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Bulk-edge correspondence for topological photonic continua

Mário G. Silveirinha*
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Here, building on our previous work [Phys. Rev. B 92, 125153 (2015)], it is shown that the propagation of
unidirectional gapless edge states at an interface of two topologically distinct electromagnetic continua with
a well-behaved asymptotic electromagnetic response is rigorously predicted by the bulk-edge correspondence
principle. We work out detailed examples demonstrating that when the spatial cutoff of the nonreciprocal part
of the material response is considered self-consistently in the solution of the relevant electromagnetic problem,
the number of unidirectional gapless edge modes is identical to the difference of the Chern numbers of the bulk
materials. Furthermore, it is shown how the role of the spatial cutoff can be imitated in realistic systems using a
tiny air gap with a specific thickness. This theory provides a practical roadmap for the application of topological
concepts to photonic platforms formed by nonreciprocal electromagnetic continua.
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I. INTRODUCTION

Topological materials have emerged in the last decade as
one of the most exciting research topics both in electronics
and in photonics [1–4]. The intimate connection between the
abstract topological properties of the band structure and the
wave propagation with no backscattering made possible the de-
velopment of novel paradigms and platforms for waveguiding
insensitive to disorder and imperfections [5–13]. In particular,
the influential works by Raghu and Haldane established that
nonreciprocal (e.g., gyromagnetic) photonic crystals can have
a nontrivial topology and may be characterized by a nonzero
topological (Chern) invariant [5,6]. When a topological ma-
terial is paired with another material with a trivial topology,
unidirectional gapless edge states appear in a common band
gap [3,9,12].

A nontrivial Chern number requires a broken time-reversal
symmetry (nonreciprocal response), which is typically ob-
tained with a biasing magnetic field. There has a been a
significant effort in recent literature to extend the use of
topological concepts to standard reciprocal materials (e.g.,
dielectrics and metals), exploring, for example, a bianisotropic
response [14,15] using nonperiodic optical potentials to mimic
a synthetic pseudomagnetic field [16–18], taking advantage
of particular symmetries [19,20], or by imitating the role of
time with a specific spatial coordinate (Floquet topological
insulators) [21,22].

The characterization of topological phases of a material
generally requires that the underlying structure is spatially
periodic so that the wave vector space (the Brillouin zone)
is a closed manifold with no boundary. Interestingly, a few
recent works have shown that topological methods may be
extended to an electromagnetic continuum with no intrinsic
periodicity. One approach, in the context of Floquet topologi-
cal insulators, relies on the computation of the Chern invariants
of equifrequency surfaces, the electromagnetic analog of the
Fermi surface [22]. Related ideas have also been explored in
Ref. [23].
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A totally different approach was introduced by us in
Ref. [24], and the key idea is that there is a class of sufficiently
well-behaved (bianisotropic) material responses for which the
Chern number of the Euclidean plane (an unbounded open
manifold) is guaranteed to be an integer. Moreover, for the
relevant electromagnetic continua the Euclidean plane can be
identified with the Riemann sphere [24]. The pertinent material
class is formed by media such that the nonreciprocal part of
the electromagnetic response is negligible in the limit k → ∞,
whereas for finite k the response in unconstrained. It was
explained how the response of standard materials can be easily
modified to satisfy this requirement by introducing a spatial
cutoff in the nonreciprocal part of the material matrix [24].
In particular, the response of any given conventional material
can be arbitrarily well approximated (in any compact subset
of the spectral k plane) by that of an element in the class
of electromagnetic continua with integer Chern numbers. The
proposed framework enables one to extend standard topologi-
cal concepts, such as the Berry phase, the Berry curvature, and
Chern numbers, to dispersive electromagnetic continua and
can be used to characterize topological phases of nonrecip-
rocal lossless materials [24,25,26]. Furthermore, in Ref. [27]
we also demonstrated that, analogous to electronic systems
(electronic topological insulators), dispersive electromagnetic
continua with the time-reversal symmetry can be separated into
two topological phases. Specifically, a dispersive reciprocal
material is characterized by a Z2 topological invariant, which
is nonzero when there is an obstruction to the application of
the Stokes theorem to half-wave vector space.

