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Abstract Electric quadrupolar continua satisfying a physically reasonable constitutive relation supports
both an evanescent and a propagating eigenmode. Thus, three interface boundary conditions, two plus an
“additional boundary condition” (ABC), are required to obtain a unique solution to a plane wave incident
from free space upon an electric quadrupolar half-space. By generalizing the constitutive relation to hold
within the transition layer between the free space and the quadrupolar continuum, we derive these three
boundary conditions directly from Maxwell’s differential equations. The three boundary conditions are
used to determine the unique solution to the boundary value problem of an electric quadrupolar slab.
Numerical computations show that for long wavelengths, two previous boundary conditions, derived under
the assumption that the electric quadrupolarization contains negligible effective delta functions in the
transition layer, produce an accurate solution by neglecting the evanescent eigenmode, that is, by assuming
it decays within the transition layer. It appears that the general method used to derive the electric
quadrupolar ABC can be applied to obtain the boundary conditions for any other realizable constitutive
relation in a Maxwellian multipole continuum.

1. Introduction

Although the electric quadrupolarization in most natural materials is negligible below optical frequencies
compared to the dipolarization, at optical and higher frequencies, and for metamaterial arrays made with
artificial molecules (inclusions), the electric quadrupolarization can contribute significantly to the fields [Raab
and Lange, 2005; Cho et al., 2008; Silveirinha, 2014]. Large electric quadrupolar resonances of electrically
small metallic spheres at plasmonic frequencies may be used to design metamaterials with a strong electric
quadrupolar response [Alù and Engheta, 2014]. The loss tangents in the permittivity of metals at plasmonic
frequencies are higher than 0.1 [Naik et al., 2013] and, for fully metallic spheres, this amount of loss greatly
reduces the resonance in the electric quadrupolar response [Alù and Engheta, 2007]. However, for metallic
shells covering ordinary dielectric spheres, the losses can be kept low enough to retain significant electric
quadrupolar plasmonic resonances [Oldenburg et al., 1999]. And, of course, if the fully plasmonic spheres
were enhanced with gainy material, this gainy material could compensate for the reduction in the size of the
resonances produced by the passive loss tangents. Also, for spatially dispersive metamaterials designed for
applications that can tolerate resonances at larger electrical sizes, ordinary dielectric constants with positive
real parts can be used to obtain electric quadrupolar resonances. Thus, it seems appropriate for more than
academic reasons to characterize the electromagnetic properties of electric quadrupolar media.

In the publications [Yaghjian et al., 2014], criteria was given for the average fields of a general periodic array
of inclusions separated in free space to obey Maxwell’s macroscopic continuum equations. Specifically, the
lattice spacing has to be a small enough fraction of both the free-space and modal wavelengths (k0d and|𝛽d| ≪ 1) that the average fields and sources over the unit cell are approximately equal to the corresponding
coefficients of the fundamental Floquet modes. In order to consider an example other than dipolar con-
tinua, we concentrated on electric quadrupolar continua and derived boundary conditions at the interface
of two such continua, in particular, the boundary conditions at the interface between free space and an
electric quadrupolar continuum. Two independent boundary conditions on the tangential electric and mag-
netic fields were revealed. Across a free-space/quadrupolar interface, these two boundary conditions can be
written as

E(2)
s − E(1)

s = 1
2𝜖0

∇s

(
n̂ ⋅ Q

(2)
⋅ n̂

)
(1)
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B(2)
s − B(1)

s = −
i𝜔𝜇0

2
n̂ ×

(
n̂ ⋅ Q

(2))
, (2)

where E and B are the macroscopic time-harmonic (e−i𝜔t, 𝜔> 0) electric and magnetic fields (with 𝜖0 and 𝜇0

the permittivity and permeability of free space), Q is the macroscopic electric quadrupolarization density in
the continuum (Q in free space is zero), and n and s refer to the normal and tangential directions with respect
to the interface with n̂ the unit normal pointing from the free space (designated by superscript 1) into the
electric quadrupolar continuum (designated by superscript 2).

