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Magnetic uniaxial wire medium
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It is shown that a racemic array of helical-shaped metallic wires may have a dual electromagnetic response,
such that for arbitrarily large wavelengths it concurrently supports two modes with hyperbolic- and elliptical-type
dispersions. Importantly, one of the eigenwaves is nearly dispersionless and sees the metamaterial as a medium
with extreme magnetic anisotropy. The metamaterial may thus behave as the magnetic analog of the conventional
wire medium formed by a set of parallel straight metallic wires. It is demonstrated that the magnetic wire medium
enables channeling the subwavelength details of transverse electric (TE) polarized waves.
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I. INTRODUCTION

Since the pioneering works of Abbe [1] and Lord Rayleigh
[2], it has been known that the resolution of conventional
imaging devices is restricted by the wavelength of light—“the
diffraction limit.” According to these old studies, features
smaller than approximately a half-wavelength of light are
invariably absent from the image created by conventional
optical lenses. This limitation results from the inability of
typical lenses to interact with the fields of spatial harmonics
with very high spatial frequencies, which are locked in the
near-field spectrum of an optical source. Different from the
far-field spectrum, which is radiated away from the source and
hence can be captured by common lenses, the near field has an
inherent evanescent-wave character that causes its exponential
decay.

During the last decade, numerous approaches and technolo-
gies were proposed to manipulate the near field and enable
imaging beyond the diffraction limit [3–20]. One of the most
effective mechanisms relies on the transformation of the entire
source spatial spectrum (including evanescent harmonics) into
propagating waves at the input interface of a specially designed
slab and on its subsequent transport to the output interface.
Such a mechanism is designated by “canalization regime”
[15–21], and becomes possible if the designed material slab
has flat isofrequency contours [15–17,20]. Arrays of parallel
metallic wires have been widely used to implement the
canalization regime from microwaves to infrared frequencies
[16,18–20]. In Refs. [16–20] it was demonstrated that such
“wire medium lenses” are able to manipulate and canalize
a complex near-field distribution with subwavelength res-
olution (at least five times superior to that obtained with
conventional lenses). However, the wire medium lens is
polarization sensitive and only enables near-field imaging of
transverse magnetic (TM) polarized waves (magnetic field is
parallel to the interface). In other words, the standard wire
medium lens (with wires perpendicular to the interface) is
completely transparent to transverse electric (TE) polarized
waves (electric field parallel to the interface). To overcome
this limitation, we suggested in Ref. [22] a post-processing
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strategy to fully restore the near field radiated by a source with
arbitrary polarization using arrays of parallel straight wires.
The robustness of this approach was experimentally verified
in Ref. [23]. However, such a solution can only be used when
the field radiated by the relevant source is stationary in time
and requires three independent acquisitions of the near field.

Having a similar channeling effect for TE polarized waves
would require using “magnetic wires” [ideally “perfectly
magnetic conducting” (PMC) wires] rather than metallic
wires. However, a PMC material is mainly a theoretical
abstraction because it does not exist in nature. Nevertheless,
one may envision that magnetic wires may be implemented
relying on the exotic electromagnetic responses provided by
metamaterials.

A configuration that partially mimics the magnetic wires
is the “Swiss rolls” array [4,5]. This structure consists of a
set of cylindrical inclusions, with each element comprising a
conducting sheet wound on a central mandrel, so that the cross
section is a spiral. It was shown in [4] that at the resonant
frequency, the Swiss rolls may be used to transfer an input
magnetic near-field distribution to the output interface with a
spatial resolution limited by the roll diameter. These Swiss
rolls-based lenses are effective at MHz frequencies [4,5].
However, due to fabrication constraints, it seems very difficult
to design these structures to operate at higher frequencies
(namely, at microwave and optical frequencies). In a slightly
different context, a related metamaterial structure with a highly
anisotropic magnetic permeability was used to transfer static
magnetic fields to arbitrarily long distances [24].

In this work we suggest an alternative way to emulate the
response of PMC wires that can be easily scaled to operate
in the microwave frequency regime and possibly at higher
frequencies. The idea is to use helical-shaped metallic wires
which for relatively large radii may enable a strong magnetic
response. Specifically, we consider a metamaterial formed by
a racemic array of helical-shaped metallic wires with two
helices with opposite handedness per unit cell. Notably, it
is demonstrated that due to spatial dispersion effects such
a metamaterial has a dual electromagnetic response, so that
it concurrently supports two extraordinary TE waves with
hyperbolic and elliptical-type dispersions. Moreover, one of
the eigenmodes has a phase velocity along the axial direction
nearly independent of the transverse wave vector, which is
analogous to what happens in the standard wire medium
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(formed by straight metallic wires) under TM excitation
[15–17,20]. Therefore, the helical-shaped wire medium—
designated as magnetic wire medium—may behave as the
magnetic dual of the standard wire medium.

