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Chern invariants for continuous media
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Here, we formally develop theoretical methods to topologically classify a wide class of bianisotropic continuous
media. It is shown that for continuous media, the underlying wave vector space may be regarded as the Riemann
sphere. We derive sufficient conditions that ensure that the pseudo-Hamiltonian that describes the electrodynamics
of the continuous material is well behaved so that the Chern numbers are integers. Our theory brings the powerful
ideas of topological photonics to a wide range of electromagnetic waveguides and platforms with no intrinsic
periodicity and sheds light over the emergence of edge states at the interfaces between topologically inequivalent
continuous media.
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I. INTRODUCTION

The photonic crystal concept was introduced in 1987 in
connection with a proposal to inhibit the spontaneous emission
and thereby enhance the performance of semiconductor lasers
[1]. Starting with this already distant pioneering study, pho-
tonic crystals have revolutionized light-based technologies and
laid the foundations for future integrated photonic platforms
fully operated with light waves [2,3]. The light propagation in
photonic crystals is dictated by a band structure that comprises
all the relevant information about the allowed photonic states
[2]. The general approach to control the flow of light in
these artificial materials relies on the so-called band structure
engineering. In particular, the unit cell of a photonic crystal
determines the light dispersion, i.e., the relation between
frequency and the wave vector, and the polarization of the
light waves. In most applications, one is interested in the
properties of the band structure in a narrow frequency range.
The unprecedented control over the photonic band structure
unveiled a plethora of new phenomena [4,5], and, in particular,
it lead to the development of electromagnetic metamaterials
[6].

Surprisingly, it was recently discovered that the light
propagation in photonic crystals may also depend on the global
properties of the band structure, i.e., on some topological
characteristics that depend on the inner fabric of all the
eigenstates over a wide range of frequencies [7–9] and on
the manner that they are mutually entangled. It has been
suggested that topological invariants may have revolutionary
applications in future photonic platforms immune to disorder
and imperfections and may allow for new paradigms for a
topologically protected transport of optical energy [10–16].

The analogies between electronics and photonics are at the
heart of the foundation of photonic crystals [1]. The study
of the topological properties of photonic crystals was also
inspired by such analogies [7,8]. Topology is a branch of
mathematics related to the qualitative geometrical properties
of objects. The topological classification of surfaces is a
well-developed subject [17]. A recurring example is that a
torus and a sphere are topologically inequivalent because they

*Author to whom correspondence should be addressed:
mario.silveirinha@co.it.pt

cannot be transformed one into the other with a continuous
transformation. Different topologies are mathematically clas-
sified by integer numbers, designated by topological invariants,
which are quantities unaffected by continuous deformations
of the system [9,17]. The emergence of topological concepts
in solid-state physics dates back to 1982 with the proof
that the Hall conductance of a two-dimensional periodic
potential is precisely quantized [18,19]. The integer number
that defines the conductivity is known as the Chern number and
is determined by all the filled electronic bands. Thus, the Chern
number depends on the global properties of the band structure.
An important development occurred some years ago when
Haldane and Raghu suggested that a photonic crystal with a
broken time-reversal symmetry (e.g., in a periodic array of
biased ferrite disks) may be characterized by nontrivial Chern
numbers [7,8]. It was proven that the nontrivial topological
nature of these structures may imply the existence of one-way
topologically protected chiral edge states immune to disorder
and imperfections. These ideas were verified in an experiment
[12] that confirmed that the edge states can travel in a single
direction and are largely insensitive to the presence of large
scatterers. Indeed, the edge states route around any obstacles
placed in their path, with no reflections, because of the
inexistence of backwards-propagating edge states [12]. Thus,
the topological nature of chiral edge states makes the wave
propagation impervious to imperfections.

Recently, the field of topological photonics received a
further boost of interest with the discovery of topological
photonic insulators, which are essentially photonic crystals
that may support topologically protected edge states even
though the time-reversal symmetry is unbroken [20,21]. This
is an advancement worth noting because it enables us to realize
chiral edge states, relying on conventional dielectrics and met-
als [21], without the need for the less common nonreciprocal
materials. Different from magneto-optic photonic crystals, in a
topological photonic insulator the edge states are bidirectional.
Yet, they have intrinsic chiral-type properties that make them
largely immune to back scattering [20,21]. The concept of a
topological insulator originally emerged in condensed matter
physics [22,23].

The usual topological classification of photonic crystals
explores the fact that these structures are periodic [7–9].
The periodicity is essential for technical reasons. Indeed, to
ensure that the Chern number is an integer, it is necessary
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that the underlying wave vector space is a closed surface
with no boundary [23]. In a photonic crystal, the relevant
space is the Brillouin zone, which is equivalent to a torus. It
would be interesting to extend the topological classification
of photonic crystals to continuous electromagnetic media,
e.g., to metamaterials modeled by some effective parameters.
Indeed, the electrodynamics of continuous systems is much
simpler than that of periodic structures, and this simplicity may
lead to important physical insights and a deeper understanding
of topological photonics. Similar to photonics crystals, due to
the frequency dispersion of the material response, continuous
media are also characterized by an intricate band structure.
However, unlike in periodic structures, for continuous media
the natural wave vector space is an unbounded open region
(the Euclidean space). Thus, the topological classification
of continuous media seems unfeasible. Yet, given that the
Chern numbers are integral for periodic systems, one might
be tempted to conclude that the homogeneous systems have
the same property because of two possible paths. In the first,
the period of a periodic system is taken to infinity. In the
second, a periodic system with inclusions is considered, and
the difference between the materials in the inclusions and in
the background is made to tend to zero. Unfortunately, both
paths are misleading. For the first case, the explanation is
that when the period approaches infinity, the Brillouin zone
(a torus) collapses into a point (in the limit where the period
is exactly infinity). Hence, the final wave vector space (when
the period is precisely infinity) is not a closed surface with no
boundary, as required by the Chern theorem. As to the second
case, the problem is that in the continuous limit, two generic
wave vectors that differ by a primitive reciprocal lattice vector
(let us say k and k + G) are not equivalent, different from
what happens in the periodic case. Indeed, in the periodic
case, it is possible to link the envelopes of the eigenfunctions
as fnk+G = fnke

iG·r (a Gauge transformation), whereas in the
continuous limit fnk and fnk+G are unrelated. Due to this reason,
in the continuous limit the Brillouin zone is not equivalent to
a torus.

It is demonstrated in this paper that it is possible to
overcome these technical difficulties and to calculate the Chern
invariants of a wide class of continuous bianisotropic electro-
magnetic media described by an effective material response.
The key ingredient is to map the unbounded wave vector space
into the Riemann sphere. We derive general conditions that
guarantee that the pseudo-Hamiltonian associated with a given
dispersive material response is sufficiently well behaved over
the Riemann sphere so that the Chern numbers are integers. We
illustrate the application of the theory with several physically
intuitive examples and connect the nontrivial topology of bulk
continuous media with the emergence of edge states.

