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Electronic topological insulators are one of the breakthroughs of 21st century condensed matter physics. So
far, the search for a light counterpart of an electronic time-reversal invariant topological insulator has remained
elusive. This is due to the fundamentally different natures of light and matter and the different spins of photons
and electrons. Here, it is shown that the theory of electronic topological insulators has a genuine analog in the
context of light wave propagation in time-reversal invariant continuous materials. We introduce a gauge invariant
Z2 index that depends on the global properties of the photonic band structure and is robust to any continuous
weak variation of the material parameters that preserves the time-reversal invariance. A nontrivial Z2 index
has two possible causes: (i) the lack of smoothness of the pseudo-Hamiltonian in the k → ∞ limit and (ii)
the entanglement between positive and negative frequency eigenmode branches. In particular, it is proven that
electric-type plasmas and magnetic-type plasmas are topologically inequivalent for a fixed wave polarization. We
propose a bulk-edge correspondence that links the number of edge modes with the topological invariants of two
continuous bulk materials and present detailed numerical examples that illustrate the application of the theory.
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I. INTRODUCTION

Topological electronic insulators correspond to a new phase
of matter created by the spin-orbit coupling [1–3]. These
time-reversal invariant electronic materials are insulating in
the bulk but support an odd number of topologically protected
gapless helical edge states at the boundary [4,5]. The number
of edge states (modulo 2) is absolutely insensitive to weak
perturbations of the material parameters that do not close
the gap and maintain the time-reversal invariance [4]. A
topologically protected edge state is completely impervious
to the presence of imperfections, defects, or impurities that do
not break the time-reversal symmetry. Because of this it has
been suggested that topological insulators may be useful for
applications in spintronics or in quantum computation.

Triggered by this rather exciting discovery, there have been
many attempts in the recent literature to find photonic analogs
of electronic topological insulators [6–13]. For example,
Khanikaev et al. proposed a configuration based on matched
bianisotropic photonic crystals that provides an emulation
of the Kane-Mele Hamiltonian in a photonic system [6]. A
different paradigm relies on a spatially dependent nonperiodic
optical potential that mimics a synthetic pseudomagnetic
field [10–12]. More recently, it has been shown that (time-
reversal invariant) dielectric photonic crystals with the C6

crystal symmetry also provide an interesting form of photonic
topological protection [7]. Moreover, even though they are not
the focus of the present paper, it is relevant to mention that
topological effects in nonreciprocal photonic systems, i.e., in
systems that do not have the time-reversal symmetry, have also
been widely discussed in the literature [14–19].

A problem with the designs of periodic photonic topological
insulators [6,7] (which are the counterparts of electronic
topological insulators) is that the topological protection that
they offer is quite limited [13]. Indeed, while electronic
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topological insulators are robust to any perturbation that
does not violate the time-reversal symmetry, the designs of
Refs. [6] and [7] only provide a topological protection when
additional conditions are enforced. Specifically, in Ref. [6]
the perturbation must ensure that ε = μ, whereas in Ref. [7]
the perturbation cannot break the C6 crystal symmetry. These
are rather harsh restrictions that are ultimately rooted in the
fact that the time-reversal operator (T ) in photonics satisfies
T 2 = 1 (because photons are bosons), whereas in electronics
T 2 = −1 (because electrons are fermions) [13]. The property
T 2 = −1 ensures the validity of Kramers theorem and hence
guarantees that at the high-symmetry points of the Brillouin
zone the eigenmodes are doubly degenerate [5,13]. The
Kramers theorem is the backbone of the theory of electronic
topological insulators, and the lack of an analog of this
theorem in photonics has hindered the progress in the field
of topological photonics with the time-reversal symmetry.

In this paper, it is demonstrated for the first time that even
without the Kramers theorem it is possible to define a Z2 topo-
logical index for continuous bulk photonic materials, which is
the counterpart of the Z2 topological index in electronics. We
prove that the Z2 number is robust to arbitrary deformations
of the material response that do not break the time-reversal
symmetry. We propose a bulk-edge correspondence that links
the difference between the Z2 invariants of two bulk materials
with the number of topologically protected edge modes
supported by a single interface of the materials. At this point, it
is important to highlight that a recent study also suggested that
continuous media (specifically hyperbolic chiral media) may
support topologically protected edge states [20]. Notably, the
theory of Ref. [20] is totally different from ours; in particular, it
is based on the calculation of Chern numbers in equifrequency
contours (i.e., the surfaces of the form ωk = const. in the
wave vector space). Thus, the topological numbers calculated
in Ref. [20] do not depend on the global properties of the
photonic band structure but rather on the single frequency
properties of the equifrequency contours. Rather different, here
we show that for homogeneous continuous media it is possible
to introduce a genuine Z2 index that is related to obstructions
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to the application of the Stokes theorem in half-wave vector
space and hence depends on the global band structure precisely
as in electronics [5,21]. Hence, our theory establishes for the
first time a precise photonic analog of electronic topological
insulators. This paper deals exclusively with continuous media
without any granularity. The possibility of extending the theory
to photonic crystals is discussed in the final section (Sec. V).
This paper builds on a previous study on Chern numbers for
continuous electromagnetic media [22].

II. THE Z2 INVARIANT FOR CONTINUOUS MEDIA

Next, we explore the possibility of defining aZ2 topological
index in photonic bulk materials invariant under the time-
reversal (T ) operation. We start by reviewing the definitions
of the Berry potential and Berry curvature in photonic systems,
and then we discuss possible obstructions to the application
of the Stokes theorem and the way that such obstructions may
determine a topological invariant in continuous media.

A. Berry potential and curvature

This paper is concerned with uniform continuous lossless
media whose electrodynamics—in absence of field sources—
is characterized in the frequency domain by the Maxwell’s
equations,

N̂ · F = ωG, (1)

where F = (E H)T and G = (D B)T are six-component
vector fields (T denotes the transpose of a vector), E,H are the
electric and magnetic fields, D,B are the electric displacement
and the induction fields, and ω is the oscillation frequency.
In Eq. (1), N̂ (−i∇) = ( 0 i∇ × 13×3

−i∇ × 13×3 0

)
is a differential

operator, with 13×3 being the identity tensor of dimension three
and ∇ = ∂

∂x
x̂ + ∂

∂y
ŷ + ∂

∂z
ẑ. We admit that F and G are linked

in the spectral domain by a general bianisotropic constitutive
relation [23,24],

G = M · F, with M(ω) =
(

ε0ε
1
c
ξ̄

1
c
ζ̄ μ0μ̄

)
, (2)

where the tensors ε(ω),μ̄(ω),ξ̄ (ω),ζ̄ (ω) are dimensionless and
represent the frequency-dependent permittivity, permeability,
and the magnetoelectric coupling tensors, respectively.

Let us consider the family of eigenmodes Fnk = fnke
ik·r

with envelope fnk associated with the eigenfrequencies ωnk.
The index n identifies the eigenmode branches. It is assumed
without loss of generality that the wave vector k is of
the form k = kx x̂ + ky ŷ, i.e., we are interested in the wave
propagation in the xoy plane. Other planes of propagation can
be treated in a similar way. The Z2 topological invariant may
depend on the considered plane of propagation. In continuous
media, the eigenmodes are necessarily plane waves (fnk is
independent of r), and thus the electromagnetic field enve-
lope satisfies [N̂(k) − ωnkM(ωnk)] · fnk = 0. It was originally
shown by Raghu and Haldane that the Berry potential of
nonbianisotropic local media may be written in terms of fnk

as [14,15]

Ank = Re{i f∗
nk · ∂

∂ω
[ωM(ω)]ωnk

· ∂kfnk}
f∗
nk · ∂

∂ω
[ωM(ω)]ωnk

· fnk
, (3)

where ∂k = ∂
∂kx

x̂ + ∂
∂ky

ŷ. Recently, we demonstrated in
Ref. [22] that the above formula also holds for bianisotropic
media and for a subclass of spatially dispersive media. The
material matrix needs to satisfy the restriction ∂

∂ω
[ωM(ω)] >

0, that is ∂
∂ω

[ωM(ω)] must be positive definite [14,15,22]. The
Berry curvature Fk is written in terms of the Berry potential
as

Fk = ∂Ay

∂kx

− ∂Ax

∂ky

, (4)

where it is implicit that Ak includes the contributions from all
of the relevant photonic bands.

We are interested in materials with a response invariant
under the time-reversal operator T . The time-reversal operator
for photonic systems is of the form T = KU , whereK denotes
the complex conjugation operator and U = (13×3 0

0 −13×3

)
.

For time-reversal invariant systems T : fnk → T · fnk maps
eigenmodes fnk associated with the frequency and the wave
vector pair (ωnk,k) into eigenmodes (T · fnk) associated with
the pair (ωnk,−k), i.e., T flips the wave vector.

The time-reversal invariance requires that M(ω) = U ·
M∗(ω) · U . For lossless systems [for which M(ω) is Hermitian
symmetric for ω real valued [24]], the time-reversal invariance
is equivalent to the Lorentz reciprocity. The constitutive
parameters of a reciprocal material (e.g., standard dielectrics
and metals) are required to satisfy [24]

ε(ω) = [ε(ω)]T , μ̄(ω) = [μ̄(ω)]T , ζ̄ (ω) = −[ξ̄ (ω)]T ,

(5)
where the superscript T denotes the transpose matrix. For a
system with the T symmetry, the Berry curvature satisfies
Fk = −F−k, and hence the corresponding Chern numbers
vanish [13,15].

As discussed in Ref. [22], for continuous media it is useful
to visualize the wave vector space (kx,ky ∈ [−∞,+∞]) as the
Riemann sphere [Fig. 1(a)]. Each point of the (kx,ky) plane
can be mapped into a point κ of the Riemann sphere by the
stereographic projection. The origin is mapped into the south
(S) pole, and the point k = ∞ is mapped into the north (N)
pole. In the rest of the paper, we loosely identify the points of
the plane with the points of the Riemann sphere whenever it is
pertinent.

In electronic systems, the Z2 topological invariant can be
calculated by counting the zeros of a Pfaffian function [1,5,21].
The topological invariant may also be expressed in terms of
integrals involving the Berry potential, such that the integration
region consists of half-Brillouin zone, i.e., half of the wave
vector space [5,21]. It will be shown in this paper that it
is possible to extend such a concept to continuous photonic
systems. Thus, we define the effective Brillouin zone (EBZ)
as half of the Riemann sphere surface (e.g., the half of the
sphere in the semi-plane ky � 0) and the ∂EBZ (a meridian
circle) as the corresponding boundary [Fig. 1(a)].