This paper is organized as follows. In Sec. II the geometry
of the metamaterial is described and a nonlocal homogeniza-
tion model that characterizes its electromagnetic response
is proposed. In Sec. III the plane wave scattering by a
metamaterial slab is studied using both homogenization theory
and full-wave simulations. In Sec. IV it is demonstrated that
the proposed metamaterial lens may enable the transport of
the subwavelength details of TE polarized waves. Finally, the
conclusions are drawn in Sec. V.

II. HOMOGENIZATION MODEL

The metamaterial considered here consists of a racemic
array of metallic [ideally perfect electric conductors (PECs)]
helical-shaped wires oriented along the z direction (Fig. 1).
The unit cell is rectangular (with period ax = 2a along
the x direction and a along the y direction) and includes
two helical-shaped wires with opposite handedness, i.e., one
right-handed helix and one left-handed helix. Thus, since
the structure has a center of symmetry, the electromagnetic
response of the metamaterial is nonbianisotropic. Related
metamaterial structures have been considered previously in
different contexts [25–31], namely in the realization of circular
polarizers and wave plates [26,27], and in focusing based on a
negative refraction [31].

FIG. 1. (a) Geometry of the magnetic wire medium: a periodic
array of helical-shaped metallic wires arranged in an orthorhombic
lattice (period ax = 2a along the x direction, period a along the y

direction, and period |p| along the z direction). Each unit cell includes
one right-handed helix and one left-handed helix. R is the radius of
the helices and rw is the radius of the wires. The helices stand in
free-space. The plane of incidence is the xoz plane and the incident
wave is TE-z polarized [k = (kx,0,kinc

z ),E = Eincûy]. (b) Unit cell of
the metamaterial. (i) Perspective view and (ii) front view.

The electromagnetic response of the magnetic wire medium
can be characterized using effective medium theory [31,32].
In general, the magnetic wire medium behaves as a spatially
dispersive nonbianisotropic magnetic material that can be
described by the following relative effective permeability and
permittivity [31]:
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where k0 = ω/c, A = πR2/|p|, βp1 and βp2 are parameters
(with unities of m−1) that only depend on the geometry of
the material and whose definitions can be found in Ref. [32],
and α is a correction factor intended to improve the accuracy
of the analytical homogenization model. As detailed ahead,
the correction factor is adjusted by hand by comparing the
exact band structure of the metamaterial with the analytical
result. In the above, εt = εxx = εyy = 1 + [(πR)2/(VcellC1)]
is the effective permittivity in the xoy plane, Vcell = a2|p| is
the volume of the unit cell, and C1 is a geometrical parameter
whose definition may be found in [32].

It should be noted that the dispersion of the effective
medium parameters in Eq. (1) is rather different from that
of the spiral medium studied in Ref. [25]. The reason is
that the model of Ref. [25] treats each spiral as a lumped
impedance and thus it is only valid for spirals with a small
pitch and a small diameter. Our model does not have such
limitations because the detailed microstructure of the helices is
fully taken into consideration [32]. For completeness, it is also
mentioned that the symmetry of the magnetic wire medium can
be increased by arranging the helices in a checkerboard pattern
(see also Ref. [28]). This alternative configuration would also
eliminate the magnetoelectric coupling and would enforce at
the same time a twofold rotational symmetry about the z axis.
Such an increased symmetry may improve the validity of the
continuous medium approximation, which treats the effective
medium as isotropic in the xoy plane.

Next, the analysis is focused on the study of the propagation
of TE-z polarized waves (electric field parallel to the xoy
plane). The dispersion characteristic of the TE-z plane waves
supported by the metamaterial is determined by [31]

k2
0εt − 1

μzz

k2
t − k2

z = 0, (2)

where k2
t = k2

x + k2
y . It can be shown that the characteristic

equation (2) reduces to a polynomial equation of second degree
in the variables k2

0 and k2
z . Thus, the medium supports two

independent plane wave modes with electric field in the xoy
plane (TE-z plane waves). The emergence of an additional
wave is a consequence of the spatially dispersive (or nonlocal)
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FIG. 2. Band structure for a magnetic wire medium with R =
0.4a, rw = 0.05a, and |p| = 0.9a (only the first four bands are
shown). (a) TE-z modes. (b) TM-z modes. Solid lines: nonlocal
homogenization results; star-shaped symbols: full-wave method of
Ref. [33]. �, X, and Z are the highly symmetric points of the Brillouin
zone.

response of the metamaterial [31,32]. In fact, this nonlocal
response is manifest from Eq. (1), since the permeability
depends not only on the frequency but also on the wave
vector.