This paper is organized as follows. In Sec. II we extend
the theory of Raghu and Haldane [8] to general bianisotropic
spatially dispersive media and explain how the Berry potential
can be determined from the continuous medium band structure.
Next, in Sec. III, it is shown that the wave vector space
associated with continuous media may be identified with the
Riemann sphere. We derive a wide class of bianisotropic ma-
terial responses for which the associated pseudo-Hamiltonian
is sufficiently well behaved so that the Chern numbers are
integers. In Sec. IV, the developed theory is applied to

characterize the Chern invariants of a magneto-optic material.
The correlation between the nontrivial topology of the contin-
uous medium and the emergence of edge states is discussed.
The conclusions are drawn in Sec. V.

II. THE BERRY POTENTIAL FOR DISPERSIVE
LOSSLESS MEDIA

A. Continuous electromagnetic media

In this paper, we are interested in dispersive lossless media,
whose electrodynamics in the time domain is described in a
compact manner by

N̂ · f = i

[
∂g
∂t

+ j
]
, (1)

where f = (E H)T , g = (D B)T , and j = (je jm)T are
six-component vector fields, E,H are the electric and magnetic
fields, D,B are the electric displacement and the induction
fields, je,jm are the electric and magnetic current densities
(jm is included here only for the sake of completeness), and
the superscript T denotes the transposition operation. The
differential operator N̂ stands for

N̂ =
(

0 i∇ × 13×3

−i∇ × 13×3 0

)
, (2)

where 13×3 is the identity tensor of dimension three. The f and
g vector fields are linked in the spectral (frequency) domain
by a material matrix M such that

g = M · f, with M = M(ω,k) =
(

ε0ε
1
c
ξ̄

1
c
ζ̄ μ0μ̄

)
. (3)

In the above, ω = i∂/∂t is the frequency, k = −i∇ is the wave
vector, and the dimensionless tensors ε,μ̄,ξ̄ ,ζ̄ represent the
permittivity tensor, the permeability tensor, and the magneto-
electric coupling tensors, respectively [24]. Thus, we allow
the material response to be bianisotropic [24,25], and it may
depend both on the frequency and on the wave vector. Hence,
the medium may be spatially dispersive, i.e., nonlocal [26,27],
as opposed to conventional local media with M = M(ω). The
reason for this assumption will be made clear in Sec. III. For
future reference, we note that in a lossless medium the material
matrix is required to be Hermitian for (ω,k) real-valued [25,28]

M(ω,k) = M†(ω,k), (4)

where the superscript † denotes the conjugate transpose matrix.
Moreover, the material matrix must also satisfy

∂

∂ω
[ωM(ω,k)] > 0, (5)

i.e., ∂
∂ω

[ωM(ω,k)] must be a positive definite matrix. This
property follows from the fact that the time-averaged stored
energy density (Wav) in time-space harmonic regime (f(r,t) =
Re{Fe−iωt eik·r}) is determined by the quadratic form Wav =
1
4 F∗ · ∂

∂ω
[ωM(ω,k)] · F and Wav � 0 [25]. Some particular

cases of this formula are discussed in Refs. [26,27,29,30].
Finally, we note that because the electromagnetic fields are

real-valued physical entities, the material matrix must satisfy
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the reality condition [26,27],

M(ω,k) = M∗(−ω,−k), (6)

where the superscript * stands for the conjugate operation.

B. Hermitian formulation in the time domain

In the absence of an external excitation (j = 0), Maxwell’s
equations (1) become N̂ · f = i

∂g
∂t

. When the material response
is instantaneous (when M is independent of frequency),
we get simply Ĥcl · f = i ∂f

∂t
with Ĥcl = M−1 · N̂ , which is

similar to the Schrödinger equation with � = 1. Notably, as
discussed in Ref. [31], the operator Ĥcl is Hermitian with
respect to a suitable inner product and hence plays the role
of a Hamiltonian. Hence, because Ĥcl · f = i ∂f

∂t
is formally

equivalent to the Schrödinger equation, it is straightforward
to extend the notion of Berry potential to nondispersive
electromagnetic media [7,8].

As originally discussed by Raghu and Haldane [8],
these ideas can be further generalized to dispersive loss-
less media by introducing a generalized state vector Q =
(Q0 Q1 . . . Qα . . .)T that describes the dynamics of
the electromagnetic field and of the internal degrees of freedom
of the material response (see also Refs. [32,33]). Here, Qα

(α � 1) represents the state variables associated with the
internal degrees of freedom, and Q0 = f. The result of Raghu
and Haldane was derived under the assumption that the
magneto-electric coupling tensors vanish (ξ̄ = ζ̄ = 0) and that
the material response is local [M = M(ω)]. In Appendices A
and B, it is shown that it is possible to further extend the
findings of Ref. [8] to arbitrary lossless spatially dispersive
materials. Specifically, Maxwell’s equations (1) are shown to
be equivalent to a generalized system of the form L̂ · Q =
i ∂

∂t
Mg · Q + ijg , with⎛
⎜⎜⎜⎜⎝

N̂ +∑α sgn(ωp,α)A2
α |ωp,1|1/2A1 |ωp,2|1/2A2 ...

|ωp,1|1/2A1 ωp,11 0 ...

|ωp,2|1/2A2 0 ωp,21 ...

... ... ... ...

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
L̂

·

⎛
⎜⎜⎝

f

Q1

Q2

...

⎞
⎟⎟⎠

︸ ︷︷ ︸
Q

= i
∂

∂t

⎛
⎜⎝

M∞ 0 0 ...

0 1 0 ...

0 0 1 ...

... ... ... ...

⎞
⎟⎠

︸ ︷︷ ︸
Mg

·

⎛
⎜⎝

f
Q1

Q2

...

⎞
⎟⎠+i

⎛
⎜⎜⎝

j
0
0

...