Perhaps the most celebrated property of topological systems
is the bulk-edge correspondence that links the Chern invariants
of two inequivalent topological materials with the number of
gapless unidirectional edge states propagating at a material
interface in a common frequency band gap. As previously
explained, even though typical nonreciprocal responses do not
have the desired asymptotic behavior in the k → ∞ limit,
they can be arbitrarily well approximated by an element in the
class of well-behaved media with integer Chern numbers. A
bit surprisingly, it was verified in Ref. [24] that the bulk-edge
correspondence does not always hold in the continuum limit
when the spatial cutoff is disregarded in the calculation of
the edge modes. Specifically, the Chern numbers of the
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bulk materials are computed by considering “well-behaved”
materials with a spatial cutoff in the nonreciprocal response
and that approximate arbitrarily well the original materials.
Crucially, it was verified in Ref. [24] that the edge modes
supported by an interface of the original materials (with
no high-frequency spatial cutoff) do not satisfy the bulk-
edge correspondence principle. Indeed, the number of modes
may be inconsistent with the Chern number difference and
moreover, the edge mode dispersion may not span the entire
band gap.

The objective of the present article is twofold. The first
goal is to demonstrate that the bulk-edge correspondence
is rigorously satisfied when the spatial cutoff is considered
self-consistently, i.e., both in the calculation of the Chern
numbers and in the calculation of edge modes. This result
is important mainly from a theoretical standpoint, because the
usual material responses of realistic media do not have an
explicit spatial cutoff. The second objective is to demonstrate,
building on the ideas of Ref. [24], that the role of spatial cutoff
can be imitated in conventional systems simply by inserting
a tiny air gap in between the relevant materials. It is shown
that the thickness of the air gap is inversely proportional to
the spatial cutoff and that this solution is particularly effective
for edge modes with propagating wave numbers comparable
to the spatial cutoff. It is numerically shown with detailed
examples that the modified material interface always supports
a number of unidirectional edge modes consistent with what
is predicted by the bulk-edge correspondence principle, even
for high-order Chern number differences (|δC| > 1).

II. TOPOLOGICAL METHODS IN A PHOTONIC
CONTINUUM

Here, we briefly review the topological concepts introduced
in Ref. [24]. Let us consider a homogeneous photonic
continuum described by a material matrix M. In a continuum
the stationary states of the Maxwell’s equations are plane
waves and can be labeled by the wave vector k. The envelope
of a plane wave fnk = (Enk H

nk)T satisfies

[N̂ (k) − ωM(ω,k)] · fnk = 0, (1)

where N̂ = ( 0 −k × 13×3
k × 13×3 0

)
. Note that fnk is a six-component

vector formed by the electric (Ek) and the magnetic (Hk) field
envelopes. The symbol T denotes the transpose operator and
the subscript n identifies a particular family of eigenmodes.
In this article, it is assumed that the material matrix is of the
form M = (

ε0ε 0
0 μ01

)
so that the material response is purely

electric. In a photonic continuum the Berry potential is given
by [5,6,24]

Ank = Re
{
i f∗

nk · ∂
∂ω

[ωM(ω,k)]ωnk
· ∂kfnk

}
f∗
nk · ∂

∂ω
[ωM(ω,k)]ωnk

· fnk
. (2)

The Chern number associated with a subset of photonic
bands is given by

C = 1

2π

∫∫
dkxdky Fk, (3)

whereFk = ∂Ay

∂kx
− ∂Ax

∂ky
is the Berry curvature. In a continuum,

the wave-vector space is the Euclidian plane (e.g., the plane
kz = 0) including the point k = ∞. As discussed in Ref. [24],
it is often useful to regard the wave-vector space as the Rie-
mann sphere. For photonic continua invariant under arbitrary
rotations about the z axis the Chern number can be calculated
using C = limk→∞(Aϕ=0k) − limk→0+(Aϕ=0k) [24], where
(k,ϕ) determines a system of polar coordinates in the k plane
and An,ϕ = Ank · ϕ̂.

It was proven in Ref. [24] that for general material responses
of the form

ε(ω,k) = εR(ω) + 1

1 + k2/k2
max

χNR(ω), (4)

the Chern numbers are integer. Here, εR(ω) is a symmetric
matrix εR(ω) = [εR(ω)]T so that it determines a reciprocal
(time-reversal invariant) response. In general, the susceptibil-
ity χNR(ω) gives the nonreciprocal component of the material
response that breaks the time-reversal symmetry. In order that
the Chern number is an integer, this component is required
to be associated with a spatial cutoff determined by kmax so
that for large values of k (k2 = k · k) the response becomes
reciprocal. Hence, to compute the Chern numbers associated
with some photonic continuum in general one needs to impose
by hand a spatial cutoff in the material response [24].

III. EDGE MODES

In order to study the validity of the bulk-edge correspon-
dence, in this section we obtain the dispersion equation for the
edge states supported by a planar interface that separates two
topologically different photonic continua. It is assumed that
the dielectric function of the relevant materials is as in Eq. (4),
and hence the materials are spatially dispersive (nonlocal)
because the material matrix depends explicitly on the wave
vector [28,29].