To validate the homogenization model, we calculated the
dispersion characteristic of the Bloch waves supported by
the metamaterial along the segments �X (propagation along
the x direction) and �Z (propagation along the z direction)
of the Brillouin zone (see Fig. 2). The relevant points are de-
fined as � = (0,0,0), X = (π/ax,0,0), and Z = (0,0,π/|p|).
Figure 2 shows the band structure of both the TE-z eigenwaves
[Fig. 2(a)] and of the TM-z eigenmodes [Fig. 2(b)]. The
band structure of the TE-z eigenwaves is calculated using
the characteristic equation (2), whereas the band diagram
of the TM-z eigenwaves is obtained from Eq. (7) of Ref. [31].

The dispersion curves predicted by the nonlocal homoge-
nization model (solid lines) are compared with the full-wave
method reported in Ref. [33] (star-shaped symbols). It is
seen that the agreement between the results obtained with
the two methods is very good, particularly for frequencies
ωa/c < 1.0. The disagreement observed at higher frequencies
is due to the fact that the effective medium model is accurate
only in the long wavelength limit [32]. The parameter α in
Eq. (1) was tuned by hand to improve the agreement between

the homogenization and the full-wave results for the TE
eigenwaves case. For the particular geometry considered in
this work (R = 0.4a, rw = 0.05a, |p| = 0.9a), the correction
factor is α = 0.51. The remaining parameters used in the
homogenization model are C1 � 2.237/a, βp1 � 1.075/a, and
βp2 � 3.794/a.

Both calculation methods predict that the magnetic wire
medium supports two low-frequency eigenwaves for each
fixed polarization (TE-z or TM-z) [31]. Notably, the two TE-z
eigenwaves have no low frequency cutoff, and hence the two
TE waves can propagate with no decay for arbitrarily long
wavelengths. This is a rather peculiar and unusual property,
and it implies that the magnetic wire medium supports three
propagating waves in the long wavelength limit, in contrast
with standard Maxwellian media which only support two wave
polarizations. This property seems to be a consequence of
the fact that the unit cell of the metamaterial contains two
infinitely long helices [34,35]. Note that even though the
standard wire medium (formed by straight metallic wires)
supports three eigenmodes [36,37], one of the eigenmodes
has a low frequency cutoff. Hence, in this specific regard the
physics of magnetic wire medium differs from that of the
conventional wire medium.

To better understand the nature of the two TE modes, we
show in Fig. 3 their isofrequency contours. Quite interestingly,
one can see that the isofrequency contours associated with
one of the modes are hyperbolic, whereas the contours
associated with the other mode are elliptical. The two regimes
(hyperbolic and elliptical) coexist in the same material for the
same (TE) polarization and arbitrarily long wavelengths. This
unveils the unique dual nature of the magnetic wire medium
electromagnetic response.

The hyperbolic-type contours are nearly flat [Fig. 3(a)],
so that kz is nearly independent of kt. This property is
consistent with the microstructure of the metamaterial which
suggests a strongly anisotropic response. A bit surprisingly, the
isofrequency contours of the eigenmode with elliptical-type
dispersion [Fig. 3(b)] are approximately circular. The depen-
dence of the isofrequency contours of the two eigenmodes on
the helix pitch is discussed in the Appendix.

Importantly, the isofrequency contours of Fig. 3(a) resem-
ble those of the quasi-TEM mode supported by the standard
wire medium in the infrared regime [20]. This suggests
that the eigenmode with hyperbolic dispersion may enable
a canalization regime analogous to that made possible by
the quasi-TEM mode in the standard wire medium. Thus,
the evanescent spatial spectrum of a TE-polarized near-field
source placed in the vicinity of the metamaterial may be
channeled through the metamaterial slab along the axial
direction (z direction). As illustrated in Fig. 3(a), the energy
inside the metamaterial slab always flows along a direction
nearly parallel to the z direction (the Poynting vector is
directed mostly along z), independent of the transverse wave
number kt.

To further validate the homogenization model, we depict
in Fig. 4 the effective permeability along the z direction (μzz)
as a function of kz at a particular frequency of operation.
The accuracy of the analytical result calculated from Eq. (1)
(solid line) is checked against the numerical results obtained
from the full-wave homogenization method proposed in [38]
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FIG. 3. Isofrequency contour of the two TE plane wave modes for propagation in the xoz plane with electric field perpendicular to this
plane: (a) hyperbolic-type modes and (b) elliptical-type modes. The number insets specify the value of ωa/c associated with each curve. The
geometrical parameters are as in Fig. 2. Panel (a) also depicts an isofrequency contour in the air region (black curve), and shows generic incident
and transmitted wave vectors, as well as the corresponding Poynting vectors. The transmitted wave vector kt (green arrow) is determined by
the conservation of the tangential component of the wave vector kx , whereas the Poynting vector St (blue arrow) is normal to the isofrequency
curves and is oriented towards increasing frequencies.