⎞
⎟⎟⎠

︸ ︷︷ ︸
jg

,

(7)

where 1 ≡ 16×6. As detailed in Appendix A, the 6 × 6 matrices
Aα are related to the residues of the material matrix M at
the poles ωp,α , and M∞ = limω→∞M(ω,k). Each pole of the
system is associated with an auxiliary variable Qα . In this
paper, it is assumed that the high-frequency material response,
M∞, is independent of the wave vector and is positive definite.
This assumption is rather natural because for high frequencies
the response of realistic materials should reduce to that of
the vacuum [26] (but we do not restrict ourselves to this case).
Thus, Mg is also independent of the wave vector and is positive

definite. On the other hand, the operator L̂ depends on the
wave vector k = −i∇, even for local media. Therefore, the
dynamics of the generalized system is determined by

L̂(−i∇) · Q = i
∂

∂t
Mg · Q + ijg, (8)

which is analogous to the Schrödinger equation in the absence
of an external excitation (jg = 0). It is proven in Appendix B
that for each fixed k, the operator Ĥcl = M−1

g · L̂ is Hermitian
with respect to the weighted inner product

〈QB |QA〉 ≡ 1
2 Q∗

B · Mg · QA. (9)

Moreover, we show in Appendix B that if Q is a solution
of the generalized system (8) with a space-time dependence of
the type e−iωt eik·r, and if f denotes the corresponding solution
of Maxwell’s equations (1), then

〈Q|Q〉 ≡ 1

2
f∗ · ∂

∂ω
[ωM(ω,k)] · f. (10)

Hence, consistent with the discussion of Sec. II A, for fields
with a space-time variation of the form e−iωt eik·r, the right-
hand side of the above expression represents the stored energy
density in the material and is always a positive quantity.
In particular, 〈Q|Q〉 may be regarded as the (instantaneous)
energy density of the dispersive material, and, importantly,
for plane waves it can be written solely in terms of the
electromagnetic fields f = (E H)T . This finding generalizes
the results of Ref. [8].

C. The Berry potential

The generalized system (7) enables us to introduce a Berry
potential A associated with a family of eigenmodes of a
generic spatially dispersive material. To show this, we start
by noting that the natural modes of (7) are the solutions of the
eigenvalue problem

Ĥcl · Q = ωQ, (11)

with Ĥcl = M−1
g · L̂, which, as previously discussed, is Hermi-

tian with respect to the weighted inner product (9). The above
equation is formally equivalent to the stationary Schrödinger
equation with � = 1. Therefore, the eigenmodes of Ĥcl span
the whole Hilbert space wherein the state vector Q is defined,
which has dimension 6 × (Np + 1), where Np is the number
of poles of M. Moreover, any two eigenmodes associated with
distinct eigenvalues are orthogonal with respect to the inner
product in Eq. (9).

In this paper, we are interested in continuous media such
that the material matrix M is independent of the spatial coordi-
nates. As a consequence, the eigenmodes of Eq. (11) are of the
form Q(r) = Qke

ik·r with the envelope Qk independent of r.
We denote the electromagnetic fields associated with Q(r) as
f(r) = fke

ik·r, where fk is the envelope of the electromagnetic
fields, which for continuous media is also independent of
r. Importantly, Eq. (B2) determines a one-to-one mapping
between the eigenmodes of Eq. (7) and the natural modes of
Maxwell’s equations (1), i.e., the solutions of

[N̂ (k) − ωM(ω,k)] · fk = 0, (12)
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where N̂ (k) is defined as in Eq. (B1). Strictly speaking, the
existence of this mapping is only guaranteed for waves with an
eigenfrequency ω 	= ωp,α because for ω = ωp,α the mapping
[Eq. (B2)] is singular. Modes of oscillation with ω = ωp,α

are dark modes in the sense that they are uncoupled from the
electromagnetic field (f = 0 but Q 	= 0).

Let us now consider a smooth family of eigenmodes Qnk
with the eigenfrequency ωnk, such that the wave vector k lies
in the kz = 0 plane of wave vector space (i.e., the wave vector
is of the form k = kx x̂ + ky ŷ). Assuming the normalization
〈Qnk|Qnk〉 = 1, the Berry potential Ank associated with this
family of eigenmodes is defined as

Ank = i〈Qnk|∂kQnk〉, (13)

where ∂k = ∂
∂kx

x̂ + ∂
∂ky

ŷ. It was demonstrated by Raghu and
Haldane that the Berry potential can be written in terms of the
electromagnetic field envelope fnk as in Refs. [7,8]

Ank = Re

{
i f∗

nk · 1

2

∂

∂ω
(ωM)ωnk

· ∂kfnk

}
. (14)

In Appendix C, it is proven that this result also holds
in the case of local media (M = M(ω)) with a magneto-
electric response characterized by nontrivial tensors ξ̄ ,ζ̄ . More
generally, the formula applies to spatially dispersive media that
satisfy some restrictions detailed in Appendix C, a particular
case of which is the subclass of media with a response of the
form

M(ω,k) = M∞ + 1

1 + k2/k2
max

χ (ω), (15)

where M∞ is a 6 × 6 (real-valued) tensor independent of
frequency, χ (ω) is a 6 × 6 susceptibility tensor dependent on
frequency, k2 = k · k, and kmax is any real-valued constant and
may be regarded as spatial cutoff frequency. In Sec. III, it will
be discussed in detail why this particular form of the material
response is interesting to us. For a general spatially dispersive
material, one should use Eq. (C3) rather than Eq. (14), to
calculate the Berry potential.

In summary, it was demonstrated that the theory of
Refs. [7,8] can be generalized to spatially dispersive media and
that the Berry potential of the subclass of media characterized
by the material matrix (15) can be determined with Eq. (14),
which only depends on the electromagnetic fields envelope fnk.

III. CHERN NUMBERS IN CONTINUOUS MEDIA

The distinctive property of topological materials is that
they are characterized by a topological invariant that depends
on the band structure global properties. Specifically, it is
possible to assign an integer (Chern) number to each subset of
photonic bands separated by the remaining photonic bands by
a complete bandgap [7–9,23],

C = 1

2π

∫∫
dkxdky Fk, (16)

where Fk = ∂Ax

∂ky
− ∂Ay

∂kx
is the Berry curvature. Crucially, the

Chern number is absolutely insensitive to weak perturbations
of the material microstructure, e.g., to weak perturbations of
the shape of the structural unities forming a photonic crystal.

xk

yk

N

S

,x yk kk

, ,x y z

FIG. 1. (Color online) The stereographic projection and the Rie-
mann sphere. The (kx,ky) plane plus the point k = ∞ can be mapped
into a spherical surface with unit radius. The point k = ∞ is mapped
into the north pole of the sphere.

The only way to change the topological invariant is to close
the band gap. Because of this property, when two topologically
distinct photonic crystals that share a complete bandgap are
put together, topologically protected unidirectional edge states
at the interface of these crystals may appear [7,9].

The most common topological classification of solid-state
materials relies on the quite restrictive assumption that the
relevant structure is periodic [9]. The reason is mainly
technical: to guarantee that the topological invariant is an
integer, the relevant wave vector space must be a closed
surface with no boundary. For example, in a photonic crystal,
the wave vector space is the Brillouin zone [2], which is
isomorphous to a torus (a closed surface with no boundary). In
contrast, in a continuous material, the wave vector is defined
over an unbounded open region, kx,ky ∈ (−∞,+∞); hence,
in general, it is not possible to calculate Chern invariants
in continuous media. In the following, it is proven that
it is possible to overcome these difficulties and to define
topological invariants for dispersive continuous media.

