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Embedded energy state in an open semiconductor heterostructure
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In this paper, we show that HgCdTe heterostructures may support, within the envelope function approximation,
bound electronic states embedded in the continuum, such that the discrete energy spectrum overlaps the continuous
spectrum. Although the proposed heterostructures are generally penetrable by an incoming electron wave, it is
shown that they may support spatially localized trapped stationary states with an infinite lifetime. We discuss the
possibility of a free electron being captured by the proposed open resonator and present a detailed study of the
trapping lifetime in the case of a detuned resonator.
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I. INTRODUCTION

The stationary states of a quantum system with a finite-
height potential well are commonly divided into bound states,
which form a discrete spectrum, and unbound states, which
form a continuum [1]. Usually, the two classes of modes
do not overlap: the energies of the bound states usually lie
within a potential well, while the energies of the unbound
states lie above the potential well. Surprisingly, this property
of a quantum system is not universal, as there are theoretical
predictions of systems with bound-state energies falling into
the continuum, so-called bound states in the continuum (BICs).
Pioneering work pointing out that bound states with energies
in the continuum are exact solutions of the one-electron
Schrödinger equation for specific potentials was presented by
von Neumann and Wigner in 1929 [2]. That paper also showed
how to design electric potentials supporting BICs. The original
formulation of von Neumann and Wigner has been reworked
and even extended to a two-electron wave function [3], still
bearing the sign of BICs. More recently, it has been proposed
that the BICs can be decoupled from all continuum states also
by virtue of symmetry [4–6].

Alongside the paradigm introduced above, the so-called
resonant states in quantum systems have been discovered [7].
These represent a different approach for achieving “bound”
states (resonances) with energies lying above the continuum
threshold. These narrow-width resonances were proposed to
exist as metastable states trapped by a large potential barrier
or as quasibound states in closed channels of a system with
weakly coupled channels [8–10]. Strictly speaking, however,
these states are not truly bound, as they are, in fact, localized
states with a finite lifetime constructed from continuum states.
Their appearance is, however, very close to true BICs.

The experiment closest to observing BICs was carried
out by Capasso et al. in 1992 [11]. The bound state, albeit
with energy above the potential barrier, was de facto a defect
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mode achieved by Bragg reflections in the periodic system of
potential wells [12]. Another similar experiment, where the
bound states were coupled to the continuum, was the case
of (Ga, In)(As, N)/(Al, Ga)As quantum wells done by Albo
et al. [13].

The resonant states in the continuum have recently elicited
significant interest in the field of photonics. Indeed, for light
waves it may be easier to design a resonator environment
at will, using photonic crystals or metamaterials [14–18].
Photonic crystals even made an experimental observation of
BICs possible [19–21]. In this context, BICs may be regarded
as limiting cases of leaky waves. The usual leaky-wave states
discussed in the electromagnetism literature are excitations
with a finite lifetime and are in some sense the analog of
electronic “resonant states.” Thus, a BIC may be seen as
the limit of a leaky state with vanishingly small resonance
width [21–23].

Until recently, all the known realizations of BIC resonators
required infinitely extended material profiles, e.g., a photonic
crystal. Truncation of the material profile leads to imperfect
localization and to finite oscillation lifetimes. Importantly,
however, it was shown in Ref. [17] that spatially unbounded
resonators are not required to have BICs and that, under some
strict conditions, volume plasmons may enable the formation
of BICs in open cavities of finite size.

In this paper we propose a semiconductor heterostructure
supporting BICs, although it is characterized by a potential
well of finite height. Inspired by Ref. [17] and using an
electron-light-wave analogy, we show that an electron can be
trapped with an infinite lifetime within a spherical core-shell
heterostructure when the electron dispersive mass in the shell is
precisely zero and the radius of the core is precisely tuned. All
results are based on an effective-medium approximation [24].

II. A CORE-SHELL TRAP FOR ELECTRONS

A. Electron-light analogy

The trapped electron states in a crystalline heterostruc-
ture are determined by the microscopic time-independent
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Schrödinger equation

− �
2

2me
�ψmic(r) + Vmic(r)ψmic(r) = Eψmic(r), (1)

where � is the Laplacian operator, ψmic(r) is the wave function
of an electron from the top energy shells, E is energy, and
Vmic(r) is the effective microscopic potential associated with
the ion lattice of period a and with the rest of the electrons [25].