Because the electromagnetic fields are real-valued physical
entities (different from the wave function in electronics),
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FIG. 1. (a) The wave vector space can be regarded as the Riemann
sphere. Each point of the sphere is projected into a single point of
the plane through the stereographic projection. Half of the wave
vector space (e.g., the semi-space ky > 0) is mapped into half of
the Riemann sphere surface: the effective Brillouin zone (EBZ).
The boundary of the EBZ is represented in the Riemann sphere
by a circle (∂EBZ). (b) Integration contours used in Eq. (11).
(c) Generic band diagram of a lossless material with the time-reversal
and reality symmetries, showing both the positive and negative parts
of the frequency spectrum.

the material matrix is required to satisfy as well the reality
condition [25], i.e., M(ω) = M∗(−ω) for ω real valued. In
other words, the Maxwell’s equations are invariant under the
application of the complex conjugation operator K. As a con-
sequence, it is possible to transform a natural mode associated
with the pair (ωnk,k) into another eigenmode associated with
the pair (−ωnk,−k) through the mapping K : fnk → K · fnk.
Hence, as illustrated in Fig. 1(c), the frequency spectrum
consists of both positive and negative frequency branches.
Evidently, the positive and negative frequency branches are
generally disconnected from each other, except in the long
wavelength limit (ω,k) ≈ (0,0) [see points P2 and P ′

2 in
Fig. 1(c)] and at infinity (ω,k) ≈ (∞,∞) (see points P1 and
P ′

1). It will be shown later that the connections of the positive
and negative frequency spectra play an important role in the
definition of the Z2 number for photonic continuous media.

B. Obstructions to the application of the Stokes theorem

Let us consider a globally defined gauge of eigenmodes
fnk that varies smoothly in all space, except possibly at a
few isolated points. Usually, the singularities occur at the
points of the wave vector space wherein the group velocity
of the electromagnetic modes vanishes. In a periodic system
with the time-reversal symmetry (ωnk = ωn,−k), the group
velocity usually vanishes at all the high-symmetry points of the
Brillouin zone that stay invariant under the action ofT (e.g., for
a square lattice these points are �,X, Y, and M following the
usual notations). In a continuous system, the points invariant

under T are the k = ∞ and k = 0 points, i.e., the N and S
poles of the Riemann sphere.

The reason why a zero-group velocity may imply a singular
behavior of the individual eigenwave branches is because these
points behave as either sources or sinks of the Poynting vector
lines and such a property may be incompatible with having
both Ek and Hk continuous. This is best illustrated with an
example. Consider a lossless electron gas described by the
Drude model ε = 1 − ω2

pe/ω
2 and μ = 1, where ωpe is the

plasma frequency. For propagation in the xoy plane, there are
three families of positive frequency electromagnetic modes:
the transverse magnetic (TM) and the transverse electric (TE)
waves and the longitudinal electric (LE) waves such that

fTM,k ∼
(

− k
ωT,kε0ε(ωT,k) × ẑ

ẑ

)
, fTE,k ∼

(
ẑ

k
ωT,kμ0μ

× ẑ

)
,

fLE,k ∼
(

k

0

)
. (6)

In the above, ωT,k =
√

ω2
pe + k2c2 is the dispersion of the

transverse eigenmodes, and the normalization of the modes
is arbitrary (typically the modes are normalized to have
unit energy [22]). The longitudinal modes are dispersionless
(ωL,k = ωpe). Notably, for TM waves the magnetic field
is always directed along z and hence to have an outward
radial Poynting vector (source-type lines), the electric field
is forced to wind around the origin. As a consequence, fTM,k
is discontinuous in the vicinity of the origin (note that when

k → 0, one has fTM,k ∼ (k̂ × ẑ
0

)
, i.e., the magnetic field becomes

negligible compared to the electric field). The longitudinal
mode is also discontinuous at the origin. Importantly, it is
impossible to get rid of the discontinuous behavior of each
branch near the origin with a gauge transformation. It is noted
that the time-reversal invariance forces the Poynting vector
lines to have at least a source and a sink in the wave vector
space.

The singularities of the eigenmodes fnk at the time-reversal
invariant points of the wave vector space may lead to an
obstruction to the application of the Stokes theorem to the
Berry potential. Our motivation to study possible obstructions
to the Stokes theorem is inspired by the findings of Fu and
Kane (see Ref. [21]) for electronic systems [5].

To show this, let us consider first an arbitrary closed contour
C in the k-plane such that fnk is free of singularities on the
contour C. However, the individual eigenmode branches fnk
may be singular at a few points ks

m(m = 1, 2, . . .) interior to
C. Let us define the quantity

DC = 1

2π

(
�
∫

C

Ak · dl −
∫

int C
Fkds

)
, (7)

where Ak and Fk are the Berry potential and curvature
associated with the considered set of eigenfunctions. The
first integral is a line integral, and the second integral is a
surface integral over the region interior to C (intC). The direct
application of the Stokes theorem to C would give DC = 0.
Evidently, the singularity points ks

m may be an obstruction to
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MÁRIO G. SILVEIRINHA PHYSICAL REVIEW B 93, 075110 (2016)

the result DC = 0. Indeed, it is clear that in general one has

DC =
∑
m

1

2π
�
∫

Cr (ks
m)
Ak · dl. (8)

In the above, Cr (ks
m) represents a circle centered at ks

m with
radius r → 0+. It can be shown (see Ref. [22] for detailed
arguments) that because the relevant pseudo-Hamiltonian
is smooth for any finite k, the integral 1

2π
�
∫
Cr (ks

m) Ak · dl is
necessarily some integer number lm. Thus, in general, DC is a
nonzero integer. [In some cases it may be possible to make a
gauge transformation such that the transformed basis remains
globally defined and has DC = 0.]

So far our discussion is completely general. Let us now
consider the interesting case wherein the material has the
time-reversal symmetry and C is the effective Brillouin zone
boundary (∂EBZ) so that the interior of C is exactly half of the
wave vector space (EBZ). Specifically, if the point k belongs
to the EBZ, then the point −k cannot belong to the EBZ
except if it lies on the boundary ∂EBZ. Figure 1(a) depicts the
particular case wherein the EBZ is the semi-plane ky � 0, but
other choices are allowed. Crucially, independent of the choice
of the EBZ, the points k = ∞ and k = 0 (N and S poles of
the Riemann sphere) are always in the ∂EBZ because they are
invariant under the time-reversal transformation. Therefore, it
is always feasible to choose the EBZ in such a manner that
there are no singularities ks

m on the boundary ∂EBZ, with the
possible exceptions of the N and S poles of the Riemann sphere.
Thus, compared to the case discussed previously, now there is
an additional cause for an obstruction to the Stokes theorem:
the possible singularities at the time-reversal invariant points.
Let us write,

DEBZ = 1

2π

(
�
∫

∂EBZ
Ak · dl −

∫
EBZ

Fkds

)
. (9)

For example, if the EBZ is taken as the semi-plane
ky � 0, the integrals can be explicitly spelled out as
DEBZ = 1

2π
(
∫ +∞
−∞ Ak · x̂ dkx − ∫∫

ky>0 Fkdkxdky). When the
eigenfunctions are discontinuous at the N and S poles, the Berry
potential can also be discontinuous at these points. Hence, it
is convenient to make the definition of DEBZ more precise:

DEBZ = 1

2π
lim
r→0+
R→∞

[(∫ −r

−R

+
∫ R

r

)
Ak · x̂ dkx

−
∫∫

ky>0
r�|k|�R

Fkdkxdky

]
. (10)

Using the Stokes theorem in a domain where the singulari-
ties are excluded, one finds that

DEBZ = −1

2π

∫
CS

r

Ak · dl + −1

2π

∫
CN

R

Ak · dl

+ 1

2π

∑
ks

m∈EBZ

�
∫

Cr (ks
m)
Ak · dl, (11)

where CS
r and CN

R are half-circles centered, respectively, at the
S and N poles, which in the k-plane correspond to the half-
circles shown in the Fig. 1(b). It is implicit in the above formula
that r → 0+ and R → ∞. Note that in the Riemann sphere,

both CS
r and CN

R have a vanishingly small radius when r → 0+
and R → ∞, respectively. Thus, DEBZ has contributions from
the possible singularities at the S and N poles [first two terms of
Eq. (11)] and from the singularities interior to the EBZ [third
term of Eq. (11), which was previously shown to be an integer
number].

C. Gauge constraints

Next, we discuss the possibility of imposing some gauge
restrictions on the globally defined basis of eigenfunctions.
The gauge restrictions are crucial to define a topological
number. Specifically, let fnk be some globally defined family
of eigenmode branches that includes all the Bloch waves in
some frequency range of the form ωmin < ω < ωmax, where
ωmin,ωmax should be nonnegative frequencies in a bandgap or
alternatively ωmin = 0 or ωmax = ∞. Note that only positive
frequencies are included in the range of interest.

As discussed in the previous subsection, in general the
individual branches fnk are not continuous at the S and N poles.
Nevertheless, the eigenspaces of the pseudo-Hamiltonian vary
continuously with the wave vector for any k-finite because
the pseudo-Hamiltonian is a smooth function of k [22]. In
particular, the eigenspaces vary continuously in the vicinity of
S pole (k = 0). This implies that (fnk)S− and (fnk)S+ are related
by some unitary transformation V, where the S± points belong
to the ∂EBZ and are displaced by an infinitesimal amount to the
right/left of the S pole. For example, if the EBZ is the region
ky � 0, the points S± correspond in the k-plane to (0±,0).
Thus, it is always possible to pick a gauge such that

(fnk)S− = (fnk)S+ for the branches with ωn,k=0+ �= 0. (12a)

The identity (fnk)S− = (fnk)S+ should be understood, as the
basis (fnk)S− is linked with the basis (fnk)S− by some unitary
transformation V with det(V) = 1. Often V can be taken as
the identity matrix, and in that case Eq. (12a) is equivalent to
the continuity of the individual branches at the S point with
the wave vector restricted to the ∂EBZ.