A. The Riemann sphere

A useful idea is to map the (kx,ky) plane into the
Riemann sphere (Fig. 1), which is evidently a closed surface.
Specifically, each point k = (kx,ky,0) can be mapped into a
point κ = (κx,κy,κz) of the unit radius sphere surface by the
stereographic projection as

(kx,ky) → κ = 1

k2 + 1
(2kx,2ky,k

2 − 1), (17)

where k2 = k · k = k2
x + k2

y .
As illustrated in Fig. 1, the point κ = (κx,κy,κz) is the

intersection of the spherical surface with a line passing through
both the sphere’s north pole (N = (0,0,1)) and the point k. For
example, the origin of the k space is mapped into the sphere’s
south pole (S = (0,0,−1)). In this discussion, it is implicit
that the plane of propagation is the xoy plane. This choice
may be different, and in general it is possible to calculate
Chern numbers for any plane in the k space passing through
the origin.

Crucially, the stereographic projection determines a one-
to-one mapping of the unit radius spherical surface excluding
the north pole into the (kx,ky) plane (with kx,ky finite). The
problem that remains is that the spherical surface minus one
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point (the north pole) is not a compact surface without bound-
ary. This can, however, be partially remedied by mapping
the north pole into the infinity (k = ∞). Hence, as is well
known, the (kx,ky) plane together with the point k = ∞ are
isomorphous to the Riemann sphere.

This discussion shows that the pseudo-Hamiltonian of the
system, Ĥcl,k, may be regarded as being defined over the
Riemann sphere (unit radius spherical surface of the κ space),
which is a compact surface with no boundary. Thus, provided
that the Ĥcl,k is sufficiently well-behaved in the vicinity of the
north pole (k = ∞)—and usually it is not—the Chern number
associated with any subset of photonic bands is an integer.

B. An example

Before elucidating about the conditions under which the
Hamiltonian may be well behaved at the north pole, let
us consider a specific example to illustrate the discussion
and the difficulties. Specifically, we consider a nonreciprocal
continuous medium characterized by the permittivity and
permeability tensors,

ε̄ =

⎛
⎜⎝

ε11 ε12 0

ε21 ε22 0

0 0 ε33

⎞
⎟⎠, μ̄ = 1, (18a)

ε11 = ε22 = 1 + ω0ωe

ω2
0 − ω2

,

(18b)

ε12 = −ε21 = −iωeω

ω2
0 − ω2

, ε33 = 1,

and by a trivial magnetoelectric coupling ξ̄ = ζ̄ = 0. In the
above, |ω0| is the resonance frequency, and ωe determines
the resonance strength. Provided that these parameters satisfy
ω0ωe > 0, the corresponding material matrix M [Eq. (3)]
satisfies the conditions in Eqs. (4)–(6). The parameter ω0 may
be either positive or negative. Note that the material parameters
are independent of the wave vector, and hence the material
response is local. This type of material response is similar to
that that characterizes conventional bulk magnetized materials
at optics (e.g., bismuth iron garnet [34]), and the sign of ωe

depends on the orientation of the bias magnetic field. Crucially,
the permittivity tensor [Eq. (18)] is not symmetric, and thus
it models a nonreciprocal material. It is well known that for
lossless systems, a nonreciprocal response is equivalent to a
broken time reversal symmetry. Note that the Chern numbers of
a system with the time-reversal symmetry (e.g., standard recip-
rocal dielectrics and metals) vanish becauseFk = −F−k [8,9].

For propagation in the xoy plane, k = (kx,ky,0), the plane
waves supported by the medium [Eq. (11)] decouple into
transverse electric (TE) waves (with Ez 	= 0 and Hz = 0) and
transverse magnetic (TM) waves (with Ez = 0 and Hz 	= 0).
The dispersion of the corresponding photonic modes is given
by

k2 = ε2
11 + ε2

12

ε11

(
ω

c

)2

, (TM modes), (19a)

k2 = ε33

(
ω

c

)2

, (TE modes). (19b)

The associated electromagnetic modes have envelopes
(f(r) = (E

H) = fke
ik·r) such that

fnk =
(

ε̄−1 · (ẑ × k
ε0ωnk

)
ẑ

)
, (TM modes), (20a)

fnk =
(

ẑ
k

μ0ωnk
× ẑ

)
, (TE modes). (20b)

These field envelopes are not normalized. In the above, ωnk
represent the solutions of the pertinent dispersion equation
[Eq. (19)]. Because the material matrix M has Np = 2
poles (at ω = ±ω0), there are a total of 6 × (Np + 1) = 18
branches of solutions of the eigensystem (11). The index
n in Eq. (20) identifies a specific branch. Because of the
reality condition (6), each branch of positive frequency natural
modes (ωnk > 0) can be paired with a branch of negative
frequency (ωnk < 0) eigenvalues. It may be checked that
Eq. (19a) [Eq. (19b)] is associated with two (one) branches
of positive frequency eigenvalues, respectively. Moreover,
there are two static-type branches of longitudinal modes with
ωnk = 0. Hence, Eqs. (19a) and (19b) predict a total of eight
branches of eigenmodes, including the positive-, negative-,
and zero-frequency eigenmodes. The missing 18 − 8 = 10
branches of solutions of the eigensystem (11) are necessarily
dark modes associated with the two poles ωnk = ±ω0 and
have a trivial electromagnetic field. Indeed, as discussed below
Eq. (12), generally there is a one-to-one mapping between
the natural modes of the eigensystems (11) and (12), with
the possible exception of solutions with ω = ωp,α . These
branches do not contribute to the Berry potential (because
the corresponding eigenmodes Qk are independent of k) and
hence are ignored from hereafter.

Figure 2(a) depicts the band diagram of the TM- and TE-
polarized eigenwaves with positive frequencies for the case
ωe = 0.5ω0. The dispersion of the TE natural modes (dashed
line) follows the light line. Differently, the TM eigenwaves are
organized into two branches separated by a band gap.

We calculated the Chern number associated with each of the
positive frequency branches. As discussed in Appendix D, the
Chern number in the Riemann sphere can be simply computed
with the standard formula (16) (being the integration region the
entire (kx,ky) plane), which is written in terms of the standard
Berry potential Ak in the plane. This is analogous to what
happens in the periodic case [7], wherein notwithstanding the
wave vector space is effectively a torus all the calculations are
usually done using the Berry potential defined over the (kx,ky)
plane. Because the envelopes of the electromagnetic field in
Eq. (20) are not normalized, the Berry potential is computed
using [compare with Eq. (14)]

Ank = Re
{
i f∗

nk · ∂
∂ω

[ωM(ω,k)]ωnk
· ∂kfnk
}

f∗
nk · ∂

∂ω
[ωM(ω,k)]ωnk

· fnk
. (21)

For completeness, the relation between the Berry potential
calculated in the plane and the Berry potential defined over the
Riemann sphere is given in Appendix D.