The boundary conditions across the interface on the normal components of macroscopic B and D fields,
namely,

B(2)
n − B(1)

n = 0 (3)

D(2)
n − D(1)

n = 1
2
∇s ⋅

(
n̂ ⋅ Q

(2)
s

)
(4)

are not independent of the tangential field boundary conditions in (1) and (2) because (3) and (4) are implied
by Maxwell’s equations combined with (1) and (2).

Maxwell’s homogeneous differential equations for the macroscopic fields in the electric quadrupolar contin-
uum can be written as

∇ × E − i𝜔B = 0 (5)

1
𝜇0

∇ × B + i𝜔𝜖0E − 1
2

i𝜔∇ ⋅ Q = 0 (6)

with D and H defined by the constitutive relations

D = 𝜖0E − 1
2
∇ ⋅ Q (7)

H = 1
𝜇0

B, (8)

where in (7) the quantity−∇⋅Q∕2 can be considered equal to an effective electric polarization P. The boundary
conditions in (1) and (2) were derived in Yaghjian et al. [2014] from an integration of Maxwell’s equations in
(5) and (6) using two main assumptions (i) that ∇ ⋅ Q can have a delta function across the interface because
of the jump in Q that occurs in general across the interface and (ii) that there are no delta functions in Q
within the transition layer in which the electromagnetic properties change from those of free space to those
of the electric quadrupolar continuum. These boundary conditions in (1) and (2) were found by Raab and
Lange [2005] (with a minor error corrected in Raab and Lange [2013]) using assumption (i) but without stating
assumption (ii).

In reference Yaghjian [2014], the validity of these assumptions was investigated by first deriving the fields in
a source-free, isotropic electric quadrupolar continuum satisfying the following physically reasonable elec-
tric quadrupolar constitutive relation for a random distribution of spherically symmetric electric quadrupolar
particles in source-free external fields

Q = 𝛼Q𝜖0

[1
2
(∇E + E∇) − 1

3
(∇ ⋅ E)I

]
, (9)

where the constant 𝛼Q is a macroscopic electric quadrupolarizability density (real valued in a lossless contin-
uum) and E∇ denotes the transpose of the ∇E dyadic. The Q in (9) is a symmetric dyadic (a requirement of
electric quadrupolarizability) with zero trace that can be derived from the electric quadrupole moment of an
electrically small dielectric-sphere inclusion in a source-free local electric field Yaghjian et al. [2015]. (We note
that in equation (25c) of reference Yaghjian [2014], the D variables in (4) were mistakenly written as 𝜖0E.)

We found in Yaghjian [2014] that because the electric fields can be discontinuous across the interface, the elec-
tric quadrupolarization, given in the continuum by the constitutive relation in (9), can have delta functions in
the transition layer, and thus, the boundary conditions in (1) and (2) may not hold for this electric quadrupolar
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continuum. Moreover, we found that two modes can exist in this electric quadrupolar continuum for trans-
verse magnetic (TM) plane wave incidence. One of the modes is propagating and the other is evanescent.
Therefore, even if the boundary conditions in (1) and (2) did hold, we would need an additional boundary
condition to solve for the coefficients of these two modes as well as for the coefficient of the reflected plane
wave for a plane wave incident from free space on a semi-infinite electric quadrupolar continuum.

Despite these obstacles to finding a solution to this half-space problem, we were able to show in Yaghjian
[2014] that if the frequency is low enough (that is, if k0d and |𝜷d| are sufficiently small, where k0 (= 𝜔

√
𝜇0𝜖0)

and 𝜷 are the free-space and modal propagation constants, respectively, and d is the lattice spacing of the
inclusions comprising the continuum), then the evanescent mode could be considered as confined to the
transition layer and, moreover, the boundary conditions in (1) and (2) will still apply.