(star-shaped symbols). As seen in Fig. 4, the results obtained
using the two different methods concur very well. The range
of the horizontal axis (kz) in the plot is consistent with
the isofrequency contour of the TE mode with hyperbolic
dispersion at the same frequency (inset of Fig. 4). Note that
Fig. 4 effectively represents the permeability seen by the TE
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FIG. 4. Relative effective permeability μzz for a magnetic wire
medium as a function of kz with R = 0.4a, rw = 0.05a, and |p| =
0.9a at the normalized frequency ωa/c = 0.106. Solid lines: ana-
lytical formula (1); star-shaped symbols: numerical results obtained
using the full-wave homogenization approach reported in Ref. [38].
The range of kz in the horizontal axis is coincident with that of
the isofrequency contour of the TE eigenmode with hyperbolic-type
dispersion at the same frequency (see the inset). The shaded (green)
region in the main plot represents the range of kz for which kx � k0

(i.e., the spatial spectrum that can be excited with a propagating
incident plane wave at an air interface). The gray dashed line in the
inset marks the limit kx = k0.

modes with hyperbolic dispersion, which varies from mode to
mode because of the nonlocal effects.

In particular, modes with a transverse wave vector such
that kt � k0 (kt > k0) are mapped into (out of) the shaded
(green) region of the main plot. It therefore follows that modes
with a large transverse wave vector effectively experience a
very negative effective permeability and an extreme anisotropy
ratio |μzz| � 1. These modes can be excited from the air
region by an evanescent near field. On the other hand, waves
with a small transverse wave vector (kt � k0) experience a
near-zero permeability. Hence the eigenmodes with hyperbolic
dispersion and kt ≈ 0 are essentially magnetoinductive waves
[39]. These longitudinal-type modes occur when μzz = 0 [40],
and their properties were extensively studied in chains of
magnetically coupled resonators [39–41].

To conclude this section, we note that it is crucial to
have two helical-shaped wires with opposite handedness
within the same unit cell to enable a near-field transport
of TE-polarized waves. Indeed, it can be checked (not
shown here) that for a metamaterial formed by helical-shaped
wires with a fixed handedness (right-handed or left-handed
helices), the electromagnetic mode that has a hyperbolic-type
dispersion has an electric nature (|εzz| � 1, |μzz| ∼ 1, and
|ζzz/εzz| � 1, with ζzz being the effective parameter associated
with the magnetoelectric coupling [32]). In our design, the
chirality suppression creates an additional electromagnetic
mode associated with a very large (and negative) magnetic
permeability (|μzz| � 1) (Fig. 4). This new electromagnetic
mode results from the magnetic coupling between neighboring
helices with opposite handedness, which enables a localized
field distribution in each unit cell that is weakly radiative in the
xoy plane so that for large kt the energy is forced to flow along
the z direction. Thus, similar to the standard wire medium lens,
the magnetic wire medium may behave as a set of uncoupled
“magnetic” waveguides.
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III. TRANSMISSION PROPERTIES

Next, the scattering properties of the metamaterial slab
(Fig. 1) are studied under plane wave incidence using the
nonlocal homogenization model [Eq. (1)] and with full-wave
simulations [42]. The metamaterial slab is assumed infinite
and periodic along the x and y directions (with lattice period
2a and a, respectively), and finite along the z direction (with
thickness L). The incident wave propagates in the xoz plane
(ky = 0) and the incoming electric field is polarized along
the y direction (see Fig. 1). Thus, the electric field in the three
regions of space can be written as follows (the x dependence
and the time variation ejωt are suppressed):

E(1)
y = Einc

y (eγ0z + ρe−γ0z), z > 0,

E(2)
y = A+

1 e−jk
(1)
z z + A−

1 e+jk
(1)
z z + A+

2 e−jk
(2)
z z + A−

2 e+jk
(2)
z z,

−L < z < 0, (3)

E(3)
y = Einc

y τ eγ0(z+L), z < −L,

where Einc
y is the incident electric field, γ0 = √

k2
x − ω2ε0μ0

is the free-space propagation constant, kx = ω
√

ε0μ0 sin θi (θi

is the angle of incidence), and ρ and τ are the reflection
and transmission coefficients, respectively. The propagation
constants k(1,2)

z [calculated by solving Eq. (2) with respect to
kz] and the amplitudes A±

1,2 are associated with the two TE
modes (with elliptical and hyperbolic dispersions) that can be
excited in the metamaterial slab. For each plane wave with
electric field of the form E = E0e