One important point is that the basis of wave functions
determined by Eq. (20) is globally defined, except at the
points k = 0 and k = ∞. Consequently, the Berry potential
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FIG. 2. (Color online) Band diagram and Berry potential for a magneto-optic material. (a) Band diagram ω vs k for a material characterized
by the material parameters (18) with ωe = 0.5ω0. (b) Representation in the Riemann sphere of the Berry potential associated with the
high-frequency TM branch for the particular basis of wave functions defined by Eq. (20).

Ak associated with this specific basis is also globally defined,
except at the origin and infinity (in the Riemann sphere the
Berry potential is globally defined except at the north and south
poles). Hence, from Stoke’s theorem, it is possible to write the
Chern number associated with nth eigenmode branch as

�Cn = 1

2π

∮
k=∞

Ank · dl − 1

2π

∮
k=0+

Ank · dl, (22)

where the two line integrals are over circles of infinite
and infinitesimal radii, respectively. Because our system is
invariant under arbitrary rotations about the z axis, Ank · dl =
An,ϕk dϕ is independent of ϕ. Here, (k,ϕ) defines a system of
polar coordinates in the k plane, and An,ϕ = Ank · ϕ̂. Hence,
it follows that

�Cn = lim
k→∞

(An,ϕ=0k) − lim
k→0+

(An,ϕ=0k). (23)

Using this formalism, it is straightforward to prove
(the computational details are omitted for conciseness) that
�Cn = 0 for the TE-waves branch, that �Cn = −sgn(ωe)
for the high-frequency TM-waves branch, and that �Cn =
+sgn(ωe)(1 + |ωe

ω0
|)−1/2 for the low-frequency TM-waves

branch. Here, sgn = ± stands for the sign of a real number.
This simple example shows that in general the Chern

numbers associated with continuous media are not integers.
Particularly, the Chern number associated with the low-
frequency TM branch is never an integer for ωe 	= 0. It will
be seen in the next subsections that the problem is that the
pseudo-Hamiltonian of the medium is not sufficiently well
behaved at infinity, and we will explain how this can be fixed
in a simple manner.

Crucially, the Chern number associated with the high-
frequency TM-waves branch is always an integer, �Cn = ±1.
Figure 2(b) shows a representation of the corresponding
Berry potential in the Riemann sphere. The Berry potential
is calculated with Eq. (D2) using the basis of eigenmodes
[Eq. (20)]. As seen, the Berry potential is an azimuthal
field with rotational symmetry about the vertical axis. It is
important to underline that the Berry potential (unlike the
Berry curvature) is not Gauge invariant [23], and hence the
representation of Fig. 2(b) is only valid for the very particular
basis (20). This particular Berry potential vanishes at the north

pole (k = ∞) because the material response is asymptotically
the same as the vacuum, i.e., ε̄ → 1 as ω → ∞. On the other
hand, the Berry potential has a singularity at the south pole
(k = 0), which determines the nonzero Chern number.

C. A condition for the existence of integer Chern numbers

Let us consider now an arbitrary closed contour C in the
(kx,ky) plane and two arbitrary bases of eigenmodes (fnk)
and (f′

nk) that vary smoothly with the wave vector in the
vicinity of the contour C. Let Ak and A′

k be the Berry
potentials associated with each eigenmode basis. Since the two
bases must differ by a Gauge transformation, f′

nk = fnke
iθnk ,

it follows that A′
k = Ak − ∂k

∑
n θnk and hence, as it is

well-known, the difference of the Berry phases must be an
integer multiple of 2π [23]:∮

C

(Ak − A′
k) · dl = 2πm, m is an integer. (24)

Consider next the particular case wherein CR is a circle with
an arbitrarily small radius R = 0+ centered on some point of
interest k0. Provided the Hamiltonian of the system varies
smoothly in the vicinity of k0, as is usually the case, there is a
basis of eigenfunctions (f′

nk) that is smooth in a neighborhood
of k0 (including at k0). Hence, the corresponding Berry
potential A′

k is also free of singularities and is smooth in the
vicinity of the circle CR and in its interior. Since by hypothesis
CR=0+ is a circle with arbitrarily small radius, it follows that
the corresponding Berry phase vanishes,

∮
CR=0+ A′

k · dl = 0.
Thus, for an arbitrary basis of wave functions (fnk) defined in
the vicinity of k0, one has∮

CR=0+
Ak · dl = 2πm, m is an integer. (25)

Note that a general (fnk) may not be smooth at k0 (it may be
singular at k0) and is only required to be smooth in a vicinity
of CR=0+ .

Even though the previous discussion was focused on the k
plane, it can be readily generalized to the Riemann sphere. In
that case, there is a point of particular interest: the north pole.
A circle with infinitesimal radius centered on the north pole is
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mapped into a circle of infinite radius in the plane. Thus, if the
Hamiltonian varies smoothly at the north pole of the sphere,
it follows that for an arbitrary Berry potential defined in the
vicinity of k = ∞,

∮
k=∞

Ak · dl = 2πm, m is an integer. (26)

In the above, the line integral is taken over a circle with infinite
radius in the plane.

Motivated by these ideas, we say that a Hamiltonian is
well-behaved at the north pole of the sphere when there is
a basis of eigenfunctions (fnk) defined in the vicinity of the
north pole (i.e., in the vicinity of k = ∞) for which the
corresponding Berry potential satisfies Eq. (26). Note that from
the previous discussion, if Eq. (26) is satisfied by a given basis
of eigenfunctions then it will also be satisfied by any other basis
(f′

nk) that differs from (fnk) by a smooth Gauge transformation
(the integer m, however, depends on the Gauge). Also note that
the well-behaved condition is less demanding than imposing
that the Hamiltonian is smooth at the north pole.

Generally, if the Hamiltonian is smooth everywhere in the
Riemann sphere (with the possible exception of the north pole)
and is well behaved at the north pole (in the sense explained
above), then the Chern number is an integer. Indeed, similar to
the example considered in the previous subsection, typically
there is a basis of eigenfunctions (fnk) globally smooth
everywhere except at a few singular (Gauge-dependent)
points on the Riemann sphere (one of them is typically
the north pole). Thus, using the Stoke’s theorem, the Chern
number can be written as summation of line integrals, C =

1
2π

(−∑ki

∮
CR=0+ (ki )

Ak · dl + ∮
k=∞ Ak · dl). The first addend

gives the contribution of the singular points ki in the finite
(kx,ky) plane, and the second addend gives the contribution of
the north pole (k = ∞). Because by hypothesis the Hamilto-
nian is smooth for any finite ki , the first addend is a multiple
of 2π . On the other hand, if the Hamiltonian is well behaved
at infinity, the second addend has the same property because
of Eq. (26). Thus, C is really an integer, as we wanted to prove.