A. Space domain formulation

As a first step in the calculation of the edge modes, next
we obtain a space domain formulation of the electromagnetic
problem. Specifically, it is shown that by introducing an
auxiliary field it is possible to get rid of the spatial dispersion
in the material response.

Indeed, let us define the auxiliary field Ẽ = 1
1+k2/k2

max

χNR · E. Then, Ampère’s law in differential form, ∇ × H =
−iωε0ε · E, can be conveniently rewritten in the spatial
domain as

∇ × H = −iωε0εR(r) · E − iωε0Ẽ, (5a)(
− 1

k2
max

∇2 + 1

)
Ẽ = χNR(r) · E. (5b)

The electrodynamics of the original spatially dispersive
material [Eq. (4)] is precisely described by Eqs. (5a) and (5b)
complemented with Faraday’s law:

∇ × E = iωμ0H. (5c)

In particular, for a bulk material the plane-wave natural
modes determined by the system (5) are exactly the same as the
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modes directly found from the nonlocal dielectric function (4).
Importantly, the system (5) is formulated in the space domain,
and hence one may admit that χNR and εR are space dependent,
as explicitly indicated in the formulas. Thus, the system (5) is
suitable to determine the impact of the nonlocal effects on the
edge modes.

B. TM-polarized plane waves

We are interested in transverse magnetic (TM) polarized
waves with ∂/∂z = 0 (xoy plane propagation), whose non-
trivial electromagnetic field components are Ex,Ey,Hz. It is
supposed that the nonlocal dielectric function is of the form

ε(ω,k) =
⎛
⎝ε11 ε12 0

ε21 ε22 0
0 0 ε33

⎞
⎠, (6)

with ε11 = ε22 and ε12 = −ε21. Similarly, the tensor χNR(ω)
in Eq. (4) is assumed to be of the form

χNR =
⎛
⎝χ11 χ12 0

χ21 χ22 0
0 0 0

⎞
⎠, (7)

with χ11 = χ22 and χ12 = −χ21. In Sec. IV we will discuss
examples of materials with such a response. For a plane-wave-
type mode with a spatial variation eik·r(∂x ≡ ∂/∂x = ikx and
∂y ≡ ∂/∂y = iky), the electric field (E = Ex x̂ + Ey ŷ) and the
auxiliary field (Ẽ = Ẽx x̂ + Ẽy ŷ) can be written in terms of the
magnetic field (H = Hzẑ) as

Ex = θ1∂yHz + θ2∂xHz, Ey = θ2∂yHz − θ1∂xHz, (8a)

Ẽx = 
1∂yHz + 
2∂xHz, Ẽy = 
2∂yHz − 
1∂xHz. (8b)

The θ1,2 and 
1,2 coefficients are defined as

θ1 = 1

−iωε0

ε11

ε2
11 + ε2

12

, θ2 = 1

−iωε0

ε12

ε2
11 + ε2

12

, (9a)


1 = 1

−iωε0

1

1 + k2/k2
max

1

ε2
11 + ε2

12

(χ11ε11 + χ12ε12),


2 = 1

−iωε0

1

1 + k2/k2
max

1

ε2
11 + ε2

12

(χ11ε12 − χ12ε11). (9b)

The TM-polarized plane-wave modes satisfy the standard
dispersion equation [24]:

k2 = ε2
11 + ε2

12

ε11

(ω

c

)2
, (TM modes). (10)

It turns out that because of the nonlocal effects [ε = ε(ω,k)]
Eq. (10) has three different solutions for a fixed direction of

space, or in other words, there are three branches of TM waves.
Thus, as compared to the local formulation (kmax = ∞) for
which there is a single TM branch, the spatial dispersion
leads to the appearance of two new modes. The emergence
of additional waves is a well-known property of spatially
dispersive media [28,30–38].

C. Edge modes at a planar interface of two nonlocal materials

We want to determine the dispersion of the edge modes
at an interface (plane y = 0) between two different materials
with a dielectric response as in Eq. (4). To this end, we look for
solutions of the system (5) [which is formulated in the spatial
domain] with a magnetic field of the form Hz = h(y)eikxx ,
where kx is the propagation constant of the edge mode along
the x direction. In each homogenous semispace the magnetic
field can be written as superposition of decaying (along the
direction normal to the interface) exponentials as follows:

Hz = eikxx

{
A1e

−γa1y + A2e
−γa2y + A3e

−γa3y,y > 0

−B1e
+γb1y − B2e

+γb2y − B3e
+γb3y,y < 0

, (11)

where Ai,Bi (i = 1,2,3) are unknown constants. In each
region the magnetic field is a superposition of three plane-wave
modes, consistent with the fact that Eq. (10) gives three distinct
solutions k2

s,1, k2
s,2, and k2

s,3 when solved with respect to k2. The

attenuation constant along the y direction is γs,i =
√

k2
x − k2

s,i ,
being s = a (s = b) in the region y > 0 (y < 0), respectively.