−jk.rûy , the corresponding
magnetic field is given by

H = E0

η0k0

(
−kzûx + kx

μzz

ûz

)
e−jk·r. (4)

To calculate the transmission and reflection coefficients, we
impose that the tangential components of the electromagnetic
fields (Ey and Hx) are continuous at the interfaces x = 0
and x = −L. Since there are two plane wave modes with
the same polarization, these classical boundary conditions are
insufficient to determine all the unknowns of the scattering
problem [Eq. (3)]. To remove the extra degrees of freedom,
the classical boundary conditions must be complemented with
an additional boundary condition (ABC) at both interfaces.
In analogy with the standard wire medium case [43–45], it is
imposed that the normal component of the magnetic field (Hz)
is continuous at the interfaces x = 0 and x = −L. This ABC
is equivalent to ensure that the z component of the effective
macroscopic magnetic current density [Jm = jω(B − μ0H)]
vanishes at the interfaces, which is the magnetic counterpart
of the usual wire medium case [43–45]. Indeed, the standard
Maxwellian boundary conditions guarantee that Bz is always
continuous, and hence the classical boundary conditions
together with the condition that μHz is continuous imply that
Jm · ûz = jω(Bz − μ0Hz) is also continuous at the interface.
Because Bz − μ0Hz is zero at the air side of the interface it
follows that Jm · ûz vanishes at the magnetic wire medium side
of the interface, consistent with our claim. By imposing the
ABC and the classical boundary conditions, we obtain a 6 × 6
linear system that can be numerically solved with respect to
the unknowns.

FIG. 5. Amplitude and phase of the transmission coefficient as a
function of the normalized frequency, under plane wave incidence
with θi = 45◦. The geometrical parameters are R = 0.4a, rw =
0.05a, |p| = 0.9a, and L = 10a. The solid curves (continuous lines:
amplitude; dashed lines: phase) correspond to nonlocal homogeniza-
tion results, whereas the discrete symbols (circles: amplitude; crosses:
phase) correspond to full-wave results [42].

The amplitude and phase of the transmission coefficient for
an incident plane wave with θi = 45◦ is depicted in Fig. 5 as a
function of the normalized frequency. It is seen that the results
obtained with the nonlocal homogenization model and the
proposed ABC (solid lines) agree well with the results obtained
with the full-wave electromagnetic simulator CST Microwave
Studio [42], demonstrating in this manner the validity of the
proposed ABC.

In Fig. 6(a) the amplitude of the transmission coefficient
is depicted as a function of the transverse wave vector kx .
The solid lines are associated with the nonlocal homoge-
nization approach, whereas the dashed lines were obtained
with CST Microwave Studio [42]. The thickness of the slab
was tuned so that the Fabry-Perot resonance (k(1)

z L = π )
is satisfied around the normalized frequency ωa/c = 0.106
[k(1)

z ≈ (k0βp2/βp1)
√

α(1 + A2β2
p1) is the propagation constant

of the eigenwave with nearly flat dispersion], consistent with
the usual canalization regime [17].

As seen in Fig. 6(a), the full-wave results (dashed lines)
compare well with the analytical model (solid lines) for
incident waves with kxc/ω < 1. In particular, both methods
predict that for frequencies around the Fabry-Perot resonance
the amplitude of the transmission coefficient is near unity
for propagating waves (kxc/ω � 1). For evanescent waves
the agreement deteriorates considerably, even though some
qualitative features of the transmission characteristics are well
reproduced by the analytical model, such as the enhancement
of a significant part of the spectrum of the evanescent spatial
harmonics (1 < kxc/ω < 5). Thus, these results suggest that
somewhat analogous to the standard wire medium lens, which
enables the transport of TM-z polarized waves [17], the
considered magnetic wire medium lens may channel the TE-z
polarized waves.