In realistic heterostructures, where each layer is composed
of many atoms and the wave vectors of the electron are
small k � 2π/a, the description of the valence electrons
can, however, be further simplified. In such a case, it is
possible to homogenize the microscopic wave function ψmic(r)
and the potential Vmic(r) [26–28], resulting in an effective
“macroscopic” wave function ψeff(r) = 〈ψmic〉, which varies
slowly on the scale of the lattice constant, and in an
effective potential Veff(r) = 〈Vmic〉, which is a constant for
each heterostructure layer [26–31]. The brackets 〈·〉 represent
the operation of spatial averaging. This envelope function
formalism was originally introduced by Bastard [24,27,32],
and it was further reworked in recent studies [28,30,31]. The
point of view of this paper is based on the ideas of Refs. [28,31].

An important observation is that ψeff = 〈ψmic〉 does not
imply that |ψeff(r)|2 = 〈|ψmic|2〉, and hence |ψeff(r)|2 does
not generally represent the probability density. The spatially
averaged probability density of energy eigenstates can be
written in terms of ψeff as [28,29,33] (see the Appendix)

〈|ψmic|2〉 =
(

1 − ∂Veff

∂E

)
|ψeff|2 + �

2

m2

∂m

∂E
‖∇ψeff‖2. (2)

Within this paradigm, the wave function ψeff satisfies the
macroscopic time-independent Schrödinger equation

− �
2

2m
�ψeff(r) + Veffψeff(r) = Eψeff(r), (3)

where Veff = E�6 is the band-edge energy of the conduction
(�6) band and where m is dispersive mass [26–28,31], defined
as

1

m
= 1

me
+ v2

P

(
2

E − E�8

+ 1

E − E�7

)
. (4)

Here, v2
P = 2P 2/3�

2, and P is Kane’s parameter [26], which
determines the curvature of the bands. The energy E�8 is
the band-edge energy of the valence band, and the energy
E�7 is the band-edge energy of the spin-orbit split-off band.
The dispersive mass depends on the electron energy, and in
general, it differs from the effective mass calculated from the
curvature of the band structure.

To ensure that the wave function ψeff(r) follows the
relevant physics at the interfaces of the layers, Eq. (3) is
further complemented with boundary conditions, i.e., with the
continuity of ψeff and ∂nψeff/m at each boundary, where ∂n =
∂/∂n and n represents the direction normal to the boundary
surface [24,31]. For convenience, we introduce the function
ψ̃eff(r) = ψeff(r)/m, which proves useful for handling the limit
m → 0 (E = E�8 ), which will be discussed later. Note that
the boundary conditions satisfied by ψ̃eff are the continuity of
mψ̃eff and the continuity of ∂nψ̃eff .

In this paper, we consider heterostructures with spherical
symmetry (each heterostructure layer is a spherical shell). In

such a case, one can look for a solution of Eq. (3) of the
form ψ̃eff(r) = R̃l(r)Pl(cosθ ), where Pl(cos θ ) represents a
Legendre polynomial of order l [34]. It is straightforward
to show [34] that the time-independent Schrödinger equation
reduces to

1

r2

∂

∂r

[
r2 ∂R̃l

∂r

]
+

[
2m

�2

(
E − E�6

)− l(l + 1)
1

r2

]
R̃l = 0. (5)

Due to the orthogonality of the Legendre polynomials and
the spherical symmetry of the system, the boundary conditions
for ψ̃eff(r) reduce to the continuity of mR̃l(r) and ∂rR̃l(r) at
each heterostructure boundary.

Unlike an electron in a crystalline heterostructure, a light
bound mode in an electromagnetic heterostructure is described
by a vector wave equation. In general, the vector wave equation
does not reduce to three uncoupled scalar equations, so there
is no immediate analogy between the light case and the
electron wave case. In the case of spherical coordinates [34],
the electromagnetic fields can fortunately be separated into
transverse electric radial TEr waves and transverse magnetic
radial TMr waves (transverse with respect to the radial
direction) [35]. The TEr waves can be derived from a single
component of the electric vector potential F = r̂Fr , and the
TMr waves can be derived from a single component of
the magnetic vector potential A = r̂Ar , so that the vector
wave equation reduces to a scalar wave equation [35,
pp. 553–557].