Note that the positive frequency eigenmode branches with
ωn,k=0+ = 0+ are not included in Eq. (12a). The reason is that
the ω = 0 eigenspace is reached both as the limit of positive
and negative frequency eigenspaces [Fig. 1(c)]. Hence, it is
generally impossible to link the ω = 0 eigenspaces at the S±
points by a unitary transformation without considering both
the positive and the negative frequency branches (and also the
zero-frequency dispersionless branches, if any). For example,
in the long wavelength limit (ω = 0+), the eigenfunctions usu-
ally are similar to the eigenfunctions of the vacuum. Notably,
the Poynting vector of the electromagnetic modes does not
vanish in the ω = 0+ limit. Thus, in the long wavelength
limit the point S (k = 0) behaves as a source of the Poynting
vector lines of the relevant positive frequency branches fnk. In
particular, the Poynting vector changes direction at points of
the form S− and S+ [in Fig. 1(c) these points may be identified
with P̄2 and P2]. Thus, fnk cannot possibly be the same at
S− and S+ because this would imply the continuity of the
Poynting vector. This confirms that the eigenspaces generated
by the positive frequency eigenfunctions with ωn,k=0+ = 0+

are indeed different at the S± points.
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Because of the time-reversal symmetry, the ω = 0+
eigenspaces at the S± points can always be linked by the time-
reversal operator T . Importantly, in the long wavelength limit
ω → 0+, the magnetoelectric coupling parameters vanish,
and hence the material response M(ω = 0+) is real valued.
This means that the ω = 0+ eigenspaces can be generated by
real-valued vectors, and hence these eigenspaces are invariant
under the application of the complex conjugation operator
K. This discussion shows that one can connect the ω = 0+
eigenspaces at the S± points through the operator U = KT .
Thus, we can pick a gauge such that

(fnk)S− = (U · fnk)S+ for the branches with ωn,k=0+ = 0.

(12b)
As before, the identity (fnk)S− = (U · fnk)S+ means that the
two eigenfunctions’ basis must be related by a unitary
transformation V with det(V) = 1.

We want to impose that the eigenfunction basis satisfies
constraints analogous to Eqs. (12a) and (12b) at the N pole
(k = ∞). Specifically, we want to pick a gauge for which

(fnk)N− = (fnk)N+ for the branches with ωn,k=∞ �= ∞, (12c)

and

(fnk)N− = (U · fnk)N+ for the branches with ωn,k=∞ = ∞.

(12d)
Here, N− and N+ represent points in the ∂EBZ offset by an
infinitesimal amount from the N point.

The justification for Eq. (12d) is analogous to that given in
Eq. (12b). Indeed, in the high-frequency limit (ω = ∞), the
branches of positive and negative frequencies are effectively
entangled at the N pole. Thus, the eigenspaces generated by
(fnk) at the N− and N+ points are usually different [in Fig. 1(c)
these points are P̄1 and P1]. Indeed, for ω = ∞+ the point N
effectively behaves as a sink of the Poynting vector lines.
Crucially, in the high-frequency limit, the material response
should be asymptotically analogous to that of the vacuum, and
hence the magnetoelectric coupling response is required to
vanish. In other words, M(ω = ∞) must be real valued. Hence,
the ω = +∞ eigenspaces at the N± points can be connected
by the operator U = KT , consistent with Eq. (12d).

Regarding the constraint in Eq. (12c), it can be enforced
when the eigenspaces at the N± points are the same for a finite
eigenvalue ωn,k=∞. This is guaranteed to happen if the pseudo-
Hamiltonian of the system varies smoothly at the N pole of the
Riemann sphere. The interesting thing is that for continuous
media the pseudo-Hamiltonian is usually ill behaved at the
N pole [22], and hence it is not obvious a priori that the
eigenspaces at the N± need to be same. In Appendix A, it
is proven that notwithstanding that the pseudo-Hamiltonian
is not smooth at infinity, it is always possible to impose the
constraint [Eq. (12c)].

D. The Z2 invariant

We are now ready to define a Z2 index for continuous
photonic systems with the time-reversal symmetry. Let us
then consider a globally defined basis of eigenfunction fnk
associated with the eigenvalues lying in some frequency
range ωmin < ω < ωmax (with 0 � ωmin,ωmax � ∞), such that
the basis fnk satisfies the gauge constraints discussed in the

previous subsection [Eq. (12)]. We define the Z2 number as
D = (2DEBZ)mod 2 so that

D = 1

π

(
�
∫

∂EBZ
Ak · dl −

∫
EBZ

Fkds

)
mod 2. (13)

It will be shown in what follows that D is a gauge invariant
integer number. From the Sec. II B, it is clear that a nontrivial
topological numberD may be regarded as an obstruction to the
application of the Stokes theorem to half-wave vector space
when the picked gauge satisfies the constraints [Eqs. (12)],
somewhat similar to what happens in electronic systems [5,21].
The definition of theZ2 number in Eq. (13) differs by a factor of
two from that proposed by Fu and Kane for electronic systems
D̃ = DEBZmod 2 [21]. It is shown in Appendix B that the two
definitions can be reconciled if the Berry potential includes
the contribution from both positive and negative frequency
eigenfunctions.

To begin with, we observe that from Eq. (11) D may have
contributions from the singularities interior to the EBZ and
from the time-reversal invariant points N and S. From Sec. II B
it is clear that 2 × 1

2π

∑
ks

m∈EBZ�
∫
Cr (ks

m) Ak · dl = 2lm is an even
integer number, and hence the singularities in the interior of
the EBZ do not contribute to D. Therefore, Eq. (11) implies
that the D number can be written as

D =
[

−1

π

∫
CS

r ∪CN
R

Ak · dl

]
mod 2, (14)

i.e., the invariant can be calculated simply by integrating the
globally defined and gauge-constrained Berry potential over
semicircles with infinitesimal radius that encircle the N and S
points of the Riemann sphere.

The D number is gauge invariant when the globally defined
basis is restricted to satisfy the constraints [Eq. (12)]. The
gauge invariance can be proven by noting that a smooth
gauge transformation of the positive frequency branches,
fnk → fnke

iθnk , must be such that

(θnk)N− − (θnk)N+ = 2πln and (θnk)S− − (θnk)S+ = 2πl′n,

(15)

where ln,l
′
n are integers. Indeed, only in these conditions

does the new gauge satisfy Eqs. (12). Because the Berry
potential is transformed as Ak → Ak − ∇k

∑
n θnk [5], it

follows from Eq. (14) that the D number is transformed
as D → [−1

π

∫
CS

r ∪CN
R
Ak · dl + 1

π

∫
CS

r ∪CN
R

∇kθnk · dl]mod 2, or
equivalently,

D →
[

−1

π

∫
CS

r ∪CN
R

Ak · dl + 1

π
(θn,k=0+ − θn,k=0− )

+ 1

π
(θn,k=−∞ − θn,k=+∞)

]
mod 2 = D, (16)

where the last identity is a consequence of the constraints in
Eq. (15) and it is implicit that k is in the ∂EBZ. This proves
that D is really gauge invariant.

Furthermore, it is proven in Appendix C that D is a
Z2 integer. Hence, bulk continuous photonic media can be
classified in a given spectral range as topologically trivial
(D = 0) or topologically nontrivial (D = 1). For continuous
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media with D = 1, it is impossible to directly apply the Stokes
theorem to the EBZ when the eigenfunction basis is required
to satisfy the restrictions in Eq. (12). Moreover, the analysis
of Appendix C reveals that the nontrivial contributions to the
topological invariant have two origins: (i) the singular nature
of the pseudo-Hamiltonian at the N pole (k = ∞) and (ii)
the entanglement between positive and negative eigenmode
branches at either ω = 0+ or ω = +∞. In particular, the
integral of the Berry potential over the half-circle CS

r gives
a trivial contribution to the invariant, with the exception of
branches with ωn,k=0 = 0+.

To conclude this section, we note that the integral in
Eq. (14) (over two half-circles of infinitesimal radius in the
Riemann sphere) in principle varies continuously if the EBZ
is smoothly deformed (so that the points N± and S± are also
varied continuously), ensuring at the same time that the gauge
restrictions [Eqs. (12)] are satisfied (thus, the picked gauge
must also be smoothly deformed). However, since D is an
integer, this indicates that it stays invariant under a smooth
deformation of the EBZ, and hence D is independent of the
specific choice of the EBZ.

III. ISOTROPIC DIELECTRICS

To illustrate the application of the developed theory, first
we consider the subclass of time-reversal invariant materials
formed by standard isotropic dielectrics characterized by some
permittivity ε(ω) and some permeability μ(ω). Importantly, for
such materials, the electromagnetic modes can be subdivided
into two classes: the TE polarized waves with electric
field perpendicular to the plane of propagation (E = Ezẑ
and H = Hx x̂ + Hy ŷ) and the TM waves with magnetic
field perpendicular to the plane of propagation (H = Hzẑ
and E = Ex x̂ + Ey ŷ) [see Eq. (6)]. The TE and TM waves
are completely decoupled, and hence the pseudo-Hamiltonian
(Ĥcl , see Ref. [22]) that characterizes an isotropic dispersive
dielectric can be regarded as the sum of two independent
Hamiltonians, Ĥcl = Ĥ TE

cl + Ĥ TM
cl , whereas the whole vector

space can be regarded as the direct sum of two independent
subspaces (the subspace of TE waves and the subspace of TM
waves, respectively). Thus, it is possible to characterize the
invariants associated with the TE waves (DTE) and TM waves
(DTM) separately. The topological invariant of the isotropic di-
electric is evidently D = (DTE + DTM)mod 2. Note that all the
invariants (D,DTE,DTM) depend on the spectral range ωmin <

ω < ωmax, i.e., on the considered subset of photonic bands.
Even though the previous discussion deals with isotropic

media, it can be readily generalized to uniaxial dielectrics with
ε̄ = ε||(ω)(x̂x̂ + ŷŷ) + ε⊥(ω)ẑẑ and μ̄ = μ||(ω)(x̂x̂ + ŷŷ) +
μ⊥(ω)ẑẑ.

A. Topological invariants for TM waves

As a starting point, we consider two distinct materials
responses (labeled by the indices 1 and 2) determined by

ε1 = 1 − ω2
pe/ω

2,
(17a)

μ1 = 1, [epsilon negative (ENG) material],

ε2 = 1, μ2 = 1 + ω2
1m/

(
ω2

0m − ω2
)
,

[mu negative (MNG) material]. (17b)

Material 1 is characterized by a standard Drude dispersion
model and has a negative permittivity for ω < ωpe and a
positive permeability. We will refer to this material as an
epsilon negative (ENG) material [27]. On the other hand,
the permeability of the second material follows a standard
Lorentz-type dispersion. In particular, in the frequency range
ω0m < ω <

√
ω2

0m + ω2
1m , the permeability is negative, while

the permittivity is constant and positive. Thus, we refer to
the second material as a mu negative (MNG) material [27].
It should be noted that in a bandgap, an arbitrary isotropic
dielectric has necessarily either an ENG or an MNG type
response. In general, ENG and MNG materials may be
designed relying on the metamaterial concept [28].