As usual, the electromagnetic fields need to satisfy suitable
boundary conditions at the interfaces. In particular, one should
impose the continuity of Hz,Ex (the standard Maxwellian
boundary conditions) at the interface y = 0. In addition,
to guarantee that the right-hand side of Eq. (5b) has no δ

functions, i.e., that the electric field is piecewise continuous,
one also needs to enforce that Ẽx, Ẽy and ∂yẼx, ∂yẼy are
continuous at the interface. Thus, as compared to a local
formulation, one needs to impose four additional boundary
conditions (ABCs). These boundary conditions emerge nat-
urally from the system (5) and are consistent with the fact
that each bulk medium supports two additional waves. In fact,
the total number of additional waves (2 + 2 = 4) is equal to
the number of ABCs, as it should be. Additional boundary
conditions have been extensively discussed in the literature in
the context of electromagnetic metamaterials [30–35] and of
plasmonics [36–38].

Taking into account that the electric field and the auxiliary
field can be written in terms of Hz using Eq. (8) and imposing
the six boundary conditions, it is straightforward to show that
the unknown coefficients must satisfy

∑
i

Ai+
∑

i

Bi = 0, (12a)

∑
i

(−θa
1,iγa,i + θa

2,i ikx

)
Ai+

∑
i

(+θb
1,iγb,i + θb

2,i ikx

)
Bi = 0, (12b)

∑
i

(−
a
1,iγa,i + 
a

2,i ikx

)
Ai+

∑
i

(+
b
1,iγb,i + 
b

2,i ikx

)
Bi = 0, (12c)
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∑
i

(−
a
2,iγa,i − 
a

1,i ikx

)
Ai+

∑
i

(+
b
2,iγb,i − 
b

1,i ikx

)
Bi = 0, (12d)

∑
i

(

a

1,iγ
2
a,i − γa,i


a
2,i ikx

)
Ai+

∑
i

(

b

1,iγ
2
b,i + γb,i


b
2,i ikx

)
Bi = 0, (12e)

∑
i

(

a

2,iγ
2
a,i + γa,i


a
1,i ikx

)
Ai+

∑
i

(

b

2,iγ
2
b,i − γb,i


b
1,i ikx

)
Bi = 0. (12f)

In the above, θs
1,i , θs

2,i , 
s
1,i , and 
s

2,i stand for θ1, θ2,

1, and 
2 [defined as in Eq. (9)] evaluated with k2 = k2

s,i

(i = 1,2,3) and s = a,b depending on the considered region
of space. The dispersion of the edge modes is obtained by
setting the determinant of the matrix associated with the 6 ×
6 homogeneous linear system (12) equal to zero.

For future reference, it is noted that in the local case (kmax =
∞) the dispersion of the edge modes of the same two materials,
eventually separated by an air gap with thickness d, is given
by (for conciseness the derivation is omitted)(

γa

εef,a

− ε12,aikx

ε2
11,a + ε2

12,a

)
+

(
+γb

εef,b

+ ε12,bikx

ε2
11,b + ε2

12,b

)

+ γair

εair
tanh (γaird)

+
(

γa

εef,a

− ε12,aikx

ε2
11,a + ε2

12,a

)(
+γb

εef,b

+ ε12,bikx

ε2
11,b + ε2

12,b

)

× εair

γair
tanh(γaird) = 0. (13)

The index s = a (s = b) refers to the material region y > d

(y < 0). The transverse attenuation constant γs = √
k2
x − k2

s

(s = a,b) is defined as in the nonlocal case, but now k2
s =

εef,s(ω/c)2 is the unique solution of Eq. (10) with respect to
k2. We use the notation εef,s = (ε2

11,s + ε2
12,s)/ε11,s . Moreover,

we define the transverse attenuation constant in the air region
as γair =

√
k2
x − εair(ω/c)2, εair = 1 being the relative permit-

tivity of the air gap. Evidently, when the air gap has vanishing
thickness the dispersion equation is determined only by the
first two terms in brackets in the left-hand side of Eq. (13).