The above ideas readily explain why in the example of the
previous subsection the high-frequency TM branch gives an
integer contribution to the Chern number [�Cn = −sgn(ωe) =
±1]. The reason is that the high-frequency branch is such
that ω → ∞ as k → ∞, and as a consequence the material
response for this eigenmode branch approaches that of the
vacuum (ε → 1) in the vicinity of the north pole. This indicates
that it is possible to choose a basis of eigenfunctions (fnk) such
that (fnk) ≈ (fvac

nk ) in the limit k → ∞, where (fvac
nk ) is some

arbitrary basis of eigenfunctions associated with the vacuum
(ε = 1,μ̄ = 1). Thus, for k → ∞, the Berry potential should
satisfy Ak = Avac

k , whereAvac
k is the Berry potential associated

with (fvac
nk ). Importantly, in the vacuum case it is possible to

choose (fvac
nk ) real valued so that Avac

k vanishes. Therefore, the
preceding arguments show that for high-frequency branches
(with ωnk → ∞), the eigenfunctions (fnk) can be identified
with those of the vacuum when k → ∞ and hence may
be chosen such that the integral in Eq. (26) vanishes. As
a consequence, these bands have an integer Chern number,
consistent with the previous subsection.

D. A wave vector cutoff for the material response

The results of Sec. III B show that a Berry potential
associated with the low-frequency eigenmode branches of
a dispersive continuous material typically does not satisfy
Eq. (26). Thus, in general the corresponding Chern number
is not an integer. Next, we show that it is possible to modify
the material response in a physically intuitive and justifiable
manner to fix this problem.

Our solution is motivated by the finding that the high-
frequency eigenmode branches give an integer contribution
to the Chern number. This can be attributed to the fact that
for these branches the material matrix approaches M → M∞
as k → ∞ (in the vicinity of the north pole), where M∞ =
limω→∞M(ω) determines the high-frequency response of the
medium. As shown in the previous subsection, this property
guarantees the existence of a Berry potential for which Eq. (26)
is satisfied for the high-frequency branches and thus ensures
an integer Chern number. More generally, the same conclusion
remains valid if M∞ coincides with the material matrix of any
anisotropic dispersionless material. Indeed, analogous to the
vacuum case, because M∞ is necessarily real valued, it is pos-
sible to pick a Gauge for which the Berry potential vanishes.

Crucially, the situation is quite different for the low-
frequency eigenmode branches. Indeed, for these branches ωnk
has the asymptotic form ωnk → ωn,∞ = const. as k → ∞,
and hence M → M(ωn,∞), which may be very different
from the material matrix of the vacuum and usually is
complex valued. In other words, within a local formalism
the material response is independent of the wave vector, and
hence it persists even for arbitrarily fast spatial variations
of the electromagnetic fields (k → ∞). From a physical
point of view, such a situation is not likely to happen. In
a realistic material, a field with a very fast spatial variation
cannot effectively polarize the microscopic constituents of the
medium, and hence the material response is expected to vanish
when k → ∞.

The emergence of a wave vector cutoff is well understood in
some materials. For example, a lossless electron gas described
by a drift-diffusion model has a spatially dispersive response
such that the permittivity seen by the transverse waves is
εT /ε0 = 1 − ω2

p/ω2, whereas the permittivity seen by the
longitudinal waves is εL/ε0 = 1 − ω2

p/(ω2 − v2k2), where ωp

is the plasma frequency and v is a parameter with unities
of velocity that depends on the diffusion coefficient [35,36].
Hence, in the limit k → ∞ the longitudinal permittivity
approaches the response of the vacuum εL/ε0 → 1, i.e., the
response to longitudinal waves has a wave vector cutoff. In
this specific physical system, the wave vector cut-off for
longitudinal oscillations is a consequence of the diffusion
effects which act to avoid the localization of the electrons over
distances smaller than some characteristic diffusion length.

Inspired by this result, we may introduce a high-frequency
spatial cutoff by transforming a local material response
[described by the matrix M(ω)] as

Mreg(ω,k) = M∞ + 1

1 + k2/k2
max

[M(ω) − M∞], (27)

where M∞ = limω→∞M(ω). Such a regularized material re-
sponse is consistent with Eq. (15), being χ (ω) = M(ω) − M∞
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the local material susceptibility matrix. The wave vector cutoff
is determined by the parameter kmax, which can be arbitrarily
large. Clearly, for k  kmax, the transformed material matrix
is nearly coincident with the original material matrix:
Mreg(ω,k) ≈ M(ω). The local and the nonlocal responses dif-
fer only for large values of k (comparable to kmax). Importantly,
within the proposed nonlocal framework, the material response
ceases in the k → ∞ limit (limk→∞Mreg(ω,k) = M∞),
similar to what happens in the ω → ∞ limit. This suggests
that for a material response of the form (15), the Hamiltonian is

well behaved at the north pole and that the Chern number of
any subset of eigenmode branches is an integer.

To demonstrate this property, first we note that Mreg

and M have precisely the same poles, ωp,α , whereas the
residues differ simply by a scaling factor 1/(1 + k2/k2

max).
Hence, from Appendix A it is seen that Aα is transformed
as Aα → Aα/(1 + k2/k2

max)1/2. Thus, the pseudo-Hamiltonian
associated with the regularized material response Mreg is of the
form Ĥcl,reg = M−1

g · L̂reg, with Mg defined as in Eq. (7) and

L̂reg given by [compare with L̂ in Eq. (7)]

L̂reg =

⎛
⎜⎜⎜⎜⎝

N̂ + 1
1+k2/k2

max

∑
α sgn(ωp,α)A2

α
1

(1+k2/k2
max)1/2 |ωp,1|1/2A1

1
(1+k2/k2

max)1/2 |ωp,2|1/2A2 ...

1
(1+k2/k2

max)1/2 |ωp,1|1/2A1 ωp,11 0 ...

1
(1+k2/k2

max)1/2 |ωp,2|1/2A2 0 ωp,21 ...

... ... ... ...

⎞
⎟⎟⎟⎟⎠. (28)

For a local material, Aα and ωp,α are independent of the
wave vector. Hence, the asymptotic form of L̂reg is simply

L̂reg ≈
k→∞

⎛
⎜⎜⎜⎝

N̂ 0 0 ...

0 ωp,11 0 ...

0 0 ωp,21 ...

... ... ... ...