The imperfect agreement between the nonlocal homog-
enization results and the CST results may be attributed in
part to resonant character of the Fabry-Perot condition, which
makes the transmission coefficient of evanescent harmonics
highly sensitive to variations of the structural parameters, and
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FIG. 6. (a) Amplitude of the transmission coefficient as a function of the normalized kx for different frequencies of operation. The
geometrical parameters are as in Fig. 5. (i) ωa/c = 0.106 and (ii) ωa/c = 0.111. Solid lines: nonlocal homogenization results [Eq. (3)];
dashed lines: full wave results [42]. (b) Propagation constant kx of the two low-frequency guided modes supported by the metamaterial slab as
a function of frequency, calculated with the eigenmode solver of CST Microwave Studio [42].

in part to the limitations of the effective medium model, which
requires that |kx |a � 1 and hence breaks down for evanescent
waves [32]. In particular, the nonlocal homogenization model
predicts that at ωa/c = 0.111 the transmission coefficient does
not exhibit a resonant behavior [see Fig. 6(a)(ii)], and thus
the metamaterial slab should not support guided modes at
this frequency. Differently, the full-wave simulations show
that the metamaterial slab supports guided modes traveling
along the x direction in a wide frequency range that includes
ωa/c = 0.111 [see Fig. 6(b)].

Even though for the canalization regime it would be
desirable to have |τ | ≈ 1 for all spatial harmonics (including
evanescent waves), it will be shown in the next section that the
transfer function of the magnetic wire medium [Fig. 6(a)] can
be used to transport the near field in an effective manner.

IV. MAGNETIC NEAR-FIELD IMAGING

In order to assess the subwavelength imaging potentials of
the magnetic wire medium, next we consider scenarios wherein
a material slab is illuminated by sources that radiate TE-z
polarized waves. First, we use the nonlocal homogenization
model to investigate the possibility of channeling the near field
created by two line sources. In a later stage, the electromagnetic
response of a finite width and height metamaterial slab
illuminated by small magnetic loops is simulated using CST
Microwave Studio [42].

To begin with, we consider that the metamaterial slab is
illuminated by two infinitely extended y-oriented line sources
separated by a subwavelength distance (�s = 0.3λ0) and fed
by electric currents in phase [Fig. 7(a)]. The two sources
are placed at a distance d1 = a from the front interface.
The electric field radiated by the line sources is of the
form Ey = [Ey,0/(4j )][H (2)

0 (k0ρ1) + H
(2)
0 (k0ρ2)], where Ey,0

is some constant that depends on the electric current, ρ1 and
ρ2 are the radial distances relative to the sources, and H

(2)
0 is

the Hankel function of second kind and order zero. The fields
radiated by the source can be decomposed into a spectrum of
plane waves, i.e., the Hankel function can be represented as
a Fourier integral of plane waves. Hence, considering that the

line source is located at z = d1, its electric field is of the form

Ey(x,z) = A

π

∫ ∞

0

1

2γ0
e−γ0|z−d1| cos(kxx)dkx. (5)

The response of the system to this excitation can be obtained
by superimposing the waves scattered by each plane wave in
the decomposition (5). Thus, the electric field in the three
regions of space can be written as follows:

E(1)
y (x,z) = A

π

∫ ∞

0

1

2γ0
[e−γ0|z−d1| + ρ(ω,kx)e−γ0(z+d1)]

× cos(kxx)dkx, z > 0,

E(2)
y (x,z) = A

π

∫ ∞

0

1

2γ0
E(2)

y (kx,z)e−γ0d1 cos(kxx)dkx,

−L < z < 0, (6)

E(3)
y (x,z) = A

π

∫ ∞

0

1

2γ0
τ (ω,kx)eγ0(z+L−d1) cos(kxx)dkx,

z < −L.

In the above, E(2)
y (kx,z) is the electric field inside the slab

(−L < z < 0) defined in Eq. (3), and ρ(ω,kx) and τ (ω,kx)
are the reflection and transmission coefficients obtained by
solving the plane wave scattering problem [Eq. (3)]. Using the
above equations we have calculated the electric field profile in
all regions of space.

Figure 7(b)(i) shows a density plot of the squared electric
field amplitude |E|2 in the xoz plane. In addition, to have a
benchmark for this result, we also show the density plot of |E|2
when the helical-wire medium lens is removed [Fig. 7(b)(ii)],
i.e., the radiation propagates only through the vacuum region.
Figure 7(b)(i) clearly proves that the magnetic wire medium
lens channels the radiation of the two line sources separated
by a subwavelength distance, so that the radiated fields do not
suffer a significant lateral spreading as when they propagate in
free-space [Fig. 7(b)(ii)].

Figure 7(c) depicts the normalized squared electric field
amplitude at the source and image planes, both in the presence
and absence of the magnetic wire medium lens. It is seen
that when the metamaterial lens is present, the two sources
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FIG. 7. (a) Geometry of the problem: two line sources fed by an electric current are separated by a distance �s and placed at a distance
d1 above the magnetic wire medium slab. (b) Squared electric field amplitude |E|2. (i) Magnetic wire medium lens with the same geometrical
parameters as in Fig. 5 and εh = 1, �s = 0.3λ0, d1 = a, and ωa/c = 0.1135. The white dashed lines represent the interfaces of the lens. (ii)
The same as in (i) but with the magnetic wire medium lens removed. (c) Amplitude of the normalized |E|2 at the source (z = d1/2; solid lines)
and image (z = −L − d1/2; dashed lines) planes. (i) and (ii) are the results with the magnetic wire medium slab; (iii) and (iv) are the results
without the magnetic wire medium slab.

are perfectly discernible from one another at the image plane
[Fig. 7(c)(ii)], different from what happens when the lens is
absent [Fig. 7(c)(iv)].