IV. BULK-EDGE CORRESPONDENCE

To illustrate the application of the developed theory we con-
sider a nonreciprocal gyrotropic bulk material characterized by
a permittivity with a spatial cutoff:

ε11 = ε22 = 1 + ω0ωe

ω2
0 − ω2

1

1 + k2/k2
max

,

ε12 = −ε21 = −iωeω

ω2
0 − ω2

1

1 + k2/k2
max

. (14)

For example, a magnetized electric plasma has a similar
material dispersion (with kmax = ∞) near the resonant fre-
quency ω = |ω0| [39]. A magnetized plasma also has a pole at
ω = 0, but for simplicity here we consider a material response
with a single pole. Other magneto-optical materials such as
bismuth-iron garnet may be characterized by related material
dispersions [40]. The parameter ωe defines the strength of the

resonance and must have the same sign as ω0. The objective
is to study the edge modes supported by an interface of the
nonreciprocal material and a Drude plasma with permittivity
εDrude = 1 − ω2

p/ω2, ωp being the plasma frequency.
Similar to Ref. [24], it is convenient to intro-

duce an interpolated material response ετ (ω,k) = 1 +
(1 − τ )[εDrude(ω) − 1] + τ [εM(ω,k) − 1] where the parame-
ter τ is such that 0 � τ � 1 and εM(ω,k) represents the ma-
terial response determined by Eq. (14). Hence, ετ (ω,k) deter-
mines a continuous transformation between the Drude plasma
(τ = 0+) and the gyrotropic material (τ = 1−). Evidently,
ετ (ω,k) can be decomposed as in Eq. (4) with εR,τ (ω) =
1 − (1 − τ )ω2

p/ω2 and χNR,τ (ω) defined as in Eq. (7) with

χ11 = χ22 = τ
ω0ωe

ω2
0 − ω2

, χ12 = −χ21 = τ
−iωeω

ω2
0 − ω2

. (15)

Figure 1 shows the band structure of the TM-polarized
modes as the parameter τ varies continuously from τ = 1 to
τ = 0. The insets of the plots indicate the Chern numbers
associated with the pertinent photonic bands, which are
determined as detailed in Sec. II. As seen, the two materials
(τ = 1− and τ = 0+) have a common band gap and the Chern
number associated with the photonic bands above the band
gap is different for each material. As τ varies continuously
from 1− → 0+, one of the low-frequency photonic bands
migrates across the band gap, and this leads to the topological
transition. Hence, the two materials (τ = 0+ and τ = 1−) are
topologically distinct. As already discussed in Refs. [24,27],
to tell if two materials are topologically equivalent or not, one
needs to ensure that they belong to the same vector space.
Since the relevant vector space is determined by the poles of
the material response [24], a convenient way to merge the
poles of the materials and ensure that they define the same
space is to consider the interpolated material response and the
limits τ = 0+ and τ = 1−. The topological classification is
done using the materials with τ = 0+ and τ = 1−.

Using the formalism of Sec. III, we computed the dispersion
of the edge modes supported by an interface (y = 0) of a
medium with τ = 0+ (Drude plasma in the region y < 0) and
a medium with τ = 1− (gyrotropic material with spatial cutoff
in the region y > 0) and for different values of ωp. Consistent
with the previous example, in the following the considered
materials are topologically distinct and the difference between
the Chern numbers associated with the photonic bands below
the band gap is δC = CM − CDrude = +1. Hence, the bulk-edge
correspondence, if valid, implies that there should exist a single
topologically protect gapless edge state in the common gap.

In the first set of examples (Fig. 2), the value of ωp is
comparable to or smaller than the frequency that determines
the upper band-gap edge of the gyrotropic material. As seen in
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FIG. 1. Topological transition between a gyrotropic material with ωe = 0.5ω0 > 0 and kmax = 10|ω0|/c (τ = 1−) and an electric plasma
with ωp = 3.0|ω0| (τ = 0+). The insets indicate the Chern numbers associated with the relevant photonic bands.

FIG. 2. Impact of the high-frequency spatial cutoff kmax on the edge modes. Band diagram ω vs kx (green dot-dashed line) for a gyrotropic
material with ωe = 0.5ω0 > 0 and an electric plasma with (a) ωp = 1.3ω0 and (b) ωp = 1.6ω0. The black solid lines (purple solid lines)
represent the dispersion of the modes in the bulk gyrotropic material (bulk plasma) with the spatial cutoff. In the limit kmax → ∞ the dispersion
branch moves to infinity and there are no edge modes. The dashed horizontal gray lines delimit the common band gap.
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FIG. 3. Similar to Fig. 2 but for an electric plasma with (a) ωp = 2.0ω0 and (b) ωp = 3.0ω0. In panel (a) the two branches of the edge
modes dispersion (green curves) are joined at kx = ∞ (the north-pole) in case of a finite kmax.