The motivational purpose of the present paper is to confirm that the boundary conditions in (1) and (2) are
indeed valid at the lower frequencies for the electric quadrupolar continuum satisfying the constitutive rela-
tion in (9), by finding an exact solution to the boundary value problem of a plane wave incident from free
space upon an electric quadrupolar slab. To solve this boundary value problem, we have to include the evanes-
cent waves in the electric quadrupolar continuum and, thus, we also have to derive an additional boundary
condition (ABC) that can be applied to the interfaces of the slab and free space. To obtain this particular
electric-quadrupolar ABC, we devise and demonstrate a general method that appears capable of determin-
ing the boundary conditions (including ABCs) for any other realizable constitutive relation in a Maxwellian
multipole continuum.

2. Derivation of Three Independent Boundary Conditions

The additional boundary condition will be determined below by combining the Maxwell differential
equations in (5) and (6) with the constitutive relation in (9). This leads to the possibility of the electric
quadrupolarization having delta functions and normal derivatives of delta functions as well as a unit-step
function within the transition layer between the free space and the electric quadrupolar continuum. It turns
out that some of these delta functions are squared in the equations and thus violate finite energy conditions
unless the tangential electric field Es is continuous across the transition layer and the normal component
Qnn = n̂⋅Q⋅n̂ of the electric quadrupolarization is zero on either side of the transition layer. The boundary con-
dition on the tangential magnetic field Bs also changes from the one in (2) for transverse magnetic plane wave
incidence but only by a term that becomes negligible as k0d becomes small (that is, for a sufficiently accu-
rate continuum). In summary, then, we will find that the constitutive relation in (9) requires through Maxwell’s
equations the three following independent boundary conditions at the interface between free space and an
electric quadrupolar continuum

E(2)
s − E(1)

s = 0 (10)

B(2)
s − B(1)

s = −
i𝜔𝜇0

2
n̂ ×

(
n̂ ⋅ Q

(2))
(11)

n̂ ⋅ Q
(2)

⋅ n̂ = 0. (12)

These boundary conditions are compatible with the general boundary conditions first derived by Silveirinha
[2014] for electric quadrupolar metamaterials using “transverse averaging” and assuming no delta functions
in the fields and electric quadrupolarization in the transition layer. The next subsection provides a detailed
derivation of the three boundary conditions in (10)–(12) directly from Maxwell’s differential equations in (5)
and (6) and the constitutive relation in (9), without assuming that there are no delta functions in the fields or
electric quadrupolarization in the transition layer.

2.1. Details of the Derivation
To derive the three boundary conditions in (10)–(12) from Maxwell’s differential equations, we consider a
planar interface between free space and the electric quadrupolar continuum. Let the interface be coincident
with the xy plane of a rectangular coordinate system whose positive z axis is normal to the interface and
points into the quadrupolar half-space, as shown in Figure 1. As mentioned above, there will be an interface
transition layer across which the electromagnetic properties of the medium change from those of free space
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Figure 1. Geometry of interface between free space and electric quadrupolar continuum with transition layer of
thickness 𝓁.

to those of the electric quadrupolar continuum. We let this transition layer of thickness 𝓁 lie between z = 0
and z = 𝓁, also shown in Figure 1. (Under the conditions that dipolar arrays behave as a continua, namely,
k0d ≪ 1 and |𝜷d| ≪ 1, analytical and numerical results indicate that the thickness𝓁 of the transition layer is on
the order of the average separation distance d of the dipoles [Simovski and Tretyakov, 2007; Sher and Kuester,
2009]. The same result presumably holds for electric quadrupoles.)

In the free space to the left of the transition layer (z < 0), the value of the electric quadrupolarizability density
in (9) is zero, and to the right of the transition layer (z >𝓁) its value is equal to𝛼Q. Since the quadrupolarizability
of each of the electric quadrupoles is finite, a macroscopic electric quadrupolarizability density 𝛼0 that holds
throughout all space is finite in the transition layer and can be expressed as

𝛼0 = 𝛼Qu(z), (13)

where u(z) is a continuous “unit-step” function that varies from 0 (at z = 0) to 1 (at z = 𝓁) across the transition
layer. For an ideal continuum, 𝓁 → 0 and u(z) approaches the usual unit-step distribution function. With 𝛼0 in
(13) replacing 𝛼Q in (9), the electric quadrupolarization density Q0 that holds throughout all space, including
the transition layer, is given by