(� + k2)
Fr

r
= 0, (6a)

(� + k2)
Ar

r
= 0. (6b)

By analogy with the electronic case, we introduce auxiliary
functions F̃r = Fr/μr and Ãr = Ar/εr , so that the wave
equations (6a) and (6b) are further complemented by boundary
conditions that impose the continuity of μF̃r and ∂r F̃r for the
TEr waves and the continuity of εÃr and ∂rÃr for the TMr

waves, where ε and μ are the permittivity and the permeability,
respectively.

By comparing (3) and (6a) and (6b) and the corresponding
boundary conditions, a direct analogy between the semicon-
ductor and the electromagnetic cases is obtained (see Table I).

Table I also reveals that the presented electron-light analogy
for spherical waves is very similar to that for plane waves
[36–39].

TABLE I. The analogy between an electron wave and electro-
magnetic waves.

Electron wave TE wave TM wave

ψ̃eff = ψeff/m F̃r = Fr/μr Ãr = Ar/εr

m μ ε

2(E − E�6 ) ε μ

k2 = 2m(E−E�6 )

�2 ω2εμ ω2εμ

�f + k2f = 0, f = {ψ̃eff,F̃r ,Ãr}
Continuity

mψ̃eff μF̃r εÃr

∂r ψ̃eff ∂r F̃r ∂r Ãr
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FIG. 1. (Color online) (left) A sketch of an open core-shell resonator for electrons consisting of a core with radius R1 and a shell of width
R2 − R1. The core-shell structure is surrounded by an infinite background material. (right) A sketch of the energy band structures of the
heterostructure. The energy level associated with the embedded energy state is represented by a dashed horizontal line and corresponds to the
edge of the valence (�8) band of HgTe. Number 1 denotes the core, number 2 denotes the shell, and number 3 denotes the background. Note
that the considered semiconductor compounds have an inverted band structure, such that the order of the valence band �8 and of the conduction
band �6 is reversed.

B. The embedded eigenstate

The idea of a trapped electron is inspired by the electromag-
netic case [17], where it was shown that electromagnetic modes
can under certain conditions be bound with infinite lifetimes in
a core-shell nanoparticle. Particularly, the TMr modes can be
bound in the inner region of a core-shell nanostructure when
the permittivity of the shell is zero valued, εshell = 0, and the
radius of the core has a precise value. In such a case, the shell
has infinite transverse wave impedance and behaves, for this
particular mode of oscillation, as a perfect magnetic conductor
(PMC).

Applying the analogy described in the previous section, we
see that an electron may be trapped in the core of a spherical
heterostructure with an energy such that the dispersive mass
of the shell vanishes. From Eq. (4) the condition m = 0 is
satisfied for an energy such that E = E

(2)
�8

, i.e., at the edge of
the valence (with p-type symmetry) band. In what follows, we
will show that a semiconductor with a zero-valued dispersive
mass may, indeed, effectively behave as an infinite barrier for
the electron and enables the emergence of a spatially localized
stationary state embedded within the continuum. The geometry
of the open quantum resonator is sketched in Fig. 1.

Our design is based on the ternary compound Hg1−xCdxTe,
with x being the mole fraction of cadmium [40]. This ternary
compound is used mainly because of its favorable valence-
band offset values and due to the nearly perfect lattice matching
between HgTe and CdTe.

In our design, both the core (Hg0.9Cd0.1Te) and the shell
(HgTe) have inverted band structures with the �8 bands
lying above the �6 bands (Fig. 1), and the core and the
background materials are assumed to be identical. The fact that
the semiconductor compounds have inverted band structures,
and thus a negative dispersive mass within the band gap,
does not play any role in the context of the emergence
bound states embedded in the continuum. In principle, BICs
can also be supported by other semiconductors with regular
band structure. The band-edge energies are calculated from
the width of the band gap Eg = E�6 − E�8 and from the

split-off energy � = E�8 − E�7 . Energy Eg is computed from
Hansen’s formula [40], considering zero temperature. The
split-off energy is taken as � = 0.93 eV [41]. The valence-
band offset between HgTe and Hg1−xCdxTe (see Fig. 1) is
evaluated as 
 = 0.35x eV [42]. Kane’s parameter P is given
by the relation 2P 2me/�

2 = 18 + 3x eV [43].
Next, we formally demonstrate that Eq. (5) supports a

bound state when E = E
(2)
�8

, i.e., when m2 = 0 in the shell.