Fig. 2, consistent with the bulk-edge correspondence principle,
there is always a topologically protected edge state that
spans the entire common gap. The edge state is a backward
wave.

Interestingly, as the spatial cutoff is increased, the disper-
sion of the edge states is shifted to larger spatial frequencies,
so that the mode becomes more confined to the interface. In the
limit kmax → ∞ the edge mode dispersion moves to kx → ∞
and hence in the limit of a local response (kmax = ∞) the
edge mode disappears and the bulk-edge correspondence does
not work. This is one of the main points of the article: the
bulk-edge correspondence is valid only when the spatial cutoff
is properly considered in the calculation of the edge modes.
Thus, in the same manner as the spatial cutoff is crucial to
obtain integer Chern numbers [24], it must also be considered
in the calculation of the edge modes.

For larger values of ωp, in the range 1.8|ω0| < ωp <

2.2|ω0|, the dispersion of the one-way edge states has the
exotic behavior illustrated in the left and middle panels of
Fig. 3(a) such that for some frequency in the band gap
the edge states dispersion approaches kx → −∞ and then
reappears at kx → +∞. The branches are thus connected at
kx = ∞ (north-pole of the Riemann sphere [24]), so that with
a finite spatial cutoff kmax the edge states remain gapless and
the bulk-edge correspondence is valid. Yet, in the limit of a

local response kmax = ∞ the upper branch of the edges states
dispersion diverges to kx → +∞, similar to the examples of
Fig. 2. In contrast, when ωp > 2.2|ω0| [see Fig. 3(b)] the edge
states dispersion remains gapless in the local limit, and in this
situation the dispersion of the modes with finite kmax converges
uniformly to the dispersion of the edge states predicted by the
local model [Eq. (13)] as kmax → ∞. Furthermore, in this
case the edge modes are forward waves propagating along the
negative x axis. The propagation of unidirectional edge modes
in the context of a local material response has been thoroughly
studied by other authors [41–44].

The previous results raise the question of whether topolog-
ical methods are really useful in the continuum case. Indeed,
realistic materials are usually modeled by local constitutive
relations (with permittivity independent of the wave vector),
and hence the introduction of a spatial cutoff may appear a
bit artificial, especially because, as illustrated by the previous
examples, the bulk-edge correspondence principle only works
when the spatial cutoff is explicitly considered in the edge
states calculation. It is worth noting that the actual physical
response of realistic materials is necessarily characterized
by some cutoff. For example, for crystalline materials the
cutoff may be estimated as kmax ∼ 1/a, a being the lattice
constant. Nevertheless, kmax is typically several orders of
magnitude larger than the spatial frequencies that determine
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FIG. 4. The effect of the spatial cutoff kmax in the gyrotropic
material response [panel (a)] may be mimicked with an air gap with
thickness d = 1/kmax [panel (b)].

the wave phenomena of interest and hence for most purposes
conventional media may be regarded as a continuum.

Even though the continuum models of realistic materials
are local, it is possible to imitate the spatial cutoff in Eq. (14)
by inserting a small air gap with thickness d in between the
two materials, as already suggested in our previous work [24].
The logic is that in the kmax → ∞ limit the response of the
gyrotropic material [Eq. (14)] approaches the vacuum response
[εM(ω,k) → 1]. Hence, we propose here that the spatial cutoff
kmax can be mimicked by an air gap with thickness d = 1/kmax

(see Fig. 4). Note that for large kx the electromagnetic coupling
across the gap is determined by a factor of the type e−|kx |d =
e−|kx |/kmax .

Interestingly, as illustrated in Fig. 5, the proposed equiv-
alence works fairly well, and in some spectral range the
edge modes dispersion calculated with a finite kmax is nearly
coincident with what is obtained without any cutoff and
with an air gap [Eq. (14)]. Hence, this indicates that it is
possible to make sense of topological methods in photonic
continua, provided the relevant spatial cutoffs are imitated
with an air gap. This is the second main point of the article.
Even though the correspondence d ↔ 1/kmax gives quite
satisfactory results, it should be mentioned that in the example
of Fig. 5(a) the edge modes dispersion does not span the entire
gap. In this regard the correspondence between the spatial

cutoff and the vacuum gap is not perfect. Yet, the response
of the two systems is at least qualitatively rather similar, and
consistent with the bulk-edge correspondence principle there
is a single edge mode in the common band gap. Note that
without the air gap there are no edge modes in the example of
Fig. 5(a).

