the
total spontaneous emission rate remains positive, i.e., when
the classical system is stable. Moreover, the regime wherein
the friction force is maximal does not overlap with the regime
wherein the spontaneous emission rate is negative. Thus, even
though the stability threshold of the classical problem is
coincident with the threshold of negative spontaneous emis-
sion, the physics of the classical and quantum systems is
generally rather different mainly due to the unique energy
spectrum of the two-level atom which prevents the develop-
ment of instabilities in the quantum case.
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Appendix A. The field radiated by a moving electric
dipole

In the following, we calculate the electromagnetic field radi-
ated by a moving electric dipole in the reference frame co-
moving with the plasmonic slab. The electromagnetic field
satisfies the Maxwellʼs equations

=
¶
¶

+N
t

F M F Ji i , A1ˆ · ( )

where J is a six-vector representing the current density due to
the moving source. For a moving dipole it is of the form:

d= -t
t

t tJ r r r p,
d

d
, A20( ) [ ( ( )) ( )] ( )

where = ¢ -t tr r v0 0( ) are the coordinates of the two-level
atom in the reference frame of the plasmonic slab, and
=p p pe m

T( ) is the generalized dipole moment, such that pe
and pm represent the electric and magnetic dipole moments
(the magnetic dipole moment is included here only for the
sake of generality). The radiated field can be written in terms
of the temporal Green-function as

= -t G t t t tF r r r J r r, , , , d d , A31 1 1 1 1 1∬( ) ( ) · ( ) ( )

where G tr r, ,1( ) is the solution of

⎜ ⎟⎛
⎝

⎞
⎠ d d-

¶
¶

= - ´N
t

G t tM r r r ri , , i 1 A41 1 6 6ˆ · ( ) ( ) ( ) ( )

that satisfies the causality condition =G tr r, , 01( ) for <t 0.

Assuming that the time dependence of the dipole moment is
of the form = w-tp pe ti( ) it is readily found that:

⎡
⎣⎢

⎤
⎦⎥ò= - w-t

t
G t t t tF r r r p,

d

d
, , e d . A5t

0 1 1
i

11( ) ( ( ) ) · ( )

In appendix B, it is shown that the Greenʼs function in
the spectral domain can be expanded in terms of the
electromagnetic eigenmodes Fnk as in equation (B9), so that
in the time domain:

*å= - Äw-G t u tr r F r F r, ,
1

2
e , A6

n

t
n n

k
k k1

i
1nk( ) ( ) ( ) ( ) ( )

where u t( ) is the Heaviside step function. The eigenmodes are
normalized as in equation (6), and the sum includes modes
with positive, negative and zero frequencies. Substituting this
result into equation (A5) one obtains:

*å w
w w

=
-
¢ -

+ Ä ¢ w-t tF r
k v

F r v F r p,
2

e ,

A7
n n

n n
t

k k
k k 0

i( ) ·
( )

( ) ( ) ·

( )

where w w¢ = + k vn nk k · is the Doppler shifted frequency.
Using the following completeness relation (which can be
derived using ideas analogous to those described in
appendix B; wº w¥ ¥M M rlim ,( ))

*å dÄ = -¥
-F r F r M r r

1

2
, A8

n
n n

k
k k 1

1
1( ) ( ) ( ) ( )

and supposing that the dipole is in the free-space region (with
material matrix M0), it is found that:
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The reality of the electromagnetic field implies that the above
summation can be restricted to eigenmodes with positive
frequencies as follows:

⎛
⎝⎜

⎞
⎠⎟

*

*

å w
w w

w w

d

=
¢ -

+ Ä ¢

+
¢ +

+ Ä ¢

- + - ¢

w

w

w

>

-

- -

t t

t

t

F r F r v F r

F r v F r p

r v r M p

,
2

1

1
e

e .