Note that the energy level E = E
(2)
�8

lies within the continuous
energy spectrum of the background and core regions (Fig. 1),
so the wave number k1 =

√
2m1(E − E

(1)
�6

)/�
2 in the core and

background regions is real valued. Under the assumptions that
m2 = 0 in the shell and that the wave function vanishes in
the background region, the solution of the radial part of the
Schrödinger equation (5) can be written in the form [34]

R̃l(r)=N0

⎧⎪⎨
⎪⎩

jl(k1r) r < R1,

Al(k1r)l + Bl(k1r)−l−1 R1 < r < R2,

0 r > R2,

(7)

where N0 is a normalization constant. The unknown coeffi-
cients Al and Bl are determined by the boundary conditions,
which require the continuity of mR̃(r) and ∂rR̃(r) at the two
interfaces. The continuity of ∂rR̃(r) implies that coefficients
Al and Bl are related as

Al = (k1R1)1−l

l
j

′
l (k1R1)

[
1 −

(
R2

R1

)2l+1
]−1

(8)

and

Bl = Al

l

l + 1
(k1R2)2l+1, (9)

where j
′
l (x) = ∂jl(x)/∂x.

The continuity of mR̃(r) imposes that the inner radius must
satisfy

jl(k1R1) = 0. (10)
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FIG. 2. (a) The macroscopic wave function ψeff and (b) the spatial average probability density 〈|ψmic|2〉 (normalized to the peak value) of
the trapped electron as a function of the normalized z coordinate.

This condition shows that in order to have an embedded energy
eigenvalue, the radius of the core region must be chosen
precisely. For l = 1 (dipole-type symmetry) this condition
implies that the smallest possible radius for the core is
R1,res ≈ 4.49/k1. This analysis confirms the hypothesis that
the electron can be trapped in the core of the semiconductor
heterostructure if the dispersive mass of the shell is zero valued
and the radius of the core has a very specific value.

It is important to highlight the following:
(i) In the ideal case of m2 = 0, the resonance condition is

independent of the shell thickness.
(ii) For l = 0, the calculated coefficients Al and Bl are

singular, and hence a wave function with monopole (s-type
orbital) symmetry cannot be trapped within the core. This
important result implies that our resonator is penetrable by
electron waves with monopole symmetry; that is, a semicon-
ductor with a zero-valued dispersive mass behaves as an infi-
nite barrier only for waves with a nonzero azimuthal quantum
number. Thus the core-shell heterostructure is generally open
to electron waves. This is similar to the electromagnetic case,
where a TMr wave may be bound to the core by a shell made
of permittivity near zero (ENZ) material, with the shell being
penetrable by TEr waves [17].

(iii) The trapped modes are degenerate because for each l

there are in total 2l + 1 spherical harmonics differing only in
the magnetic quantum number [34].

To illustrate the proposed theory, we consider a semicon-
ductor heterostructure with an HgTe shell. The Hg1−xCdxTe
core has mole fraction x = 0.1 and radius R1 = R1,res ≈
4.49/k1 ∼ 65a, where a = 0.65 nm is the lattice constant
of the considered bulk semiconductor alloys. The radius of
the shell is R2 = 1.1R1,res. The trapped electron state has
dipole-type symmetry (l = 1).

The calculated radius dependence of the “macroscopic”
wave function ψeff and the corresponding averaged probability
density 〈|ψmic|2〉 along the z axis are depicted in Fig. 2. Note
that (2) allows for writing 〈|ψmic|2〉 in terms of ψ̃eff as follows:

〈|ψmic|2〉 = m2|ψ̃eff|2 + �
2 ∂m

∂E
‖∇ψ̃eff‖2. (11)

To obtain the formula presented above, we used ∂Veff/∂E = 0.
It is interesting to note that for both semiconductor alloys
m ≈ (E − E�8 )/2v2

P in the energy range of interest, with v2
P =

2P 2/3�
2 [28]. The parameter vP has units of velocity. Thus

∂m/∂E ≈ 1/2v2
P , which is approximately the same in both

the core and the shell.
Figure 2(a) shows that the macroscopic electron wave

function is entirely confined within the core; that is, ψeff is
identically zero not only outside the core-shell resonator but
also in the shell. However, as shown in Fig. 2(b), the average
probability density has a symmetry different than the squared
amplitude of the macroscopic wave function and furthermore
is nonzero in the shell. This means that the microscopic wave
function ψmic has strong fluctuations on the scale of the unit
cell of the HgTe shell, so that its macroscopic spatial average
vanishes in the shell, while the corresponding probability
density function is nonzero. The fact that the probability of
finding the electron in the shell is nonzero is consistent with
the electromagnetic case, for which the electromagnetic energy
stored in the ENZ shell is nonzero. Thus, a zero dispersive
mass, m2 = 0, and a nonzero azimuthal quantum number
imply that the shell behaves as an infinite-height potential
barrier that blocks the electron tunneling out of the resonator.