Q0 = 𝛼Q𝜖0u(z)
[1

2
(∇E + E∇) − 1

3
(∇ ⋅ E)I

]
. (14)

We note that Q0 equals Q in (9) for z >𝓁. With the electric quadrupolarization density in (14), Maxwell’s
homogeneous differential macroscopic equations that hold throughout all space are given by

∇ × E − i𝜔B = 0 (15)

1
𝜇0

∇ × B + i𝜔𝜖0E − 1
2

i𝜔∇ ⋅ Q0 = 0. (16)
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Since the fields incident from sources in the free-space region (z < 0) can be expanded in a spectrum of trans-
verse electric (TE: E perpendicular to the plane of incidence) and transverse magnetic (TM: B perpendicular to
the plane of incidence) plane waves, we can consider these two incident plane waves separately. If we choose
the plane of incidence perpendicular to the y direction, then the TE and TM plane waves have their electric
and magnetic fields in the y direction, respectively. For a TE incident plane wave, (16) implies that only Q0 ⋅ ŷ is
nonzero and that, in particular, Q0zz = 0 everywhere. Thus, the boundary condition in (1) predicts a continu-
ous tangential electric field Ey . Moreover, the Maxwell equations in (5) and (6) can be used to show that there
is just one mode, a propagating mode, that can exist in the electric quadrupolar continuum. Consequently,
for TE incident plane waves, the two boundary conditions in (1) and (2) are sufficient for a unique solution and
lead to fields consistent with the equations in (15) and (16). Moreover, these TE solutions satisfy the bound-
ary conditions in (10)–(12) because Q0zz is zero everywhere and thus the boundary conditions in (1) and (2)
become identical to those in (10) and (11). Our remaining task, then, is to derive the boundary conditions in
(10)–(12) for incident TM plane waves.

To do this, first substitute B from (15) into (16) to get a single vector wave equation for E, namely,

∇ × ∇ × E − k2
0E + 1

2
𝜔2𝜇0∇ ⋅ Q0 = 0 (17)

with ∇ ⋅ Q0 obtained from (14) as

∇ ⋅ Q0 = 𝛼Q𝜖0

{
u(z)∇ ⋅

[1
2
(∇E + E∇) − 1

3
(∇ ⋅ E)Ī

]
+ 𝛿(z)ẑ ⋅

[1
2
(∇E + E∇) − 1

3
(∇ ⋅ E)I

]}
, (18)

where 𝛿(z) = du(z)∕dz. For the TM solution with the magnetic field in the y direction, but no variation in the
y direction, and eik0x x variation in the x direction, the Ey field is zero everywhere, and the evaluation of the x
and z components of (17) and (18) gives the following two equations(

k2
0 +

𝜕2

𝜕z2

)
Ex − ik0x

𝜕Ez

𝜕z
− 1

2
𝜔2𝜇0

(
∇ ⋅ Q0

)
x
= 0 (19)

(
k2

0 − k2
0x

)
Ez − ik0x

𝜕Ex

𝜕z
− 1

2
𝜔2𝜇0

(
∇ ⋅ Q0

)
z
= 0, (20)

where the x and y components of ∇ ⋅ Q0 are

(
∇ ⋅ Q0

)
x
= 𝛼Q𝜖0

[
1
2
𝜕

𝜕z

(
u
𝜕Ex

𝜕z

)
+ ik0x

(
1
6

u
𝜕Ez

𝜕z
+ 1

2
𝛿Ez

)
− 2

3
k2

0x uEx

]
(21)

(
∇ ⋅ Q0

)
z
= 𝛼Q𝜖0

[
2
3
𝜕

𝜕z

(
u
𝜕Ez

𝜕z

)
+ ik0x

(
1
6

u
𝜕Ex

𝜕z
− 1

3
𝛿Ex

)
− 1

2
k2

0xuEz

]
(22)

and we have made use of the relation 𝜕∕𝜕x = ik0x .