A10

n

n
n n

n
n n

t

t

k

k
k k

k
k k

0
0

0
i

0 0
1 i

nk

( ) ( ) ( )

( ) ( ) ·

( ) ·
( )

Equation (A10) gives the exact solution for the fields radiated
by the moving dipole in the reference frame of the plasmonic
slab. Similar to section 2, to obtain the corresponding fields in
the frame co-moving with the dipole we use simply the non-
relativistic approximation ¢ ¢ ¢ » ¢ -t t tF r F r v, ,( ) ( ). Note
that ¢ ¢ »t tp p( ) ( ) within the same non-relativistic approx-
imation and hence the frequency of oscillation of the dipole
does not need to be transformed. Therefore, one concludes
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that
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Appendix B. Eigenmode expansion of the Green’s
function in the spectral domain

In this appendix, we derive an explicit formula for the
Greenʼs function in the frequency domain w=G G r r, ,1( ),
which from equation (A4) satisfies:

w w d- = - ´N GM r r r r, , i 1 . B11 1 6 6( ˆ ) · ( ) ( ) ( )

It is well known that the Greenʼs function can be expanded as
a sum of eigenvectors when all the involved materials are
dispersionless [4, 59]. In contrast, in presence of material
dispersion the application of the spectral theorem is not direct
because the relevant differential operators are not Hermitian.
To circumvent this problem, we use the ideas of [46, 48] to
describe the material dispersion in terms of additional vari-
ables. Specifically, to obtain an Hermitian eigenvalue pro-
blem, the system (A1) may be transformed into the equivalent
generalized problem [46]

=
¶
¶

+L
t

Q M Q Ji i , B2g gˆ · · ( )

where L̂ and Mg are (frequency independent) operators that
can be constructed as explained in [46] and

=Q F Q Q ... T
1 2( ) is a generalized state vector whose

first six-components determine the electromagnetic field F.
This transformation is possible provided all the materials are
lossless. The number of additional variables Qiʼs is deter-
mined by the number of poles of wM( ). In general both L̂ and
Mg are space dependent. The generalized excitation vector is
of the form =J J 0 0 ...g

T( ) [46, 48].
The eigenmodes of the generalized system (B2) satisfy:

w=- LM Q Q . B3g n n nk k k
1 · ˆ ( )

It can be demonstrated that - LMg
1 · ˆ is a Hermitian operator

with respect to the weighted inner product

*òá ñ =Q Q r Q r M r Q r
1

2
d . B4A B A g B

3∣ ( ) · ( ) · ( ) ( )

Then, according to the spectral theorem, the eigenfunctions
Qnk define a complete set of basis vectors and can be nor-
malized as

d dá ñ =Q Q . B5m n n mq k q k, ,∣ ( )

As demonstrated in [46] the above normalization condition
implies that the electromagnetic field sub-component of the
state vector is normalized as in equation (6).

Next, we introduce a Greenʼs function GQ for the gen-
eralized problem defined as the solution of:

w d- = -L GM r r r r 1, i . B6g Q 1 1( ˆ ) · ( ) ( ) ( )

Evidently, the tensor GQ can be expanded as
a= å ÄG r r Q r,Q n n nk k k1( ) ( ) where ank are unknown

vectorial coefficients [4, 59]. Using the completeness of the
eigenfunctions and standard ideas [59], it is readily found
that:

*a
w w

=
-

Q r
i

2
. B7n

n
nk

k
k 1( )
( ) ( )

Thus, it follows that the generalized Greenʼs function has the
eigenmode expansion:

*å w w
=

-
ÄG r r Q r Q r,

i

2
. B8Q

n n
n n

k k
k k1 1( )

( )
( ) ( ) ( )

The Greenʼs function of the original system (B1) is the
restriction of GQ to its first six by six components:

*åw
w w

=
-

ÄG r r F r F r, ,
i

2
, B9

n n
n n

k k
k k1 1( )

( )
( ) ( ) ( )

with F rnk( ) normalized as in equation (6).
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