⎞
⎟⎟⎟⎠. (29)

This shows that the eigenvalues of Ĥcl,reg for large k are either
those of the vacuum (ωk ≈ ck, determined by the operator
N̂ ) or coincident with the poles of the material response,
ωk ≈ ωp,α . In either case, the corresponding eigenvectors may
always be chosen real valued. Thus, it is possible to pick a
Gauge such that the eigenmodes Qnk are real valued in the
limit k → ∞. Evidently, the corresponding Berry potential
[Eq. (13)] vanishes at the north pole and thus satisfies the
condition (26) with m = 0. Thus, it follows that Ĥcl,reg is well
behaved at the north pole, as we wanted to show.

These ideas can be readily generalized to a wide class
of spatially dispersive media described by a material matrix
M = M(ω,k). If the Hamiltonian Ĥcl,k = M−1

g · L̂k [with

L̂ = L̂k defined as in Eq. (7)] is a smooth function in the
(kx,ky) plane, and if Aα,k and ωp,α,k in Eq. (7) satisfy
limk→∞|ωp,α,k|1/2Aα,k = 0 and limk→∞A2

α,k = 0, then the
Chern numbers associated with M = M(ω,k) are integers.
In general, these restrictions can be enforced by introducing
a suitable spatial cutoff, analogous to Eq. (27). The cutoff
factor is generally of the form (1 + k2/k2

max)−m, where m � 1
depends on the asymptotic behavior of M(ω,k) for large k.

IV. DISCUSSION AND EXAMPLES

The theory developed in the previous section demonstrates
that if we restrict ourselves to the subclass of pseudo-
Hamiltonians Ĥcl,k smooth in the (kx,ky) plane and well-
behaved at infinity (at the north pole), then it is possible to
calculate Chern numbers. It was seen that while in general
a material response of the form M = M(ω) is not associated
with a Hamiltonian with the required properties, it is possible
to regularize it by introducing a high spatial-frequency cutoff.

At this stage it is important to highlight that when M(ω)
is a real-valued matrix for ω real valued, then Ĥcl,k is already
well behaved at infinity, even without the spatial cutoff. The
reason is that in such circumstances, the operator L̂ is real
valued; hence, in general it is possible to pick a Gauge of real-
valued eigenfunctions for which the Berry potential identically
vanishes at infinity. Hence, local material responses with M(ω)
real valued are associated with well-behaved Hamiltonians.
For example, an isotropic dispersive lossless dielectric with
permittivity ε(ω) and permeability μ(ω) determines always a
well-behaved Hamiltonian and hence belongs to the subclass
of interest.

An important property is that if M1(ω,k) and M2(ω,k)
are arbitrary material responses associated with well-
behaved Hamiltonians, then the combined material response,
M̃(ω,k) = M∞ + c1χ1(ω,k) + c2χ2(ω,k), with c1,c2 � 0
also is. Here, χi(ω,k) = Mi(ω,k) − M∞ (I = 1,2) are sus-
ceptibilities associated with the relevant materials, which are
assumed to satisfy limk→∞χi(ω,k) = χi,∞(ω) being χi,∞(ω)
some real-valued matrix for ω real valued. The constants c1,c2

need to be nonnegative so that M̃ satisfies the condition (5).
The enunciated property is a consequence of the fact that the
elements of L̂ [Eq. (7)] only depend on the poles and on
the residues of M̃ (which are evidently the mix of the poles
and residues of the individual material responses) and of the
fact that asymptotically (as k → ∞) L̂ is real valued because
limk→∞χi(ω,k) = χi,∞(ω).

The above discussion demonstrates that the subspace of
well-behaved Hamiltonians is quite rich and that any two
well-behaved Hamiltonians can be continuously deformed
one into the other without leaving the subclass of interest.
In the following subsections, we illustrate the application of
the developed theory and explain how it can be used to predict
the propagation of edge states.

A. Magneto-optic material

Armed with this theory, we return to the example of
Sec. III B. Figure 3 depicts the band diagram of the same
magneto-optic material for different values of the cutoff
frequency kmax. We only show the positive-frequency bands
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FIG. 3. (Color online) Effect of the high-frequency spatial cutoff
on the band structure. Band diagram ω vs k (TM waves) for a
magneto-optic material characterized by the material parameters (18)
with ωe = 0.5ω0 and (i) (green solid lines) no spatial cutoff,
(ii) (purple dotted lines) kmax = 100|ω0|/c, (iii) (black dashed lines)
kmax = 3|ω0|/c, and (iv) (blue dot-dashed lines) kmax = |ω0|/c.

associated with TM-waves (the band associated with TE waves
is unaffected by the cutoff).

As seen in Fig. 3, for k  kmax the band structure calculated
with the cutoff (purple, black, and blue lines) is nearly coin-
cident with the band structure of the original magneto-optic
material (green lines, for which kmax = ∞). The coincidence
can be made as good as one wishes by increasing kmax.
Importantly, the high-frequency band structure is significantly
affected by the spatial cutoff. Particularly, it can be checked
that in this example the dispersion of the first branch ωk

approaches limk→∞ωk = |ω0| when a cutoff is imposed (kmax

finite), while without the cutoff (kmax = ∞) limk→∞ωk =√
ω0(ω0 + ωe). Nevertheless, despite this difference, if kmax

is sufficiently large, the band gap of the original material
will be virtually coincident with the band gap of the material
with the cutoff (see the purple line in Fig. 3). Without the
cutoff, the band gap is determined by the frequency range√

ω0(ω0 + ωe) < ω < |ω0| + |ωe|.

Notably, consistent with the theory of Sec. III, when a
spatial-frequency cutoff is enforced the Chern numbers are
always integers. The Chern numbers are calculated exactly as
in Sec. III B, including the cutoff factor in the permittivity
response of the material. It turns out that independent of
the value kmax (at least for a sufficiently large kmax), the
Chern invariant for the high-frequency TM branch is �Cn =
−sgn(ωe), and the Chern invariant for the low-frequency
branch is �Cn = +sgn(ωe). In practice, the sign of ωe depends
on the direction of a bias magnetic field. Thus, for sufficiently
large kmax, the topology of the eigenmodes associated with the
regularized material matrix is insensitive to the specific value
of kmax. This enables us to classify the material response in
terms of topological invariants in an unambiguous manner.