It is interesting to consider a continuous transformation
of the material 1 into the material 2. To this end, we
consider a material response dependent on a parameter τ such
that Mτ (ω) = M∞ + (1 − τ )χ1(ω) + τχ2(ω), with 0 � τ �
1. Here, M∞ = M(ω = ∞) represents the material matrix of
the vacuum, and χi(ω) = Mi(ω) − M∞ is the susceptibility
associated with the ith material. When materials 1 and 2
are characterized by parameters consistent with Eq. (17), one
has the following explicit dependence of the permittivity and
permeability on τ : ετ (ω) = 1 − (1 − τ )ω2

pe/ω
2 and μτ (ω) =

1 + τω2
1m/(ω2

0m − ω2). Thus, material 1 (τ = 0) is continu-
ously deformed into material 2 (τ = 1), as the parameter τ

varies in the interval 0 < τ < 1.
Figure 2 represents the band structure determined by Mτ (ω)

for different values of τ , considering that ω0m = 0.5ωpe and
ω1m = 2.0ωpe. As is well known, for isotropic materials
there are two types of plane waves: transverse waves and
longitudinal waves. The transverse waves are doubly degen-
erate, such that there is a wave associated with TE-polarized
modes and a wave associated with TM-polarized modes. On
the other hand, the longitudinal waves occur at frequencies
where either ε = 0 (LE modes, with E ∼ k̂ and H = 0) or
μ = 0 [longitudinal magnetic (LM) modes, with H ∼ k̂ and
E = 0]. The longitudinal modes are dispersionless. The LE
(LM) modes are particular cases of TM (TE) polarized waves,
respectively.

We calculated the topological invariant for each band subset
with TM polarization (DTM). The value of the topological
invariant is indicated in the insets of Fig. 2. Note that for TM
polarization, the flat band associated with the LM modes (μ =
0) must be ignored because it is associated with TE-polarized
waves. The calculation of DTM is done as follows. For the
transverse waves we pick the globally defined set of eigen-

functions, f̃TM,k = (− k
ωT,kε0ε(ωT,k ) × ẑ

ẑ

)
[Eq. (6)], with ω = ωT,k

such that k = ω
c

√
ε(ω)μ(ω). Typically, these eigenfunctions

do not satisfy the gauge restrictions [Eqs. (12)]. Indeed, since
in the present example the permittivity has no poles for ω > 0,
it may be checked that for the branches with ωT,k=∞ �= ∞ one

has f̃TM,k ≈ (−k̂ × ẑ
0

)
in the limit k → ∞, and hence (f̃nk)N− =

−(f̃nk)N+ . One can get rid of the undesired minus sign with
a smooth gauge transformation, fTM,k = f̃TM,ke

iθk , with θk
such that (θk)N+ − (θk)N− = π , so that (fnk)N− = (fnk)N+ . [For
example, one may pick θk = π

2 (cos(ϕ) + 1)e−1/k , where (k,ϕ)
determines a system of polar coordinates in the k-plane, so
that (θk)ϕ=0+,k=∞ − (θk)ϕ=π,k=∞ = π . Note that this θk does
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FIG. 2. Topological transition from an ENG material (τ = 0) to an MNG material (τ = 1) (ω0m = 0.5ωpe; ω1m = 2.0ωpe). The purple
dashed (black dotted-dashed) lines represent the longitudinal modes associated with μ = 0 (ε = 0). The green solid lines are associated with
the transverse waves. The insets show the topological invariants for the TM-polarized waves. For τ = 0.15, the bandgap closes, and the Z2

topological index of the upper (lower) bands changes value.

not change the behavior of the eigenfunctions near the S pole
(k = 0).] Because f̃TM,k is real valued, the corresponding Berry
potential vanishes. Thus, Ak = −∇kθk, and from Eq. (14) one
sees that each TM transverse branch with ωT,k=∞ �= ∞ gives
a contribution (calculated over the half-circle centered at the
N point) of +1 to the invariant. Using similar arguments, one

can check that the contribution of the LE branch
[
f̃LE,k ∼ (k̂

0

)]
and of the transverse branch with ωT,k=∞ = ∞ at the N point
is also +1. On the other hand, it may be verified that the
individual contributions from the transverse and longitudinal
branches at the S pole are, in general, nonzero. However, the
total contribution from all branches at the S pole vanishes.
Indeed, as discussed in Sec. II D, the S pole can only yield
a nontrivial contribution to the Z2 invariant for bands with
ωn,k=0 = 0 (in the examples of Fig. 2 all of the bands have
ωn,k=0 > 0). Notably, the previous analysis indicates that for
isotropic dielectrics (which have a response that stays invariant
under the inversion transformation r → −r) the value of the
topological invariant for each eigenmode branch is intrinsically
related to the parity (odd or even) of the electric field at the
time-reversal invariant points of the wave vector space. A
similar property applies to electronic topological insulators
with the inversion symmetry [26].

As seen in Fig. 2, the high-frequency photonic bands have
a topological index DTM different from the low-frequency
bands. Importantly, as τ varies from 0+ (ENG-type material
response) to 1− (MNG-type material response), the topo-
logical invariant of the high-frequency and low-frequency
bands is interchanged. The topological transition takes place
precisely when τ = 0.15, i.e., when the bandgap closes and
ετ = μτ = 0. Note that for τ = 0.15, the bands with ω >√

1 − τωpe = 0.92ωpe have ε,μ > 0 [double positive (DPS)
material response], whereas the bands with ω < 0.92ωpe have
ε,μ < 0 [double negative (DNG) material response]. This
result demonstrates that if one considers only TM-polarized

waves, then the ENG material (material with τ = 0+) is
topologically distinct from the MNG material (material with
τ = 1−). Note that the two materials share a common bandgap,
ω0m < ω < ωpe, and that the topological numbers associated
with the eigenmode branches in any of the two intervals ωgap <

ω < +∞ or 0+ < ω < ωgap are distinct in the two materials,
i.e., DT M = 1, where DT M = (DTM

MNG − DTM
ENG)mod 2.

Here, ωgap is any frequency in the common bandgap.
It is relevant to note at this point that the dimension of

the Hilbert space wherein the pseudo-Hamiltonian of a given
continuous medium is defined depends on the number of
poles of the material response [22]. Hence, if one wishes to
compare two generic materials (characterized by the material
matrices M1 and M2) and to test whether they are topologically
equivalent or not, it is necessary to choose an underlying
Hilbert space that is common to the two materials. This
can be done using the combined material matrix Mτ (ω),
which effectively merges the poles of the two material
responses. Hence, we say that two materials M1 and M2 are
topologically equivalent (inequivalent) in some spectral range
if the topological numbers of Mτ=0+ ≈ M1 and Mτ=1− ≈ M2

are the same (different). The finding that ENG and MNG
materials are topologically distinct (DT M = 1) is consistent
with this definition.

B. Topological invariants for TE waves
and for the bulk dielectric

The topological numbers for TE-polarized waves can be
calculated using a procedure analogous to that outlined in the
previous subsection. For transverse waves, we start with the

globally defined gauge f̃TE,k = ( ẑ
k

ωT,kμ0μ(ωT,k ) × ẑ

)
[Eq. (6)]. It can

be confirmed that this gauge gives (f̃TE,k)N− = (U · f̃TE,k)N+

for the high-frequency transverse band with ωT,k=∞ = ∞ and
(f̃TE,k)N− = (f̃TE,k)N+ for the low-frequency transverse band
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with ωT,k=∞ finite (note that for this band the permeability
has a pole). Thus, the behavior of f̃TE,k near the N point is
compatible with the gauge restrictions [Eqs. (12)]. Because
the Berry potential associated with f̃TE,k vanishes, we conclude
that the contribution to DTE from the transverse bands at the
N point vanishes. On the other hand, it may be confirmed that

the contribution from the LM branch
[
f̃LM,k ∼ (0

k̂

)]
to DTE at

the N point is +1. Again, the S point gives no contributions
to the invariant. Using these results, it can be verified that
DTE = DTM in all the cases of Fig. 2. Thus, it follows that
also for TE-polarized waves, the ENG material (τ = 0+) is
topologically distinct from the MNG material (τ = 1−).

An immediate consequence of this finding is that the
topological number for the bulk dielectric (including both TE-
and TM- polarized waves) is D = (DTE + DTM)mod 2 = 0.
In other words, a bulk isotropic dielectric is always (in any
frequency interval of interest) topologically trivial. Thus, the
Stokes theorem can be applied with no obstructions to the
EBZ. However, if one restricts himself to either TE- or
TM-polarized waves, then in general there are obstructions
to the application of the Stokes theorem, and an isotropic
dielectric may be topologically nontrivial in the subspace of
Hamiltonians associated with a specific wave polarization.

Even though bulk isotropic dielectrics are topologically
trivial (when there are no polarization restrictions), it is
relevant to note that bulk anisotropic uniaxial dielectrics can be
topologically nontrivial. Indeed, in uniaxial media DTE (DTM)
only depends on the permittivity and permeability components
ε⊥,μ|| (ε||,μ⊥). Thus, in general, the band structures of
the TE and TM polarizations can be totally independent
from each other, and hence one can obviously have D =
(DTE + DTM)mod 2 different from zero for some eigenmode
branches.

C. Topological edge states

It is natural to wonder whether similar to electronics [4,5]
having two different Z2 topological numbers in two bulk
materials (D = 1) may imply the existence of topologically
protected helical edge states. Specifically, in electronic systems
it is known that if the interface (let us say along the x direction)
between two T -invariant electronic materials with a common
bandgap supports an odd number of edge states in half of the
Brillouin zone (0 < kx < π/a, with a being the period along
the x direction and kx the propagation constant of the edge
modes), then the Kramers theorem ensures the topological
protection of these states [4]. Indeed, any continuous deforma-
tion of the two bulk materials that preserves the time-reversal
invariance and does not close the common bandgap can only
change the number of edge states modulo 2 [4].

Unfortunately, despite some parallelisms discussed in
Appendix B, in photonic systems there is no precise analog of
the Kramers theorem. This suggests that the dispersion of the
edge states in photonic systems cannot be protected in the same
robust topological manner as in electronics. Can we however
make sense of the topological inequivalence of two materials
(D = 1) in the context of the edge states propagation?