To further illustrate the importance of considering the air
gap to mimic the spatial cutoff, Fig. 6 represents a time
snapshot of the magnetic field (Hz) emitted by a magnetic line
source placed at a height h = 0.1c/|ω0| above the interface.
In this example, the materials response is assumed local
(kmax = ∞). The line source is embedded in the gyrotropic
material and the oscillation frequency lies within the common
band gap. The radiated fields are obtained with the formalism
of the Appendix. The plot depicts Hz only in the gyrotropic
material (region y > 0). In the first case [Fig. 6(a)], the region
y < 0 is taken as a perfect electric conductor (ωp = ∞). In
this case it is irrelevant to consider the air gap because, as
previously discussed for ωp > 2.2|ω0|, the dispersion of the
edge modes converges uniformly to the local theory result as
kmax → ∞. Since none of the materials have bulk states at the
frequency of oscillation, the only possible radiation channel is
determined by the edge modes. Consistent with this property,
one sees in Fig. 6(a) that the line source excites a unidirectional
topologically protected edge state that propagates along the –x
direction. When the bottom region is replaced by a Drude
plasma with ωp = 1.6ω0 [Fig. 6(b)], the line source is unable
to excite edge modes because without a spatial cutoff the
material interface does not support edge states. Importantly,
if the spatial cutoff is imitated with an air gap it becomes
possible to excite an edge mode [Fig. 6(c)], consistent with
the bulk-edge correspondence principle [see also Figs. 2(b)
and 5(a)].

To further explore the use of topological methods in
photonic systems, next it is shown that it is possible to
pair electromagnetic continua that give rise to a Chern
number difference greater than 1, |δC| > 1 (a high-order
Chern number). To demonstrate this possibility, we consider
two distinct gyrotropic materials, with a response consistent

FIG. 5. Edge modes for an interface between a gyrotropic material with a spatial cutoff and an electric plasma (green dot-dashed lines)
superimposed on the modes supported by the same materials with no cutoff separated by an air layer with d = 1/kmax (black solid lines). The
insets give the value of kmaxc/|ω0|: (a) ωp = 1.6ω0 and (b) ωp = 2.0ω0. The dashed horizontal gray lines delimit the common band gap.
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FIG. 6. Time snapshot of the magnetic field emitted by a line
source (black dot in the figures) embedded in a gyrotropic material
with ωe = 0.5ω0 > 0 (region y > 0). The oscillation frequency is
ω = 1.4ω0. (a) The region y < 0 is a perfect electric conductor. (b)
The region y < 0 is a Drude plasma with ωp = 1.6ω0. (c) Similar to
(b) but an air gap with thickness d = 0.1c/|ω0| is inserted in between
the two materials to mimic a spatial cutoff.

with Eq. (14) and parameters ω01 = −ω02 and ωe1 = −ωe2.
Note that flipping the sign of ω0 corresponds to flipping the
sign of the biasing magnetic field. Thus, the two material
responses may be obtained in practice using a single material
and symmetric biasing fields. It is interesting to note that
this system is reminiscent of the Haldane model [45], in the
sense that the average nonreciprocal response of the system
(the biasing magnetic field averaged in space) is zero. A
configuration related to ours but for a two-dimensional electron
gas was studied in Ref. [26]. The emergence of topological
effects in photonic crystals with a spatially varying biasing
field was also discussed in Ref. [13], and the experimental
observation of high-order Chern numbers was reported in
Ref. [12].

The band diagrams of the interpolated material response
for different values of τ are represented in Fig. 7. As
seen, the initial and final material responses (τ = 0 and
τ = 1) give rise to identical band diagrams but with sym-
metric Chern numbers. Thus the Chern number difference
is δC = Cτ=1− − Cτ=0+ = 2. The topological transition occurs
exactly for τ = 0.5, when the band gap closes and reopens,
and the Chern numbers are exchanged by the different
bands.

Figure 8 shows the dispersion of the edge modes supported
by an interface of the two topologically distinct materials.
Consistent with the bulk-edge correspondence principle, when
the spatial cutoff is taken into account (left and middle panels)
there are two gapless unidirectional edge states. However,
similar to the first examples in this section, in the kmax → ∞
limit the dispersion of one of the modes migrates to infinity.
Hence, for local material responses (kmax = ∞) the structure
supports a single edge state (rightmost panel in Fig. 8) and the
bulk-edge correspondence fails. However, by mimicking the
spatial cutoff with an air gap the bulk-edge correspondence is
recovered, as illustrated in Fig. 9. Indeed, with an air gap the
system supports precisely two unidirectional edge modes. The

FIG. 7. Topological transition between a gyrotropic material with ωe1 = 0.5ω01 (τ = 1) and a gyrotropic material with ωe2 = 0.5ω02