In order to verify the previous results based on homogeniza-
tion theory, we have simulated the electromagnetic response
of the metamaterial slab under similar conditions using the
commercial electromagnetic simulator [42]. However, instead
of using two electric line sources as the excitation, now we use
small magnetic loops parallel to the interface plane. Moreover,
we assume that the slab is finite along the x and y directions.

In a first scenario [Fig. 8(a)] we simulated the case wherein
two small magnetic loops are separated by a subwavelength
distance �s = 0.3λ0 along the x direction and are placed at a
distance d1 = a from the front interface of the metamaterial
lens. The slab has dimensions Lx = 46a and Ly = 15a

along the x and y directions, respectively. The results of the
simulation at the frequency f = 1.012 GHz are presented in
Fig. 8(b).

It is clear from Fig. 8(b) that the magnetic wire medium lens
transports the radiation along the axial direction (z direction)
without a significant lateral spreading. As a result, notwith-
standing the subwavelength distance between the magnetic
sources (�s ≈ 0.3λ0), the two loops are perfectly discernible
at the image plane.

In order to estimate the bandwidth of operation and the
resolution of this imaging device, we show in Fig. 8(c) the |Hz|
field profiles at the image plane for five different frequencies
in the range 0.8–1.2 GHz. As one can see from Fig. 8(c), the
two sources are resolved for frequencies in the interval 0.9–
1.1 GHz. Therefore, the bandwidth of operation of the
magnetic wire medium lens is about 18%, which is comparable
to that of the standard wire medium lens [16] and to the best of
our knowledge is nearly an order of magnitude better than
the bandwidth provided by a Swiss rolls-based lens [4,5].
The half-power beamwidth (HPBW) at the image plane for
f = 1.0 GHz [Fig. 8(c)(iii)] is about �s = 0.075λ0 � 4.45a.
This resolution is about twice the largest lattice period

(�s ≈ 2ax) similar to the typical resolution provided by
standard wire medium lenses formed by straight wires [16].
This result is explained by the fact that non-neighboring helices
are weakly coupled for k|| � k0 because |μzz| � 1, and hence
they provide a pixel by pixel near-field transport. This behavior
is different from that characteristic of the systems studied in
Ref. [46], wherein the significant mutual interaction between
the different resonators limits the resolution to several lattice
constants.

To fully evaluate the resolution capabilities of the meta-
material lens along the y direction, we investigated the case
where the sources are distributed both along the x and y

directions. Specifically, we consider a scenario wherein eight
small magnetic loops are disposed in the form of a ring very
close to each other at a distance d1 = a away from the slab front
interface [see Fig. 9(a)]. The distance between adjacent loops
is �s = 0.08λ0. In this case, the slab has dimensions Lx = 46a

and Ly = 27a along the x and y directions, respectively.
Figure 9(b) depicts the density plots of the magnetic field

amplitude |Hz| for f = 1.012 GHz at the source and image
planes. These results clearly prove that the magnetic wire
medium lens resolves the sources separated by deeply sub-
wavelength distances (�s = 0.08λ0 ∼ 2ax). Moreover, even
though the microstructure of the lens is different along the two
main axes (see Fig. 1) the metamaterial lens can discriminate
objects disposed along either the x or y directions.

V. CONCLUSION

In this work we investigated the possibility of near-field
imaging using a racemic array of helical-shaped metallic
wires. Rather surprisingly, it was shown that two propagating
TE-polarized eigenwaves coexist in the magnetic wire medium
in the quasistatic limit. One of the modes has an elliptical-
type dispersion, whereas the other mode has a hyperbolic
(nearly flat) dispersion with respect to the transverse wave
vector. The latter eigenmode enables a canalization regime for
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FIG. 8. (a) Geometry of the finite-sized magnetic wire medium lens: two magnetic loops are separated by a distance �s = 8.89ax ≈ 0.3λ0

and placed at a distance a = 5 mm above from the input interface of the lens. (b) Amplitude of the magnetic field |H| for a magnetic wire
medium lens with the same geometrical parameters as in Fig. 5 and εh = 1, d1 = a, �s = 0.3λ0, and f = 1.012 GHz, obtained using CST
Microwave Studio [42]. (i) Top view and (ii) perspective view. (c) Amplitude of |H| at the image plane (z = −L − a/2) for different frequencies
of operation. (i) f = 0.8 GHz, (ii) f = 0.9 GHz, (iii) f = 1.0 GHz, (iv) f = 1.1 GHz, and (v) f = 1.2 GHz.