It is relevant to note that in the electromagnetic case
the light remains confined in the core region due to the
screening provided by the (nonradiative) volume plasmons of
the shell [17]. Interestingly, in the semiconductor case studied
here the role of the plasmons is played by the heavy-hole states
of HgTe [44]. In our framework the heavy-hole states have a
flat energy dispersion and occur precisely at the energy level
wherein the dispersive mass vanishes.

C. Density of states

In order to further support the hypothesis of the emergence
of the bound state in the continuum, the density of states in the
background material has been evaluated as Ref. [45]

g(E) =
∑

n

1

(2π )3

∫
E=Enk

1

|∇kEnk|dS, (12)

where the summation is over all bands. Accounting for a
spin degeneration and realizing that the surfaces E = Enk are
spherical within the effective-medium model used, Eq. (12)
can be simplified as

g(E) = 1

π2

k2

|�vg| , (13)
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FIG. 3. Density of states in the background medium. The vertical
arrow represents the bound state in the continuum.

where

vg = 1

�

∂E

∂k
= vP

√(
E − E�6

)(
E − E�8

)
(
E − (

E�6 + E�8

)
/2

) (14)

is the group velocity. It is important to note that Eq. (14)
assumes the linear mass approximation m ≈ (E − E�8 )/2v2

P ,
which is valid in the vicinity of E�8 .

From the dispersion of the energy stationary states it is
possible to write the wave vector k as a function of the energy,
so that we finally get

g(E) =
[(

E − E�6

)(
E − E�8

)]1/2∣∣E − (
E�6 + E�8

)
/2

∣∣
π2�3v3

P

.

(15)
The density of states (13) is depicted in Fig. 3. It can be seen

that it is nonzero at the energy E = E
(2)
�8

associated with the
BIC. This confirms that the discrete spectrum really overlaps
the continuum spectrum. It is worth mentioning that the density

of states of the background region is coincident with the density
of states of the continuous spectrum of the structure. This is
due to a one-to-one correspondence between the plane-wave
electronic states in the background unbounded region and the
extended electronic states in the presence of the semiconductor
heterostructure.

Note that the usual paradigm is that the bound states occur
within the band gaps of the background material, different
from Fig. 3. In the present example, it may be shown that
there are no bound states in the band gap between the valence
and conduction bands of the background region. This happens
because the band gap of the shell overlaps the band gap of the
background and of the core regions (Fig. 1).

III. THE TRAPPING LIFETIME FOR
A DETUNED RESONATOR

The previous section dealt with the ideal case, where the
energy of the trapped electron is equal to the band-edge
energy E

(2)
�8

and the inner radius is perfectly tuned to the value
R1,res defined by Eq. (10). Such perfect tuning is, however,
unrealistic, and it is interesting to characterize the trapping
lifetime when the inner radius R1 is detuned.

In the detuned case, the solution of the radial equation (5)
has to be searched in the form

R̃(r) =

⎧⎪⎨
⎪⎩

aljl(k1r) r < R1,

b
(1)
l jl(k2r) + b

(2)
l yl(k2r) R1 < r < R2,

clh
(1)
l (k3r) r > R2,

(16)

where jl and yl are the spherical Bessel functions of the first
and second kinds, respectively, h

(1)
l is the spherical Hankel

function of the first kind, and ki =
√

2mi(E − E
(i)
�6

)/�
2 is the

wave number in the ith layer. As in the previous section, the
unknown coefficients al , b

(1)
l , b

(2)
l , and cl are obtained from

the boundary conditions discussed previously, which result
in the following equation system:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

jl(k1R1) −m2

m1
jl(k2R1) −m2

m1
yl(k2R1) 0

j
′
l (k1R1) −k2

k1
j

′
l (k2R1) −k2

k1
y

′
l (k2R1) 0

0
m2

m1
jl(k2R2)

m2

m1
yl(k2R2) −m3

m1
h

(1)
l (k3R2)