One cannot assume a priori that the electric field cannot contain delta functions in the transition layer. In
fact, a planar multipole expansion for the continuously differentiable electric and magnetic fields outside the
source plane at z = 0 shows that within the source plane the electric and magnetic fields can be expressed
as a continuous function plus a sum of unit-step distribution functions, that is, the unit-step function and all
its derivatives. Consequently, the components of the electric field everywhere, including the transition layer,
can be expressed as

Ex(z) = Er
x(z) + Eu

x u(z) + E𝛿

x𝛿(z) + E𝛿′

x 𝛿′(z) +… (23)

Ez(z) = Er
z(z) + Eu

z u(z) + E𝛿

z 𝛿(z) + E𝛿′

z 𝛿′(z) +… (24)

in which the eik0x x variation in the x direction is suppressed. The Er
x(z) and Er

z(z) are continuous ramp functions
that have constant values in the transition layer, and 𝜕∕𝜕z derivatives from the left and right of the transition
layer that can have different values. The constant values of Er

x(z) and Er
z(z) in the transition layer are not nec-

essarily zero. The primes on the delta functions in (23) and (24) denote differentiation with respect to z and,
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of course, 𝛿(z) = u′(z). Unit-step/delta distribution theory legitimizes the use of delta functions and shows
that there is no loss in generality in choosing the defining step function in (23) and (24) equal to the u(z)
in (13) as the thickness of the transition layer approaches zero; that is, 𝓁 → 0.

If Ex and Ez are substituted from (23) and (24) into (19) and (20), the
(
∇ ⋅ Q0

)
x

and
(
∇ ⋅ Q0

)
z

quadrupolar

source terms will contain squares of 𝛿 functions and derivatives of delta functions. These squared sources
would produce infinite fields everywhere, and thus, their coefficients must be zero. To find the coefficients
that must be zero, first integrate

(
∇ ⋅ Q0

)
x

in (21) with respect to z over the transition layer to get

1
2

𝜕E(2)
x

𝜕z
+ 1

3
ik0x

𝓁

∫
0

𝛿Ezdz + 1
6

ik0x

𝜕E(2)
z

𝜕z
− 2

3
k2

0x

𝓁

∫
0

uExdz, (25)

where we have used integration by parts in the second term on the right-hand side of (21). Multiplying (24)
by 𝛿(z) and using integration by parts, we find

𝓁

∫
0

𝛿Ezdz = finite value +

𝓁

∫
0

[
E𝛿

z 𝛿
2(z) − E𝛿′′

z 𝛿′2(z) + E𝛿′′′′

z 𝛿′′2(z) −…
]

dz. (26)

Similarly,
𝓁

∫
0

uExdz = finite value −

𝓁

∫
0

[
E𝛿′

x 𝛿2(z) − E𝛿′′′

x 𝛿′2(z) + E𝛿′′′′′

x 𝛿′′2(z) −…
]

dz. (27)

With (26) and (27) inserted into (25), each of the squared singular terms, 𝛿2, 𝛿′2, 𝛿′′2, 𝛿′′′2,… , produce
higher-order infinite fields everywhere and, thus, the coefficients of these terms must be zero. This gives the
infinite set of equations

iE𝛿

z + 2k0xE𝛿′

x = 0

iE𝛿′′

z + 2k0xE𝛿′′′

x = 0

⋮ (28)

Integrating
(
∇ ⋅ Q0

)
z

in (22) with respect to z over the transition layer, we obtain a similar infinite set of linear
equations

iE𝛿

x − k0xE𝛿′

z = 0

iE𝛿′′

x − k0x E𝛿′′′

z = 0

⋮ (29)

All the planar multipole moments of
(
∇ ⋅ Q0

)
x

and
(
∇ ⋅ Q0

)
z

must give finite fields outside the source region,

and thus, in particular, the first moment obtained by integrating the product of z and these two electric
quadrupolar source components over the transition layer must not have squared singular terms, 𝛿2, 𝛿′2, 𝛿′′2,
𝛿′′′2,…. Carrying through the algebra for ∫ 𝓁