Suppose that two topologically inequivalent photonic ma-
terials (M1 and M2) are placed side by side. One can regard the

interface as a very thin layer wherein the pseudo-Hamiltonian
of the material M1 is continuously deformed into the material
matrix M2 [5]. Because the materials are topologically
inequivalent, the bandgap must close and eventually reopen
somewhere in the thin interfacial layer. Hence, this suggests
that the two topologically inequivalent materials must support
edge states somewhere in the common bandgap. Crucially,
different from electronic systems, the edge states dispersion is
not required to span the entire bandgap. In electronic systems,
the Kramers theorem guarantees that if the number of edge
states modulo 2 is nonzero, then the edge states dispersion
spans the entire gap [4]. This happens because the Kramers
theorem (when applied to the heterostructure) forbids the edge
modes dispersion from opening a gap at the T -invariant points
kx = 0, kx = π/a [4]. However, as previously discussed, in
photonic systems there is no exact analog of the Kramers
theorem.

In summary, the previous heuristic discussion suggests
that the bulk-edge correspondence for photonic topologically
inequivalentT - invariant materials only allows establishing the
emergence of topological edge states in the common bandgap.
The topological edge states are not required to span the entire
bandgap.

To test these ideas, we studied the dispersion of the edge
modes supported by an interface between an ENG (ε1,μ1) and
an MNG material (ε2,μ2). As seen in the previous subsections,
these materials are topologically different when the wave
propagation is restricted to be either TE or TM polarized. As is
well known, the dispersion of the guided modes for TE (TM)
polarization is determined by the characteristic equation γ1

μ1
+

γ2

μ2
= 0 ( γ1

ε1
+ γ2

ε2
= 0), where γi = √

k2
x − ω2εi(ω)μi(ω)/c2,

i = 1, 2, and kx is the propagation constant of the guided
mode along the interface (directed along the x direction).

Let us focus on the TM polarization case and prove that,
indeed, there is always a branch of edge modes lying within the
common bandgap of the two topologically different materials.
Specifically, next we prove that there is always an edge
mode with kx = 0 (obviously, this edge mode is analytically
continued to form a branch of edge modes). Suppose that
the common bandgap is defined by ωL < ω < ωU , where
ωL,ωU determines the bandgap edges. Then, for kx = 0 the
TM dispersion equation for frequencies within the common

bandgap reduces to f (ω) = 0, with f ≡ −
√

μ1

|ε1| +
√

|μ2|
ε2

. We

used the fact that in the common bandgap, ε1 < 0,μ1 > 0
(ENG material) and ε2 > 0,μ2 < 0 (MNG material). Clearly,
ωL,ωU must satisfy one of the following four conditions: (i)
ε1(ωU ) = 0 and ε1(ωL) = ∞; (ii) μ2(ωU ) = 0 and μ2(ωL) =
∞; (iii) ε1(ωU ) = 0 and μ2(ωL) = ∞; and (iv) μ2(ωU ) = 0
and ε1(ωL) = ∞. Notably, it can be checked that for all four
cases one has f (ωL)f (ωU ) < 0. For example, in condition

(i), f (ωL) =
√

|μ2|
ε2

∣∣
ωL

> 0 and f (ωU ) = −∞. The property
f (ωL)f (ωU ) < 0 demonstrates that there is, indeed, some
frequency in the gap for which f (ω) = 0, and this proves
the desired result. Analogously, one can verify that for
TE polarization there is always an edge mode branch in
the common bandgap. Thus, the bulk-edge correspondence
discussed in the beginning of this subsection really applies to
the case of an interface between ENG and MNG materials.

075110-8



Z2 TOPOLOGICAL INDEX FOR CONTINUOUS . . . PHYSICAL REVIEW B 93, 075110 (2016)

20 10 0 10 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

20 10 0 10 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

FIG. 3. Dispersion of the edge modes at an interface between an ENG material and an MNG material. The dashed horizontal gray lines
delimit the common bandgap of the two bulk materials. The solid green lines represent the edge modes dispersion. The TE and TM branches
within the bandgap are identified by the arrows and meet at the kx = 0 point. The dashed blue (dotted-dashed black) lines represent the dispersion
of the transverse modes of the bulk MNG (ENG) materials with material dispersion as in Eq. (17) and (a) ω0m = 0.5ωpe; ω1m = 2.0ωpe and
(b) ω0m = 0.8ωpe; ω1m = 2.0ωpe.

To illustrate the discussion, we show in Fig. 3(a) the
dispersion of the edge modes for both TE and TM polarizations
considering the same ENG and MNG materials as in Fig. 2.
Figure 3(b) shows a similar plot for the case wherein the
resonant frequency of the MNG material is increased to
ω0m = 0.8ωpe. As seen, in both examples there are always
topologically protected edge modes in the common gap
(delimited by the gray horizontal lines) for both polarizations.
Importantly, the dispersion of the individual TE (TM) edge
modes does not fully span the entire gap. Note that the
TE and TM branches meet at the point where kx = 0
and that there are also guided modes outside the common
bandgap.

At this point, it is relevant to mention that the sur-
face plasmons polaritons (SPPs) supported by metal-air
interfaces are not part of our theory. Indeed, air is
a transparent material, while the topological index can
only defined for light insulators, i.e., for materials that
do not support light states in some bandgap (opaque
materials).

The topological edge modes supported by an ENG-MNG
interface have a helical nature due to the universal transverse
spin-momentum locking characteristic of evanescent waves,
which has been linked to a quantum spin Hall effect for
light and a spin-orbit interaction in optics [29,30]. Several
recent studies demonstrated highly robust spin-assisted uni-
directional excitation of edge modes at metallic interfaces
[31–33]. To demonstrate the helical nature of the topological
ENG-MNG edge states, we consider a two-dimensional (2D)
kite-shaped ENG object embedded in an MNG material
(Fig. 4). The topological TE edge modes are excited by
an in-plane magnetic current density of the form jm =
−iωpmδ(x − x0)δ(y − y0), where (x0,y0) are the coordinates
of the point source and pm ∼ x̂ ± iŷ is the magnetic dipole
moment per unit of length. This source favors the excitation
of edge modes for which the in-plane magnetic field rotates
with a specific helicity determined by the ± sign. Thus,

because of the universal transverse spin-momentum locking
[29,30], it is possible to excite only the modes that match
the helicity of the source and have a unidirectional light
flow. This is illustrated in Fig. 4 and also in field animations
available in the Supplemental Material [34] for two cases:
(i) the structure is lossless and (ii) a lossy circular object
is centered at (xobj ,yobj ) = (2.51λ0,0) in the vicinity of the
kite-shaped object. In both cases, it is evident that the source
excites mainly an edge mode that flows in the counterclockwise
direction around the kite-shaped object (see in particular the
field animations in Ref. [34]). In case (ii), the launched wave
is strongly absorbed by the lossy object. Note that because the
two bulk materials do not support light states, the radiation is
strongly confined to the interface. The numerical simulations
were done using the Nyström method [35], which is an integral
equation approach related to the Galerkin method.

To conclude this section, it is relevant to discuss whether,
similar to electronics, the edge states are topologically pro-
tected against back-scattering. Unfortunately, the answer to
this question appears to be negative. The reason is simple to
explain, and again it is deeply rooted in the fact that T 2 = −1
for fermionic systems, whereas T 2 = 1 for bosonic systems.
Indeed, it can be shown that this property implies that the
scattering matrix satisfies S = −ST in the electronic case [36],
whereas in the photonic case one has instead S = +ST [37].
The different leading sign in the two cases has tremendous
consequences. In fact, the property S = −ST guarantees that
when there are an odd number of edge states (and hence
because of the Kramers theorem, the edge states dispersion
is gapless), there is at least one conducting state that is
transmitted with no reflections [36]. This is valid for any type
of perturbation that does not break the time-reversal symmetry.
Unfortunately, this extraordinary result has no correspondence
in photonics because in this case the time-reversal symmetry
gives S = ST and hence, independent if the number of
propagating edge states is odd or even, it is impossible to
guarantee propagation immune to back-scattering.
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FIG. 4. Spin assisted unidirectional excitation of edge modes at an MNG-ENG interface. The background material is an MNG material with
ω0m = 0.5ωpe; ω1m = 1.2ωpe, and the kite-shaped object is made of a ENG material with plasma frequency ωpe. The frequency of operation
is 0.95ωpe, and λ0 is the corresponding vacuum wavelength. The light source is positioned at (−2.5λ0,0) and excites a TE-polarized edge
mode that propagates in the counterclockwise direction. (a) Time snapshot of Ez for a lossless structure. The bluish (reddish) colors represent
positive (negative) values of the field. The green color represents a vanishing field. (b) Time snapshot of Ez when a lossy circular object with
R = 0.5λ0 is centered at (xobj ,yobj ) = (2.51λ0,0). The parameters of the lossy object are the same as those of the MNG background except
that the imaginary parts of the material parameters are ε′′ = μ′′ = 0.3.

IV. TOPOLOGICALLY NONTRIVIAL MEDIA
WITH MAGNETOELECTRIC COUPLING

It was seen in Sec. III that isotropic dielectrics are always
topologically trivial when the wave polarization is arbitrary,
i.e., when the polarization is not restricted to either the TE or
TM cases. As mentioned in the end of Sec. III B, the simplest
example of a topologically nontrivial material is the case of a
uniaxial dielectric.

A magnetoelectric (chiral-type) response also gives the
opportunity to have nontrivial topological numbers (without
any polarization restrictions). To illustrate this, next we study
the topological invariants of the so-called (pseudochiral) �

material introduced by Saadoun and Engheta [38,39]. Our mo-
tivation is that the photonic topological insulators introduced
in Ref. [6] also rely on a �-type reciprocal magnetoelectric
coupling. Specifically, we consider an � material with the
general T -invariant material matrix,

M =
(

ε0ε13×3 −i� 1
c

ẑ × 13×3

−i� 1
c
ẑ × 13×3 μ0μ13×3

)
, (18a)

such that the permittivity, the permeability, and the � param-
eter satisfy

ε = 1 + ω2
e

ω2
0 − ω2

, μ = 1 + ω2
m

ω2
0 − ω2

, � = ωω�

ω2
0 − ω2

.