0
k2

k1
j

′
l (k2R2)

k2

k1
y

′
l (k2R2) −k3

k1
h

′(1)
l (k3R2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

al

b
(1)
l

b
(2)
l

cl

⎞
⎟⎟⎟⎠ = 0. (17)

In the detuned case, this homogeneous system (16) has a
nontrivial solution only for complex energy values, E = Ere +
iEim, which correspond to the zeros of the matrix determinant.
The imaginary part of the energy is associated with the decay
time of the localized state, and nonzero Eim implies that the
electron escapes from the resonator. The trapping lifetime can
be defined as τ ∼ �/(−2Eim) [1]. The lifetime is independent
of the origin of the energy scale. The trapping lifetime is shown
in Fig. 4 as a function of relative detuning R1/R1,res for R2 =
1.1R1,res. The calculation assumes that the core and the back-
ground are made of Hg0.9Cd0.1Te and that the shell is HgTe.

IV. SCATTERING CROSS SECTION OF THE
CORE-SHELL RESONATOR

Since the resonator may support a state with an infinite
lifetime, it is natural to ask if it can capture a free-electron
propagating in the background region. To investigate this
possibility, we will now study the scattering of a plane electron
wave by the core-shell resonator.

Because of the angular symmetry of the resonator, it
can be assumed without loss of generality that the plane
wave propagates along the z axis. This plane wave may be
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FIG. 4. The trapping lifetime as a function of relative detuning
R1/R1,res. The trapping lifetime is normalized with respect to the time
τ0 = 2R2/vg = 0.11 ps that the electron needs to pass the diameter of
the core-shell resonator at the group velocity (14) in the background
material. Note that the lifetime diverges to infinity for R1/R1,res = 1.

decomposed into Legendre polynomials as Ref. [46]

eik3z =
∞∑
l=0

il(2l + 1)jl(k3r)Pl(cos θ). (18)

This decomposition allows us to write the normal-
ized wave function as ψ̃ = ∑∞

0 ψ̃l , with ψ̃l(r,θ,ϕ) =
R̃l(r)il(2l + 1)Pl(cos θ ) and

R̃l(r) =

⎧⎪⎨
⎪⎩

aljl(k1r) r < R1,

b
(1)
l jl(k2r) + b

(2)
l yl(k2r) R1 < r < R2,

clh
(1)
l (k3r) + jl(k3r) r > R2.

(19)

The unknown coefficients are obtained by imposing the
previously discussed boundary conditions at the interfaces.
Figure 5(a) shows the first four (l = 0,1,2,3) Mie scattering
coefficients in the core region (al) as a function of the
electron energy for a detuned resonator with R1 = 1.01R1,res.
The curve corresponding to l = 0 (black line) confirms that
the heterostructure is penetrable by an electron wave with
monopole symmetry. This is in conformity with the claim in
Sec. II B. However, the remaining curves show clearly that al

(l � 1) vanishes whenever E = Eideal [see Fig. 5(a)], where
Eideal is the valence-band-edge energy E�8 of HgTe. For this

energy, the shell region behaves as an infinite height barrier,
and the incident electron wave is unable to reach the core
region. The most relevant of these coefficients, a1, which is
associated with the trapped state, is further studied in Fig. 5(b)
for R1 ≈ R1,res. In this case, our numerical simulations reveal
that the approximation

a1 ≈ (E − Eideal)

(E − Eactual)
eiφ0 (20)

holds. In the above equation, Eactual is the complex-valued
resonance energy determined by the inner radius R1 which is
calculated as explained in Sec. III, and φ0 is some irrelevant
phase factor. Notably, Eq. (20) and Fig. 5(b) reveal that in the
limit case R1 → R1,res the zero associated with Eideal cancels
the pole corresponding to Eactual, and |a1| → 1. This contrasts
with all the other al (l � 2), which in the present example
vanish identically for E = Eideal, regardless of the radius R1.
This means that, due to the cancellation of a zero pole, an
incident wave with energy E = Eideal and dipole symmetry
may actually penetrate into the shell, in the case of a perfectly
tuned resonator [see Fig. 5(b), blue curve]. Nevertheless, even
though the resonator may support an infinite-lifetime bound
state and the free electron can penetrate into the core, it cannot
be captured by the resonator.