0 z
(
∇ ⋅ Q0

)
x

dz, using integration by parts, leads to the infinite

set of equations

1
2

E𝛿

x − 1
3

k2
0x E𝛿′′

x + 0ik0xE𝛿′

z = 0

1
2

E𝛿′′

x − 4
3

k2
0xE𝛿′′′′

x − 1
3

ik0x E𝛿′′′

z = 0

⋮ (30)

Similarly, ∫ 𝓁
0 z

(
∇ ⋅ Q0

)
z

dz leads to

2
3

E𝛿

z − 1
4

k2
0x E𝛿′′

z + 5
12

ik0x E𝛿′

x = 0

2
3

E𝛿′′

z − k2
0x E𝛿′′′′

z − 11
12

ik0x E𝛿′′′

x = 0

⋮ (31)
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Inserting E𝛿′

z , E𝛿′′′

z , E𝛿′′′′′

z ,… , from (29) into (30), then assuming there is an N such that E𝛿(nth′)

x = 0 for n>N, we
find that

E𝛿

x , E𝛿′′

x , E𝛿′′′′

x ,… ,= 0 (32)

which implies from (30) that

E𝛿′

z , E𝛿′′′

z , E𝛿′′′′′

z ,… ,= 0. (33)

Similarly, inserting E𝛿′

x , E𝛿′′′

x , E𝛿′′′′′

x ,… , from (28) into (31), then assuming there is an N such that E𝛿(nth′)

z = 0 for
n>N, we find that

E𝛿

z , E𝛿′′

z , E𝛿′′′′

z ,… ,= 0 (34)

which implies from (28) that

E𝛿′

x , E𝛿′′′

x , E𝛿′′′′′

x ,… ,= 0. (35)

With (32)–(35) implying that

E𝛿

x , E𝛿′

x , E𝛿′′

x , E𝛿′′′

x , E𝛿′′′′

x ,… ,= 0 (36)

and

E𝛿

z , E𝛿′

z , E𝛿′′

z , E𝛿′′′

z , E𝛿′′′′

z ,… ,= 0 (37)

we see from (21) and (23) and (24) that

(
∇ ⋅ Q0

)
x
= 𝛼Q𝜖0

{
1
2
𝜕

𝜕z

[
u

(
𝜕Er

x

𝜕z
+ 𝛿Eu

x

)]
+ ik0x

[
1
6

u

(
𝜕Er

z

𝜕z
+ 𝛿Eu

z

)
+1

2
𝛿
(

Er
z + uEu

z

)]
− 2

3
k2

0xu
(

Er
x + uEu

x

)}
. (38)

If (38) is multiplied by z and integrated over the transition layer, one obtains with the aid of integration
by parts

𝓁

∫
0

(
∇ ⋅ Q0

)
x

dz = −1
4
𝛼Q𝜖0Eu

x . (39)

Therefore, multiplying (19) by z and integrating over the transition layer gives in view of (36) and (37)

−
(

E(2)
x − E(1)

x

)
+ 1

8
k2

0𝛼QEu
x =

(1
8

k2
0𝛼Q − 1

)
Eu

x = 0 (40)

since E(2)
x −E(1)

x = Eu
x . Equation (40) implies that Eu

x = 0 because k2
0𝛼Q does not generally have a value equal to 8.

(For a highly accurate continuum, k2
0𝛼Q ≪ 1 and, moreover, it would be impossible for k2

0𝛼Q to realistically be
equal to exactly 8 because there is always at least an infinitesimally small loss that would preclude a perfectly
real value.) That is, we have E(2)

x − E(1)
x = 0 or

E(2)
s − E(1)

s = 0. (41)

In like manner, integrating (20) over the transition layer with
(
∇ ⋅ Q0

)
z

substituted from (22), then using (36)
and (37) and (41), and integration by parts gives

2
3

𝜕E(2)
z

𝜕z
− 1

3
ik0x E(2)

x = 0. (42)

However, Q(2)
zz = 𝛼Q𝜖0(2𝜕E(2)

z ∕𝜕z − ik0x E(2)
x )∕3, so that (42) implies that Q(2)

zz = 0 or

n̂ ⋅ Q
(2)

⋅ n̂ = 0. (43)
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We note that this boundary condition of Q(2)
zz = 0 does not imply continuous Q0zz throughout the transition

layer. In fact, with Ez having a unit-step function u(z)Eu
z across the transition layer, (14) implies that Q0xx , Q0yy ,

and Q0zz contain delta functions within the transition layer because each of these diagonal elements contain
a term proportional to 𝜕Ez∕𝜕z, and thus a term proportional to 𝛿(z)Eu

z .