(18b)
Here, ω0 is the resonance frequency, and ωe,ωm,ω� deter-
mine the strengths of the electric, magnetic, and crossed

electromagnetic resonances, respectively. To ensure that the
restrictions enunciated in Sec. II A are satisfied, it is necessary
that |ω�| < ωeωm/ω0. The plane waves in the � material are
not transverse waves. Yet, it can be shown that the � material
supports two degenerate transverse-type waves that satisfy the
dispersion equation:

k2 = ω2

c2
(εμ − �2). (19)

It is possible to choose a basis for these eigenmodes formed
by TE and TM -type waves:

fTM,k ∼
(

k × ẑ
1

μ0μ

(−k2

ω
ẑ + i� 1

c
k
)
)

,

fTE,k ∼
( −1

ε0ε

(−k2

ω
ẑ − i� 1

c
k
)

k × ẑ

)
. (20a)

Importantly, these eigenmodes are not pure TE and TM
waves. For example, the magnetic field associated with fTM,k
is not perpendicular to the plane of propagation when � �= 0. In
addition, the � material supports nondegenerate longitudinal-
type dispersionless waves that occur at frequencies for which
either ε = 0 (LE-type mode with H = 0) or μ = 0 (LM-type
mode with E = 0). The longitudinal-type modes are associated
with the eigenfunctions,

fLE,k ∼
(

k
ω

+ i� 1
c
ẑ

0

)
, fLM,k ∼

(
0

k
ω

− i� 1
c
ẑ

)
. (20b)
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FIG. 5. Topological transition from an � medium (τ = 0) to an ENG material (τ = 1) (ω0 = 0.5ωpe, ωe = ω0, ωm = 1.55ω0, and ω� =
0.9ωeωm/ω0). The purple dashed (black dotted-dashed) lines represent the dispersion of the longitudinal-type modes associated with μ = 0
(ε = 0). The green solid lines represent the doubly degenerate transverse-type modes.

The LE and LM-type modes are not purely longitudinal
because for � �= 0 they also have a z component.

Using these results, we studied the topological transition
from an � material with material matrix as in Eq. (18) (material
matrix M1) to a standard ENG material with ε2 = 1 − ω2

pe/ω
2

and μ2 = 1 (material matrix M2). The material matrix Mτ (ω)
is used to link the two material responses M1 and M2, with Mτ

being defined in the same way as in Sec. III. It can be checked
that Mτ is always of the form in Eq. (18a), and hence it deter-
mines the dispersion of an � material that is some interpolation
of M1 and M2. In Fig. 5, we depict the evolution of the band
structure as the material response changes continuously from
Mτ=0+ = M1 (� material) to Mτ=1− = M2 (ENG material).
The green solid lines represent the transverse-type modes and
are doubly degenerate. The dashed and dotted-dashed flat lines
represent the nondegenerate longitudinal-type modes (LM and
LE, respectively).

The Z2 topological index D associated with each band
subset can be calculated, as explained next. First, we note that
for the same reasons as in Sec. III, D is determined uniquely
by the eigenfunctions’ behavior near the N pole (k = ∞), i.e.,
the individual contributions from the S pole always add up
to zero. In the N pole there are three relevant band types.
The first type corresponds to the two high-frequency bands
for which ωn,k=∞ → ∞. Because in the ω → ∞ limit the
� parameter vanishes, fTM,k and fTE,k in Eq. (20a) have the
same asymptotic behavior as the branches fTM,k and fTE,k in
Eq. (6) for an isotropic dielectric. Hence, from Secs. III A
and III B, it follows that the invariant for the two degenerate
high-frequency bands is D = 0 + 1 = 1. The second relevant
band type consists of the nondegenerate LE and LM modes.
It is seen from Eq. (20b) that in the k → ∞ limit, the LE and
LM modes become purely longitudinal. Hence, from Sec. III
(see also Appendix C), the Z2 index for each longitudinal-type
branch is D = 1. Finally, the last set of relevant bands are the
bands associated with the resonance of the � coupling. For

example, in the panel τ = 0+ in Fig. 5, these bands (formed
by two different green lines, being each green line doubly
degenerate) are such that ωn,k=∞ = ω0 = 0.5ωpe. The results
of Appendix C 3 show that these four transverse-type modes
give a vanishing contribution to D because the number N of
eigenmode branches with ωn,k = ωn,k=∞ + 0+ in the limit
k → ∞ is even (N = 2).

The band diagrams of Fig. 5 reveal that the transition from
the � material to an ENG material involves merging some
eigenmode branches and adding the corresponding topological
invariants. Clearly, the � material is topologically nontrivial
in some spectral ranges. By comparing the band diagrams of
the panels τ = 0+ and τ = 1−, we see that the � material and
the ENG material have three common bandgaps: (i) ωLM <

ω < ωpe; (ii) ωLE < ω < ωLM; and (iii) ω0 < ω < ωLE, where
ωLM = 0.92ωpe and ωLE = 0.71ωpe are the frequencies asso-
ciated with the high-frequency longitudinal-type LM and LE
modes and ω0 = 0.5ωpe. For a given common bandgap, let
D� and DENG denote the invariants of the photonic bands
with dispersion below the gap for the � and ENG materials,
respectively. We denote D = (D� − DENG)mod 2. Then, it
is easy to check that D = 1 for the common bandgaps (i)
and (iii), whereas D = 0 for bandgap (ii). Therefore, the
bulk-edge correspondence discussed in Sec. III C predicts that
an �-ENG interface supports topologically protected edge
states in the two bandgaps (i) and (iii), i.e., when the two
materials have a different Z2 topological index.

To confirm this prediction, we computed the edge states for
an interface of the � and ENG materials along the x direction.
The dispersion of the edge states is of the form (the details of
the derivation are omitted for conciseness)(

γ� + γiso

εiso

n2
�

μ

)(
γ� + γiso

μiso

n2
�

ε

)
− �2 k2

x

εμ
= 0, (21)

where ε,μ,� are the parameters of the � medium and
εiso = ε2, μiso = μ2 stand for the parameters of the ENG
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FIG. 6. Dispersion of the edge modes at an interface between an ENG material and an � medium. The shaded yellow regions delimit the
common bandgaps wherein the topological edge modes are predicted to occur. The solid green lines represent the edge modes dispersion. The
dashed blue (dotted-dashed black) lines represent the dispersion of the transverse-type modes of the bulk � material (ENG material). The two
dashed horizontal lines represent the dispersion of longitudinal-type modes of the � medium. (a) ω0 = 0.5ωpe, ωe = ω0, ωm = 1.55ω0, and
ω� = 0.9ωeωm/ω0. (b) ω0 = 0.5ωpe, ωe = ω0, ωm = 0.9ω0, and ω� = 0.7ωeωm/ω0.

material. In the above equation, γiso = √
k2
x − εisoμisoω2/c2,

γ� =
√

k2
x − n2

�ω2/c2, and n2
� = εμ − �2. The edge modes

cannot be classified as either TE or TM and, in general, are
hybrid modes.

Figure 6(a) depicts the calculated dispersion for the edge
modes (green lines) when the � and ENG materials of Fig. 5
are placed side-by-side. As seen, consistent with the bulk-edge
correspondence, the interface supports topological edge states
in the two bandgaps (i) and (iii) [the two shaded yellow regions
of Fig. 6(a)]. Actually, in this example there are also edge
states in bandgap (ii). However, the topological protection
only applies to bandgaps (i) and (iii). This is made clear
in Fig. 6(b), which depicts the edge mode dispersion at an
interface between the same ENG material and a different �

material. In this configuration, there are also three common
bandgaps, but again the topological protection only applies to
two of them [shaded yellow regions in Fig. 6(b)]. This second
example further validates the bulk-edge correspondence and
confirms that the topological protection applies only to selected
common bandgaps with D = 1.

V. DISCUSSION AND CONCLUSION

We introduced a Z2 topological index for continuous pho-
tonic systems with the time-reversal symmetry. A nontrivial
Z2 index implies an obstruction to the application of the
Stokes theorem to the EBZ. The Z2 topological number
generally depends on the considered plane of propagation,
particularly if the bandgaps in different planes do not overlap.
Such a situation may occur in general bi-anisotropic media.
Our theory shows that the nontrivial contributions to the
Z2 index are related to either the nonsmooth nature of the
pseudo-Hamiltonian at the N pole or to the entanglement of
positive and negative frequency branches. Our Z2 topological
index generalizes to photonics the notion of a topological
insulator in periodic electronic systems. The formulas of the

Z2 index in electronics and photonics differ by a factor of two
because of the different spins of electrons and photons.

In principle, it is possible to generalize the ideas of this
paper also to dielectric photonic crystals, i.e., to systems
with an intrinsic periodicity. It should be noted that for
photonic crystals formed by nondispersive dielectrics the
pseudo-Hamiltonian is expected to be smooth in the entire
Brillouin zone. If that is the case, it appears that a nonzero
Z2 topological index can only arise due to a nontrivial
entanglement of the positive and negative frequency branches.
The characterization of the Z2 index of photonic crystals thus
requires further studies.

It was demonstrated that isotropic dielectrics are always
topologically trivial. Yet, when the wave propagation is
restricted to either TE or TM polarization, an isotropic
dielectric may have topologically nontrivial features. As a
consequence of this, an interface between an ENG material
and an MNG material always supports topologically protected
edge states for both TE and TM polarizations. Nevertheless,
different from electronics and due to the absence of Kramers
partners, the dispersion of the edge states does not have
to span the entire gap. The bulk-edge correspondence only
ensures that for a continuous deformation of the materials
that does not close the common gap there are always edge
states somewhere in the gap. It was shown that the bulk-edge
correspondence is exact for isotropic dielectrics, and it is an
open question if this property is universal or not. Moreover,
it was numerically demonstrated that the helical nature of the
topological edge states enables the unidirectional emission
of light. However, different from electronics, the topological
edge states are not protected against back-scattering because
the time-reversal symmetry imposes that the scattering matrix
satisfies S = ST for light waves, whereas for electron waves
one has instead S = −ST . Finally, it was demonstrated that
continuous media with magnetoelectric coupling can also be
topologically nontrivial. We hope that the developed ideas
can contribute to a more complete understanding of the use
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of topological methods in photonics and to the design of
novel ultracompact photonic platforms for light localization
and guiding relying on single interface edge modes.
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APPENDIX A: PROOF THAT THE EIGENSPACES
ARE CONTINUOUS AT THE N POLE

In Appendix A, we prove that for the continuous media in-
variant under the time-reversal transformation, the eigenspaces
at the N± points are equal, and hence that it is always possible
to enforce the constraint in Eq. (12c). Since the eigenspace
at the N− point is linked with the eigenspace at N+ by the
time-reversal transformation, it is sufficient to prove that the
eigenspace at the N+ point stays invariant under the action
of T .