Indeed, the condition for having a trapped electron in the
present problem is that |a1| → ∞ for some real-valued E.
It may be checked that even though |a1| can have rather
large values in our structure, it remains finite for any real-
valued energy. We therefore conclude that, in the scenario
studied here, the resonator is unable to capture the free
electron.

This discussion may suggest that it is impossible to couple a
free electron to the embedded bound state. However, that is not
necessarily the case. For example, if the resonator is perturbed
during a short time period (e.g., by applying a time-varying
electric or magnetic field), the temporary detuning may allow
the free electron to excite the bound state and be permanently
captured after the perturbation is removed. Another option is
to excite another lower-energy filled bound state (part of the
discrete spectrum) with an external field. These ideas will be
explored in future work.
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| |al | |a1

FIG. 5. (Color online) (a) Magnitude of the first four coefficients al (l = 0,1,2,3) as a function of relative energy detuning. The inner radius
of the resonator is R1 = 1.01R1,res. (b) Magnitude of a1 as a function of relative energy detuning. The inner radius is R1 = {0.99,1,1.01}R1,res.
The solid lines correspond to the exact solution, while the dashed lines correspond to the approximation (20).
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It is also interesting to characterize the scattering cross
section of the resonator. It is given by Ref. [47]

σsc =
∫

�

∣∣ψsc
∂ψ∗

sc
∂r

− ψ∗
sc

∂ψsc

∂r

∣∣r2

|ψinc∇ψ∗
inc − ψ∗

inc∇ψinc|d� = 4π

k2
1

∑
l

|cl|2(2l+1),

(21)

where subscript sc stands for scattered and subscript inc
stands for incident. Figure 6(a) shows that for a perfectly
tuned resonator with R1 = R1,res (blue curve), the scattering
cross section does not exhibit any resonant features. This is
consistent with the zero-pole cancellation discussed above.
However, for a detuned inner radius R1 there is a resonant
response which indicates a strong interaction of the free-
electron with the heterostructure because of temporary electron
trapping. This behavior is also perceptible in Fig. 6(b), where
the scattering cross section is represented for different energies
of the incident electron.

V. CONCLUSION

It has been shown that a spherical semiconductor het-
erostructure may support bound states embedded within the
continuum at an energy level where the shell region has a zero-
valued dispersive mass. A realistic design of the heterostruc-
ture based on the Hg1−xCdxTe compound has been proposed.
An in-depth analysis of the suggested heterostructure, based on
the envelope function formalism, has been presented, showing
the possibility to trap an electron within the resonator core. The
trapping lifetime of a detuned heterostructure has also been
characterized, and it has been shown that the heterostructure
can trap the electron for a long time, even if there is
slight detuning. Finally, we investigated the possibility of a
free electron being captured by the semiconductor resonator.
Notably, our analysis has revealed that, in the same manner
as a trapped electron is unable to escape from the resonator, a
free electron cannot be permanently captured by the resonator.
Interestingly, the scattering cross section does not exhibit any
resonant features for a perfectly tuned structure. This confirms
that a free electron is unable to interact with the embedded
bound energy eigenstate.

Although it is challenging to capture the incident electron
within the core of an ideal structure, our future aim will be to

investigate how to couple the electron to the embedded bound
state, e.g., by a temporary detuning of the heterostructure.
Moreover, due to the effective-medium approximation, another
aim is to confirm the results with first-principles calculations
of the electronic band structure.
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APPENDIX

In the Supplemental Material of Ref. [33] it is formally
demonstrated that, within an effective-medium framework,
the relation between the spatially averaged probability density
associated with a Bloch energy eigenstate and the macroscopic
wave function is such that

〈|ψmic|2〉 =
(

1 − ∂Ĥeff

∂E

)
|ψeff|2. (A1)

In the above equation, Ĥeff(E,k) represents the homogenized
(energy-dependent) Hamiltonian with k = −i∇. In this paper,
the effective-medium Hamiltonian is given by [see Eq. (3)]

Ĥeff(E,k) = �
2k2

2m
+ Veff . (A2)

Hence, it follows that

〈|ψmic|2〉 =
(

1 − ∂Veff

∂E

)
|ψeff|2 − ∂

∂E

(
1

m

)
�

2

2
|ikψeff|2.

(A3)

For a Bloch energy eigenstate in a continuous medium, we
have ikψc = ∇ψc, and thus the above result leads to Eq. (2)
of the main text.
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