Lastly, we determine the boundary condition on By across the transition layer. To do this, first take the x
component of (16) to get

𝜕By

𝜕z
= i𝜔𝜇0𝜖0Ex −

1
2

i𝜔𝜇0

(
∇ ⋅ Q0

)
x
. (44)

Integrating (44) over the transition layer, we find with the help of (38) and (41) that

B(2)
y − B(1)

y = −1
2

i𝜔𝜇0𝜖0𝛼Q

[
1
2

𝜕E(2)
x

𝜕z
+ 1

2
ik0xE(2)

z − 1
6

ik0x

(
E(2)

z − E(1)
z

)]
. (45)

An expression for B(2)
y − B(1)

y also follows from evaluating Maxwell’s equation in (15) on either side of the
transition layer, namely,

i𝜔
(

B(2)
y − B(1)

y

)
=

𝜕E(2)
x

𝜕z
−

𝜕E(1)
x

𝜕z
− ik0x

(
E(2)

z − E(1)
z

)
. (46)

Combining (45) and (46), one obtains

𝜕E(2)
x

𝜕z
−

𝜕E(1)
x

𝜕z
− ik0x

(
1 − k2

0𝛼Q∕12
) (

E(2)
z − E(1)

z

)
= 1

4
k2

0𝛼Q

(
𝜕E(2)

x

𝜕z
+ ik0xE(2)

z

)
. (47)

For a highly accurate continuum, k2
0𝛼Q ≪ 1 and, thus, the k2

0𝛼Q∕12 term in (47) can be neglected. Also, Q(2)
xz =

𝛼Q𝜖0(𝜕E(2)
x ∕𝜕z + ik0x E(2)

z )∕2, so that (47) yields

𝜕E(2)
x

𝜕z
−

𝜕E(1)
x

𝜕z
− ik0x

(
E(2)

z − E(1)
z

)
= 1

2
𝜔2𝜇0Q(2)

xz (48)

and (46) becomes simply (
B(2)

y − B(1)
y

)
= −

i𝜔𝜇0

2
Q(2)

xz (49)

or, in vector-dyadic notation,

B(2)
s − B(1)

s = −
i𝜔𝜇0

2
n̂ ×

(
n̂ ⋅ Q

(2))
. (50)

In summary, the three boundary conditions in (10)–(12) at the interface between free space and an electric
quadrupolar continuum satisfying the constitutive relation in (9) (with its generalization in (14) to include the
transition layer) have been derived directly from Maxwell’s differential equations in (15) and (16).

3. Plane Wave Incident on an Electric Quadrupolar Slab

The three boundary conditions in (10)–(12) can be used to solve the problem of a transverse magnetic (TM)
plane wave incident from free space upon an electric quadrupolar slab of thickness z0 satisfying the constitu-
tive relation in (9). There is a reflected wave in free space, a propagating and evanescent wave traveling in both
directions in the slab, and a transmitted wave leaving the trailing interface of the slab [Yaghjian, 2014]. The
boundary conditions in (10)–(12) are applied at both the leading and trailing interfaces of the slab. It is verified
that the sum of the magnitudes squared of the reflection and transmission coefficients equals unity to within
computer accuracy. It was shown in Silveirinha [2014] that the boundary conditions in (10)–(12) ensure the
continuity of the normal component of the Poynting’s vector at the interfaces, and hence this conservation
of energy.