(τ = 0) with ω01 = −ω02 ≡ ω0 > 0. The spatial cutoff is kmax = 10|ω0|/c. The insets indicate the Chern numbers associated with the relevant
photonic bands.
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FIG. 8. Edge modes at an interface between two topologically distinct gyrotropic materials with the same parameters as in Fig. 7 for
kmax = 10|ω0|/c, kmax = 100|ω0|/c, and kmax = ∞.

dispersion of the mode that migrates to infinity is particularly
well imitated by the system with the air gap for relatively small
values of kx (|kx | < 0.5kmax), which from a practical point of
view is typically the most interesting situation. Indeed, modes
with small kx tend to be less affected by realistic material loss.
This property, which is also manifest in Fig. 5, is justified by
the fact that an air gap introduces a spatial cutoff law with an
exponential decay (e−|kx |/kmax ), whereas the model in Eq. (14)
leads to an algebraic decay. Thus, in general it is expected that
the air gap mimics better the spatial cutoff for values such that
|kx | ∼ kmax, whereas for |kx | 
 kmax the agreement may be
less satisfactory.

V. CONCLUSION

It was highlighted that the use of topological methods in
electromagnetic continua, and in particular the validity of
the bulk-edge correspondence principle, in general require
that the (nonreciprocal part) of the material response has
a spatial cutoff. It was demonstrated that when the spatial

cutoff is explicitly considered and the nonlocal response is
properly taken into account the bulk-edge correspondence is
valid. It was shown that in practice the spatial cutoff can
be implemented by inserting a tiny air gap in between the
materials with thickness inversely proportional to the cutoff.
Thus, the proposed ideas open new inroads in topological
photonics and provide a roadmap to explore the topological
properties of systems formed by electromagnetic continua with
no intrinsic periodicity.
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APPENDIX: FIELDS RADIATED BY THE LINE SOURCE

Here, the fields emitted by a magnetic line source embedded
in a gyrotropic material are calculated. The line source is
located at (x0,y0) = (0,h) and is infinitely extended along the

FIG. 9. Edge modes at an interface between two topologically distinct gyrotropic materials with a spatial cutoff frequency (green dot-dashed
lines) superimposed on the modes supported by the same materials with no spatial cutoff separated by an air gap with thickness d = 1/kmax

(black solid lines).
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z direction. The region y > 0 is occupied by the gyrotropic
material, whereas the region y < −d is filled with a Drude
plasma. Here, d denotes the thickness of an air gap defined by
−d < y < 0.

For a magnetic line source excitation, the Maxwell equa-
tions read

∇ × E = iωμ0H − jm, ∇ × H = −iωε0ε · E, (A1)

where jm = Im δ(x)δ(y − y0)ẑ is the (fictitious) magnetic
current density and Im is the equivalent magnetic current.
Looking for a solution of the form H = Hz(x,y)ẑ, it is found
that for y > 0,

∇2Hz +
(ω

c

)2
εef Hz = −A0 δ(x)δ(y − y0),

A0 = iωε0εef Im, (A2)

where εef = (ε2
11 + ε2

12)/ε11 is the equivalent permittivity of
the gyrotropic material. Thus, in a bulk medium the emitted
field is (when the whole space is filled with the gyrotropic

material)

Hinc
z = A0

−4i
H

(1)
0

(ω

c

√
εef ρ

)

= A0
1

2π

∫
1

2γM
e−γM|y−y0|eikxxdkx, (A3)

where H
(1)
0 is the Hankel function of the first kind and order

zero, ρ =
√

x2 + (y − y0)2, and γM =
√

k2
x − (ω/c)2εef . The

integral form of the emitted field can be easily modified to take
into account the presence of an interface at y = 0:

Hz = A0
1

2π

∫
1

2γM
(e−γM|y−y0| + Re−γM(y+y0))eikxxdkx,

(A4)
where R = R(ω,kx) represents the (magnetic field) reflection
coefficient for TM-polarized waves. For the geometry of
interest, it is straightforward to show that

R =
(

ε11

ε2
11+ε2

12
γM + ε12

ε2
11+ε2

12
ikx

)(
1 + γD

εD

εair
γair

tanh (γaird)
) − (

γD

εD
+ γair

εair
tanh (γaird)

)
(

ε11

ε2
11+ε2

12
γM − ε12

ε2
11+ε2

12
ikx

)(
1 + γD

εD

εair
γair

tanh (γaird)
) + (

γD

εD
+ γair

εair
tanh (γaird)

) . (A5)

In the above, ε11,ε12 determines the response of the gyrotropic material, εD is the permittivity of the metal (described by a
Drude model), γD =

√
k2
x − εD(ω/c)2, and εair = 1 and γair =

√
k2
x − εair(ω/c)2 determine the parameters of the air gap.
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