As a starting point, we note that the material matrix M(ω)
can be decomposed as follows (see Appendix A of Ref. [22]):

M(ω) = M∞ +
∑

α

χα(ω), (A1)

where M∞ = M(ω = ∞) usually corresponds to the material
matrix of the vacuum and the generalized susceptibility
χα(ω) is of the form χα(ω) = −Bα/(ω − ωp,α), where Bα =
−limω→ωp,α

M(ω)(ω − ωp,α) and ωp,α is a generic pole of the
material response (α = 1,2, . . .). For ωp,α > 0, the matrix Bα

must be positive semidefinite (Bα � 0) [22]. We also note that
the electromagnetic field envelope satisfies

k × Ek = ω

(
1

c
ζ̄ · Ek + μ0μ̄ · Hk

)
,

k × Hk = −ω

(
ε0ε · Ek + 1

c
ξ̄ · Hk

)
. (A2)

Let us first consider an eigenspace associated with an
eigenvalue ωn,k=∞ such that ωn,k=∞ �= ωp,α for any α, i.e.,
that is, not coincident with a pole of the material response.
Then, in the limit k → ∞, the right-hand side of the two
equations in Eq. (A2) is finite because ωn,k=∞ is not a pole
of the material parameters. This shows that the left-hand
side of the two equations also stays finite in the k → ∞
limit, which is only possible if Ek ∼ k̂ and Hk ∼ k̂. In other
words, in the k → ∞ limit, the modes must be longitudinal
so that 1

c
ζ̄ · Ek + μ0μ̄ · Hk = 0 and ε0ε · Ek + 1

c
ξ̄ · Hk = 0.

For continuous media with the time-reversal symmetry, the
permittivity and the permeability are required to be real valued,
whereas the magnetoelectric tensors are pure imaginary. This
establishes that the field envelope in the k → ∞ limit is
of the form fk = (Ek Hk)T ∼ (k̂ iCk̂k̂)T , where Ck̂ is

some real-valued function that may depend on k̂. The vector
(k̂ iCk̂k̂)T stays invariant under the action of T . Thus, the
time-reversal invariance of the material response implies that
the eigenspace calculated at the N+ point is also invariant
under the application of T , which concludes the proof in the
case ωn,k=∞ �= ωp,α .

Let us now consider the case wherein ωn,k=∞ = ωp,α ,
i.e., that the relevant eigenvalue is coincident with a pole

of the material response. Then, writing Bα = (Bee
α Bem

α

Bme
α Bmm

α

)
(here, all the sub-block matrices have dimensions 3 × 3),
we see from Eq. (A1) that when Bα is strictly positive
definite that the material response can be approximated by
M ≈ − 1

ω−ωp,α

(Bee
α Bem

α

Bme
α Bmm

α

)
. Then, in the k → ∞ limit (and for

ω in the vicinity of ωp,α), Eq. (A2) reduces to

k̂ × Ek = − ωp,α

kω

(
Bme

α · Ek + Bmm
α · Hk

)
,

k̂ × Hk = ωp,α

kω

(
Bee

α · Ek + Bem
α · Hk

)
, (A3)

where ω = ω − ωp,α . Noting that Bee
α ,Bmm

α must be real
valued and that Bem

α ,Bem
α must be pure imaginary, it is simple to

verify that the T = KU operator transforms (without flipping
the wave vector) solutions fk = (Ek Hk)T of Eq. (A3)
associated with some (nonzero) eigenvalue λ̃ = ωp,α

kω
into

solutions T · fk associated with the symmetric eigenvalue
− ωp,α

kω
. These two branches of eigenmodes (with asymptotic

dispersion ω ≈ ωp,α ± ωp,α

kλ̃
) touch in the k → ∞ limit, and

hence the eigenspace associated with the N+ point is invariant
under the action of the T operator. This implies that the
eigenspaces at the N± points are indeed equal, as we wanted
to prove.

It is emphasized that the approximation M ≈
− 1

ω−ωp,α

(Bee
α Bem

α

Bme
α Bmm

α

)
requires that Bα is a positive definite

matrix. However, the proof can be generalized to the case
wherein Bα � 0. To illustrate this, suppose that the resonance
associated with ωp,α has a purely electric nature so that
Bem

α = Bem
α = 0 and Bmm

α = 0. In this case, Eq. (A3) needs to
be replaced by

Hk = μ̄−1(ωp,α) ·
[

1

ωp,αμ0
k × Ek − 1

μ0c
ζ̄ (ωp,α) · Ek

]
,

k̂ × Hk = ωp,α

kω
Bee

α · Ek. (A4)

Hence, in the k → ∞ limit it is possible
to write Hk ≈ 1

ωp,αμ0
μ̄−1(ωp,α) · (k × Ek) so that

k̂ × [μ̄−1(ωp,α) · (k̂ × Ek)] = μ0ω
2
p,α

k2ω
Bee

α · Ek. Therefore, in
the k → ∞ limit, the magnetic field is dominant over the
electric field, and the eigenspace at the N+ point is generated
by a vector of the form fk = (0 Hk)T with Hk real valued.
Thus, the eigenspace at the N+ point is again invariant under
the action of T , and hence it must be coincident with the
eigenspace at the N− point.

APPENDIX B: THE Z2 INDEX DEFINITION IN
ELECTRONICS AND IN PHOTONICS

It is interesting to contrast the definition of the Z2 number
in Eq. (13) with that of Fu and Kane for electronic systems
D̃ = DEBZmod 2 [21]. As seen in our definition for photonic
systems, there is an extra factor of 2 before the DEBZ symbol.
Interestingly, it is possible to reconcile the two definitions by
noting that our basis fnk only includes the positive frequency
eigenfunctions. Notably, it is possible to pair each positive
frequency eigenmode (fnk) with a negative frequency partner
(f−

nk) through the mapping fnk → f−
nk = U · fnk. Indeed, our

system is invariant under the action ofU = KT because of the
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invariance of the material response to bothK (reality condition,
satisfied by any photonic system) and T (time reversal). Note
that the operator U flips the frequency without changing the
wave vector (ω−

nk = −ωnk) and that U is idempotent, i.e.,
U2 = 1. The Berry potential associated with the negative
frequency branches (defined as f−

nk = U · fnk) satisfies A−
k =

Ak. This can be proven using f−
nk = U · fnk and the invariance

of the material response under the operator U [which implies
that M(−ω) = U · M(ω) · U] in the definition of the Berry
potential [Eq. (3)]. Moreover, the negative frequency branches
satisfy the same gauge restrictions [Eq. (12)] as the positive
frequency branches. Thus, if one includes both positive and
negative frequency branches in the calculation of the Berry
potential (so that the relevant spectral range becomes ωmin <

|ω| < ωmax), the topological index D needs to be redefined
as DEBZmod 2 exactly as in electronics [21]. Indeed, the
contribution of the negative frequency branches is identical
to that of the positive frequency branches.

The previous discussion also reveals that the pairing of
positive frequency and negative frequency eigenmodes has
some analogies with the pairing between Kramers partners
in electronics (the Kramers pairs are, however, linked by
the time-reversal transformation). This analogy is particularly
meaningful when the positive and negative frequency branches
are entangled, i.e., for ω = 0 and ω = ∞.

APPENDIX C: PROOF THAT THE D NUMBER
IS AN INTEGER

Here, we demonstrate that D is an integer. We start by
noting that from Eq. (14), it is possible to write (supposing
that the EBZ is the region ky > 0):

D=
[

1

π

∫ π

0
(Aϕk)|

k=0+ dϕ − 1

π

∫ π

0
(Aϕk)|

k=∞+ dϕ

]
mod 2,

(C1)
where (k,ϕ) determine a system of polar coordinates centered
at the origin of the k-space and Aϕ = Ak · ϕ̂. From Eq. (3),
the Berry potential associated with the nth band satisfies

kAn,ϕ = Re
{
i f∗

n,kϕ · ∂
∂ω

[ωM(ω)]ωnk
· ∂ϕfn,kϕ

}
f∗
n,kϕ · ∂

∂ω
[ωM(ω)]ωnk

· fn,kϕ

, (C2)

where fn,kϕ = fn,k=kϕ̂ and ∂ϕ = ∂/∂ϕ. In the following subsec-
tions, it is shown that both 1

π

∫ π

0 (Aϕk)|
k=0+ dϕ (contribution

from the S pole) and 1
π

∫ π

0 (Aϕk)|
k=∞+ dϕ (contribution from

the N pole) are integer numbers.

1. Contribution from the S pole

To prove that the contribution from the S pole is an integer,
we use the fact that the pseudo-Hamiltonian that characterizes
the material response is smooth for any finite k, and hence
the eigenspaces must vary smoothly with k [22]. Thus, for
a subset of bands such that the positive frequency branches
are disconnected from the negative frequency branches at the
origin (ωn,k=0+ �= 0), it is possible to write:

(fn,ϕ) = Vϕ · (fn0), (C3)

where fn,ϕ = fn,kϕ|k=0+ , fn0 = fn,kϕ|k=0+,ϕ=0+ and Vϕ is some
unitary matrix that varies continuously with ϕ. Hence, the

Berry potential associated with this subset of bands satisfies
(Aϕk)|k=0+ = i∂ϕ[ln det Vϕ] so that

1

π

∫ π

0
(Aϕk)|

k=0+ dϕ = i

π
(ln det Vϕ=π − ln det Vϕ=0).

(C4)
It is seen from the definition that Vϕ=0 = 1 is the iden-

tity matrix. On the other hand, from the gauge constraint
[Eq. (12a)] it is necessary that (fnk)S− = Ṽ · (fnk)S+ with Ṽ
being a unitary transformation with det Ṽ = 1. Clearly, this re-
quires that det(Vϕ=π ) = 1. Thus, ln det Vϕ=π − ln det Vϕ=0 =
i2πl, where l is some integer number. This demonstrates that
the eigenfunction branches with ωn,k=0+ �= 0 give an integer
contribution to the first term in the right-hand side of Eq. (C1).
Moreover, the contribution of these terms is trivial because
the previous analysis also shows that the right-hand side of
Eq. (C4) is an even integer.

Let us now consider the branches for which ωn,k=0+ = 0+.
For these branches, in general it is not possible to write
(fn,ϕ) = Vϕ · (fn0) because the positive frequency branches
are linked with the negative frequency branches, and hence
the respective eigenspaces are entangled. In other words, the
eigenspaces generated by (fn,ϕ) typically depend on ϕ. As
discussed in Sec. II C, in the long wavelength limit (ω → 0)
the material response M(ω = 0) is real valued. This implies
that the ϕ-dependent eigenspaces must be invariant under the
operation of complex conjugation, i.e., in the ω → 0 limit it is
possible to pick a basis (f̃n,ϕ) of real-valued vectors for each
eigenspace. Note that (f̃n,ϕ) may not be eigenvectors; they are
only required to be real valued and to generate the relevant
eigenspace. Clearly, now we can write (fn,ϕ) = Vϕ · (f̃n,ϕ) for
some unitary matrix Vϕ . Because (f̃n,ϕ) are real valued, it
is simple to check that the corresponding Berry potential
vanishes. Hence, the Berry potential associated with (fn,ϕ) also
satisfies (Aϕk)|k=0+ = i∂ϕ[ln det Vϕ], and thus Eq. (C4) also
holds for bands with ωn,k=0+ = 0+.