TE-polarized waves, and hence, in this regard, the racemic
helical-shaped wire medium behaves as a magnetic analog of
the conventional wire medium formed by straight metallic
wires [15–17,20]. In particular, it was demonstrated with
full-wave simulations that the magnetic wire medium lens

i ii

L
x

FIG. 9. (a) Geometry of the finite-sized magnetic wire medium
lens: a ring of eight magnetic loops separated by a distance �s =
0.08λ0 are placed at a distance a = 5 mm from the input interface
of the lens. (b) Amplitude of the magnetic field |H| for a magnetic
wire medium lens with the same geometrical parameters as in Fig. 5
and εh = 1, d1 = a, �s = 0.08λ0, �x = 0.2λ0, and f = 1.012 GHz,
obtained with CST Microwave Studio [42]. (i) Source plane (z =
a/2) and (ii) image plane (z = −L − a/2).

enables the transport of the subwavelength details of TE-z
polarized sources, similar to what is achieved with the standard
wire medium for TM-polarized waves. Our findings may be
useful for the development of novel microwave and terahertz
imaging devices, and may also have applications in magnetic
resonance imaging.
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APPENDIX: EFFECT OF THE HELIX PITCH ON THE
METAMATERIAL CHANNELING PROPERTIES

In this Appendix we discuss the effect of the helix pitch
p on the isofrequency contours of the eigenmodes and on the
transmission properties of the metamaterial lens.

Figure 10 depicts the isofrequency contours of the two
TE-z eigenmodes supported by the magnetic uniaxial wire
medium for three different values of the helix pitch: |p| =
0.5a, |p| = 0.9a, and |p| = 1.3a. The results were obtained
with the analytical model. As seen in Fig. 10(a), as the
helix pitch p is increased, the isofrequency contour of the
hyperbolic-type mode becomes more and more flat. On
the other hand, the isofrequency contour of the elliptical-type
mode is increasingly circular as the helix pitch is increased.
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xk a

zk a

xk a

p

pp

FIG. 10. Influence of the helix pitch on the isofrequency contours
of the (a) hyperbolic-type and (b) elliptical-type eigenmodes for R =
0.4a, rw = 0.05a, and ωa/c = 0.1. Dot-dashed purple lines: |p| =
0.5a and α = 0.35. Dashed green lines: |p| = 0.9a and α = 0.51.
Solid blue lines: |p| = 1.3a and α = 0.64.

Thus, it follows that it is advantageous to have a large helix
pitch to have flat isofrequency surfaces.

However, one should keep in mind that both the hyperbolic-
and the elliptical-type modes can be excited in the magnetic
wire medium because both of them are propagating waves.
Hence, in practice the quality of the imaging by a magnetic
wire medium slab is determined not only by the flatness of
the isofrequency surface of the hyperbolic mode, but also by
how well the hyperbolic mode can be excited in the near-
field region. Our numerical simulations indicate that for values
of p comparable to or larger than 2a the hyperbolic mode
is difficult to excite and hence the quality of the near-field

xk c

i
ii

i
ii

xk c

FIG. 11. Amplitude of the transmission coefficient as a function
of the normalized kx for different frequencies of operation and for
a configuration with R = 0.4a and rw = 0.05a, calculated with the
full-wave electromagnetic simulator [42] for (i) ωa/c = 0.098, (ii)
ωa/c = 0.1. (a) |p| = 1.5a and L = 15.68a. (b) |p| = 2.0a and L =
25.13a.

imaging is poor. This is illustrated in Fig. 11, which shows
the transmission coefficient as a function of the transverse
wave vector for two different values of the helix pitch. The
simulations were done using CST Microwave Studio [42] and
the thickness of the magnetic wire medium slab was tuned
in each case so that the hyperbolic-type mode experiences a
Fabry-Perot resonance for normal incidence at ωa/c ∼ 0.1. As
seen, the response for |p| = 1.5a is qualitatively similar to that
of Fig. 6(a)(i), whereas for |p| = 2a the imaging properties
are rather poor and the evanescent waves are not transported
across the slab. These results suggest that having a small pitch
favors the near-field coupling to the hyperbolic-type modes
but deteriorates the flatness of the isofrequency contours. We
found that |p| = 0.9a (the value used in the examples of the
main text) is a good compromise between these two conflicting
objectives.
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