Second, the same scattering problem is solved assuming that the evanescent modes are negligible and apply-
ing the two boundary conditions in (1) and (2). Again, it is verified that the sum of the magnitudes squared of
the reflection and transmission coefficients equals unity to within computer accuracy.
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Radio Science 10.1002/2016RS006066

Figure 2. Magnitude of the reflection coefficient using the exact solution from the three boundary conditions (10)–(12)
and the approximate solution from the two boundary conditions (1) and (2) omitting the evanescent waves.

In Figure 2, the magnitude of the reflection coefficient is plotted using the “exact” solution from the three
boundary conditions (10)–(12) and the approximate solution from the two boundary conditions (1) and (2)
omitting the evanescent waves. The macroscopic quadrupolarizability constant 𝛼Q and the thickness z0 of the
slab are normalized to a hypothetical average quadrupole spacing d of the material such that 𝛼Q = .27d2 and
the thickness of the slab is z0 = 20d. The angle that the propagation vector of the incidence TM plane wave
makes with the normal to the interface is equal to 80∘ for the results shown in Figure 2. This large angle of
oblique incidence is chosen to obtain an appreciable value of the reflection coefficient. At small values of the
incident angle, the scattering from the slab is so small that the reflection coefficient is ≪ 1 until values of k0d
are reached that are much greater than 1.

An important result revealed in Figure 2 is that the original electric quadrupolar boundary conditions in (1)
and (2) with the evanescent waves neglected (or assumed to be part of the transition layer) produce accurate
results for k0d ≲ 1, as predicted in the analysis of Yaghjian [2014]. In other words, the relative magnitude
of the electric quadrupolarization of both the evanescent mode and the extra delta functions in the electric
quadrupolarization that exist in the transition layer become negligible as k0d becomes less than 1.

4. Conclusion

Using a physically reasonable constitutive relation for a continuum material composed of a random distri-
bution of spherically symmetric electric quadrupoles (molecules or inclusions of an array), three boundary
conditions at the interface between free space and the quadrupolar continuum are determined directly from
Maxwell’s differential equations by modeling the electromagnetic behavior within the thin transition layer
between the free space and the inside of the material where the continuum constitutive relation is satisfied.
The boundary condition on the tangential magnetic field across the transition layer remains the same as the
one derived previously under the assumption that the electric quadrupolarization density contained no effec-
tive delta functions in the transition layer [Yaghjian et al., 2014]. However, the previously derived discontinuous
boundary condition on the tangential electric field reduces to the tangential electric field being continuous
across the transition layer. Moreover, an additional boundary condition (ABC) is found, namely, that the nor-
mal component of the electric quadrupolarization density has to be zero on either side of the transition layer

(n̂ ⋅ Q
(2)

⋅ n̂ = 0). This ABC agrees with the result obtained in Silveirinha [2014] under the hypothesis that the
macroscopic fields and electric quadrupolarization are piecewise continuous in the transition layer. Here we
derive this ABC directly from Maxwell’s differential equations with the constitutive relation in (14), and we
find that the diagonal elements of the electric quadrupolarization dyadic can contain delta functions in the
transition layer.

An analytic solution to a plane wave incident on an electric quadrupolar slab in which there are two
eigenmodes (a propagating and an evanescent mode) traveling in each direction confirms that three bound-
ary conditions are required at each interface to obtain a unique solution. Moreover, a second analytic solution
is obtained by applying the two previously defined boundary conditions assuming that the evanescent
modes are negligible. Numerical computations of each solution shows what was predicted in a previous
paper [Yaghjian, 2014], namely, that at the lower frequencies where k0d ≪ 1, the two solutions are in close
agreement. A future task would be to verify that these analytically derived additional boundary conditions
also predict results that compare favorably with the numerical solutions to arrays of electric quadrupolar
inclusions.
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From this work with electric quadrupolar continua, it appears to be generally possible to derive, directly from
the Maxwell differential equations, additional boundary conditions (ABCs) for higher-order multipole media
that produce a deterministic set of boundary conditions for the extra modes that may arise depending upon
the particular constitutive relations. It is emphasized that the boundary conditions strongly depend on the
constitutive relations that hold in the medium.
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