Next, we note that because of the time-reversal invariance
there is a unitary matrix W such that (T · f̃n, ϕ=0) = W · f̃n, ϕ=π .
But since, by hypothesis, (f̃n,ϕ) is real valued, it follows
that (U · f̃n,ϕ=0) = W · f̃n,ϕ=π . Therefore, the unitary matrix
W must also be real valued, and hence it must be such that
det W = ±1.

Using (fn,ϕ) = Vϕ · (f̃n,ϕ) and (U · f̃n,ϕ=0) = W · f̃n,ϕ=π ,
it is simple to check that (fn,ϕ=0) = Vϕ=0 · W ·
V−1

ϕ=π (U · fn,ϕ=π ). But the gauge restrictions [Eq. (12b)]

now imply that (fnk)S− = Ṽ · (U · fnk)S+ , where Ṽ is
some unitary transformation with det Ṽ = 1. This is only
possible if det(Vϕ=0 · W · V−1

ϕ=π ) = 1, which establishes that
ln det Vϕ=π − ln det Vϕ=0 = i2πl + ln det W, where l is an
integer. Then, because det W = ±1, the right-hand side of
Eq. (C4) is indeed an integer, which proves the desired result.

In summary, the contribution of the S pole to the topological
invariant is trivial except possibly for eigenmode branches with
ωn,k=0+ = 0+.

2. Contribution from the N pole for bands with ωn,k=∞ = +∞
Next, we calculate the contribution to the D number (N

pole contribution) from the bands with ωn,k=∞ = +∞. In this
case, we define fn,ϕ = fn,kϕ|k=+∞ and use the fact that in the
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high-frequency limit the material response is asymptotically
the same as that of the vacuum. Hence, M(ω = ∞) can be
assumed real valued. This allows us to write (fn,ϕ) = Vϕ · (f̃n,ϕ)
for some unitary matrix Vϕ and for some family of vectors
(f̃n,ϕ) real valued. Hence, by slightly modifying the arguments
used in Appendix C 1 for the case ωn,k=0+ = 0, it is possible
to prove that the bands with ωn,k=∞ = +∞ yield an integer
contribution to the second integral in the right-hand side of
Eq. (C1).

3. Contribution from the N pole for bands with ωn,k=∞ �= ∞
Finally, we analyze contributions to the D number arising

from eigenmode branches with ωn,k=∞ finite. As in the
previous subsection, we put fn,ϕ = fn,kϕ|k=+∞.

First, we consider the case wherein ωn,k=∞ �= ωp,α for any
α, i.e., the pertinent eigenvalue differs from the poles of the ma-
terial response (see Appendix A). It was proven in Appendix A
that in the k → ∞ limit, the eigenspace is generated by a vector
of the form f̃n,ϕ = (k̂ iCn,k̂k̂)T , where Cn,k̂ is some real-

valued constant that may depend on k̂. Importantly, the time-
reversal invariance implies that Cn,k̂ = Cn,−k̂. Assuming for
simplicity that ωn,k=∞ is a nondegenerate eigenvalue, it is then
possible to write fn,ϕ = eiθϕ f̃n,ϕ . The Berry potential associated
with f̃n,ϕ vanishes. Thus, the Berry-potential-associated (fn,ϕ)
satisfies (Aϕk)|k=∞+ = −∂ϕθϕ . Hence, it follows that

1

π

∫ π

0
(Aϕk)|

k=∞+ dϕ = −1

π
(θϕ=π − θϕ=0). (C5)

Using the fact that Cn,k̂ = Cn,−k̂, we see that (f̃n,ϕ)N− =
−(f̃n,ϕ)N+ . Thus, to ensure the gauge restriction [Eq. (12c)],
it is necessary that θϕ=π − θϕ=0 = π + 2πl, where l is an
integer. This implies that the right-hand side of Eq. (C5) is an
odd integer. Thus, we conclude that each nondegenerate band
with ωn,k=∞ �= ωp,α gives a contribution +1 to the D number.

The case wherein ωn,k=∞ = ωp,α with Bα being a positive
semidefinite matrix can be treated using similar arguments
(see the definition of Bα in Appendix A). To illustrate
this, we consider the particular case of a purely electric
resonance for which Bem

α = Bem
α = 0 and Bmm

α = 0. As shown
in Appendix A, for a purely electric resonance the relevant
eigenspace in the k → ∞ limit is generated by vectors of the
form f̃n,ϕ = (0 Hn,k)T with Hn,k real-valued functions. It
is evidently possible to link (fn,ϕ) with (f̃n,ϕ) by a unitary
transformation Vϕ such that (fn,ϕ) = Vϕ · (f̃n,ϕ). Since the
Berry potential associated with (f̃n,ϕ) vanishes, we find that the
Berry potential associated with (fn,ϕ) satisfies (Aϕk)|k=∞+ =
i∂ϕ[ln det Vϕ] so that

1

π

∫ π

0
(Aϕk)|

k=∞+ dϕ = i

π
(ln det Vϕ=π − ln det Vϕ=0).

(C6)
Because of the time-reversal invariance, it is possible to

write (T · f̃n,ϕ=0) = W · f̃n,ϕ=π for some unitary matrix W.
The matrix W must be real-valued because (f̃n,ϕ) also is, and
hence det(W) = ±1. Moreover, because f̃n,ϕ is of the form
f̃n,ϕ = (0 Hn,k)T , it is obvious that T · f̃n,ϕ=0 = −f̃n,ϕ=0.
Therefore, we conclude that (f̃n,ϕ=0) = −W · f̃n,ϕ=π .

Using (fn,ϕ) = Vϕ · (f̃n,ϕ) and (f̃n,ϕ=0) = −W · f̃n,ϕ=π , one
sees that (fn,ϕ=0) = −Vϕ=0 · W · V−1

ϕ=π (fn,ϕ=π ). But the gauge
constraint [Eq. (12c)] forces that det(−Vϕ=0 · W · V−1

ϕ=π ) = 1.
Taking into account that det(W) = ±1, we see that this implies
that det(Vϕ=0)

det(Vϕ=π ) = ±1, and thus the right-hand side of Eq. (C6) is
indeed an integer number.

Let us finally consider the case wherein the relevant
eigenspace is associated with a pole of the material response,
ωn,k=∞ = ωp,α , for which Bα is strictly positive definite. It is
clear from the discussion in Appendix A that in this case it is
possible to split the eigenmode branches into two subfamilies:
the branches fU

nk for which ωU
n,k=∞ = ωp,α + 0+ and the

branches fD
nk for which ωD

n,k=∞ = ωp,α − 0+. In other words,
the family associated with superscript U (up) approaches the
pole with ωU

n,k > ωp,α (in the limit k → ∞), whereas the
family associated with the superscript D (down) approaches
the pole with ωD

n,k < ωp,α . The analysis of Appendix A also
shows that in the k → ∞ limit, the space generated by (fU

nk) is
linked to the space generated by (fD

nk) by the time-reversal
operator T . Thus, there is a unitary matrix Vϕ such that
(fD

n,ϕ) = Vϕ(T · fU
n,ϕ), where fU

n,ϕ = fU
n,k=kϕ̂|k=+∞, etc.

To proceed, we note that the time-reversal invariance im-
plies that M(ω) = U · M∗(ω) · U (see Sec. II A), and because
of this

Re

{
i T · f∗

n,ϕ · ∂

∂ω
[ωM(ω)]ωnk

· ∂ϕT · fn,ϕ

}

= Re

{
i fn,ϕ · ∂

∂ω
[ωU · M(ω) · U]ωnk

· ∂ϕf∗
n,ϕ

}

= −Re

{
i f∗

n,ϕ · ∂

∂ω
[ωU · M∗(ω) · U]ωnk

· ∂ϕfn,ϕ

}

= −Re

{
i f∗

n,ϕ · ∂

∂ω
[ωM(ω)]ωnk

· ∂ϕfn,ϕ

}
. (C7)

Hence, from Eq. (C2) one sees that the Berry potentials
associated with (fU

n,ϕ) and (T · fU
n,ϕ) cancel out. This shows

that the Berry potential determined by (fU
nk) and (fD

nk) satisfies
(Aϕk)|k=∞+ = i∂ϕ[ln det Vϕ] so that Eq. (C6) also applies in
this case. On the other hand, because of the time-reversal
invariance there is a unitary matrix W such that (T · fU

n,ϕ=0) =
W · (fU

n,ϕ=π ). It is simple to check that this relation, together
with (fD

n,ϕ) = Vϕ(T · fU
n,ϕ), gives(

fU
n,ϕ=0

fD
n,ϕ=0

)
=

(
0 W∗ · V−1

ϕ=π

Vϕ=0 · W 0

)
︸ ︷︷ ︸

Ṽ

(
fU
n,ϕ=π

fD
n,ϕ=π

)
. (C8)

The gauge restriction [Eq. (12c)] forces the matrix
Ṽ to have determinant +1. This is only possible if
det(W∗ · V−1

ϕ=π ) det(Vϕ=0 · W) = (−1)N , where N is the di-
mension of the matrix Vϕ , i.e., the number of elements
of the subfamily (fU

nk). Because W is a unitary matrix, it
follows that det(W∗) = det (W)−1, and thus we conclude that
det(Vϕ=0)
det(Vϕ=π ) = (−1)N . This result confirms that the right-hand side
of Eq. (C6) is indeed an integer. Moreover, the contribution of
the considered eigenspace to the invariant is trivial for N even
and is +1 for N odd.
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photonics, Nat. Photonics 8, 821 (2014).

[14] F. D. M. Haldane and S. Raghu, Possible Realization of
Directional Optical Waveguides in Photonic Crystals with
Broken Time-Reversal Symmetry, Phys. Rev. Lett. 100, 013904
(2008).

[15] S. Raghu and F. D. M. Haldane, Analogs of quantum-Hall-effect
edge states in photonic crystals, Phys. Rev. A 78, 033834 (2008).

[16] Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić,
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