It is interesting to see how the band structure of a
material matrix of the form Mτ (ω,k) = M∞ + τχ1(ω,k) +
(1 − τ )χ2(ω), where 0 � τ � 1 evolves with the parameter
τ . Here, M∞ represents the material matrix of the vacuum,
χ1(ω,k) = M1(ω,k) − M∞ is the susceptibility associated
with the magneto-optic material of the previous example with
the cutoff kmax = 3|ω0|/c, and χ2(ω) = M2(ω) − M∞ is the
susceptibility of a lossless electric plasma defined as χ2(ω) =(

−ε0
ω2
p

ω2 13×3 0

0 0

)
so that the plasma permittivity follows the

Drude dispersion ε2 = ε0(1 − ω2
p/ω2), where ωp is the plasma

frequency. As discussed in the beginning of this section,
Mτ (ω,k) characterizes a well-behaved Hamiltonian for all the
values of τ such that 0 � τ � 1. Note that Mτ=0(ω,k) = M2

and Mτ=1(ω,k) = M1.
Figure 4 shows evolution of the band structure determined

by Mτ (ω,k) as the magneto-optic material (upper left corner)
is continuously transformed into a plasma (lower right corner)
with ωp = 2|ω0|. The first thing to note is that as the two
material responses are combined (see the panels τ = 0.999
and τ = 0.001), an extra TM band appears in the plots.
For τ = 0.999, this extra band emerges as a staticlike band
with ω ≈ 0, whereas for τ = 0.001 the extra band appears
as a dispersionless band with ω ≈ |ω0|. The reason for this
discontinuous evolution of the band structure is that the extra
band evolves into a dark mode (see Sec. II) as τ → 0 or as
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FIG. 4. (Color online) Evolution of the band structure of TM waves as a magneto-optic material (τ = 1) is continuously transformed into
a Drude plasma (τ = 0). The magneto-optic material is characterized by the material parameters (18) with ωe = 0.5ω0 > 0 and a spatial cutoff
kmax = 3|ω0|/c, and the plasma frequency is ωp = 2|ω0|.
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FIG. 5. (Color online) Topological transition in the vicinity τ ≈ 0.75. The first and second bands close and reopen at infinity (north pole)
for τ ≈ 0.75. In this process, the Chern number associated with each band changes.

τ → 1, and hence it is not predicted by Eq. (19) when τ = 0
or τ = 1.

Notably, Fig. 4 reveals that for 0 � τ < 1 there is always
a band gap between the high-frequency band and the two
low-frequency bands. Moreover, in the same range, the Chern
number of the high-frequency band is always �C = −1,
whereas the total Chern number associated with the two
low-frequency bands adds up to +1. Crucially, as τ becomes
identical to the unity (τ = 1; lower right panel of Fig. 4),
the band gap between the high-frequency band and the
low-frequency bands disappears. Note that in the panel with
τ = 0.001, a tiny but nonzero band gap persists, even though
it cannot be seen at the scale of the plot. When the band gap
is closed (τ = 1), the Chern number of the high-frequency
bands changes from �C = −1 to �C = 0. Thus, a perturbation
of the material response may modify the Chern number of
a given subset of bands only if the band gap is closed
(and eventually reopened) in the process [23]. It should be
noted that the dispersionless band that occurs at ω = ωp =
2|ω0| is associated with volume plasmons and longitudinal
waves.

An eye catching feature of Fig. 4 is that the Chern number
associated with the two low-frequency modes varies with τ .
Particularly, it is evident that a topological transition takes
place when τ varies continuously from 0.8 down to 0.6 because
the Chern invariant of the second (first) band changes from
+2 (−1) to +1 (0). To further investigate this topological
transition, we plot in Fig. 5 with a logarithmic wave vector
scale the dispersion of the first and second bands for τ ∼ 0.75.
As seen, the first and second bands close and reopen at infinity
(north pole of the Riemann sphere), and in the process the
Chern numbers associated with each band changes.

As can be guessed from Fig. 4 (see panels τ = 1 and
τ = 0.999), a similar topological transition takes place at
τ = 1− when the static dark mode becomes coupled to the
electromagnetic field.

B. Edge states

Certainly the most celebrated feature of topological mate-
rials is that topologically protected edge states may appear
when two topologically distinct materials with a common
band gap are put side by side. The semiheuristic argument
that justifies this feature is that one may regard the interface
as a thin layer (with very small but finite thickness) where
the Hamiltonian that characterizes one of the materials is

continuously deformed into the Hamiltonian that models the
second material, similar to Fig. 4. Since the materials are
topologically different, this means that in the interfacial layer
the band gap needs to close (and eventually reopen) at some
point. Thus, the interfacial layer may support propagating
states, which may give rise to propagating modes confined
to the vicinity of the interface because the adjacent materials
are operated in a frequency band gap.

The edge modes supported by a generic bulk magneto-
optic material and a plasma have been previously investigated
[37–40]. In these seminal studies, the connection between the
edge modes and the topological invariants was not made. This
is done in the following.

The geometry of the relevant structure is sketched in Fig. 6
and consists of an interface (at y = 0) between a plasma (y <

0) and a magneto-optic material (y > 0). From Ref. [38], the
dispersion equation of the TM-polarized edge modes is

γm

εm

+ γv

εef

= 1

εef

ε12ikx

ε11
, (30)

where kx is the propagation constant of the edge state,
εm = 1 − ω2

p/ω2 is the plasma permittivity, ε11,ε12 describe
the permittivity response of the magneto-optic material

[Eq. (18)], εef = ε2
11+ε2

12
ε11

, γm =
√

k2
x − (ω/c)2εm and γv =√

k2
x − (ω/c)2εef .
At this point it is appropriate to recall that our theory of

Chern invariants generally requires a material response with a
high-frequency spatial cutoff, and hence the relevant materials
are usually nonlocal. This creates difficulties because the elec-
trodynamics of nonlocal media in the presence of interfaces is
cumbersome and may require additional boundary conditions
[27,41,42]. In practice, one may argue that if k  kmax (i.e.,

magneto-optic
    material

z

y

xplasma

FIG. 6. (Color online) Interface between a magneto-optic mate-
rial and a plasma.
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FIG. 7. (Color online) One-way edge states at an interface between a magneto-optic material and a plasma. Solid green lines: dispersion
of the edge states with nonzero group velocity; purple dot-dashed lines: band structure of the magneto-optic material with material parameters
given by Eq. (18) with ωe = 0.5ω0 > 0. The band gap is delimited by the dashed horizontal gray lines. The Drude plasma has plasma
frequency ωp.

for edge modes with |kx |  kmax), the electrodynamics of a
material with a cutoff kmax should be essentially the same as in
the material without the cutoff. Moreover, as already discussed,
in the present example for a sufficiently large kmax, the band gap
of the material with the cutoff kmax is virtually the same as the
band gap of the material without the cutoff (kmax = ∞). Hence,
these arguments show that it is acceptable to neglect the spatial
cutoff when computing the dispersion of the edge modes with
|kx |  kmax. Thus, in the following all the material responses
are assumed local (i.e., independent of the wave vector).

Figure 7 represents the dispersion of the edge states sup-
ported by an interface between a magneto-optic material with
ωe = 0.5ω0 and a plasma with plasma frequency ωp. For all
the examples of Fig. 7, the two materials (which are evidently
topologically distinct because the plasma is topologically triv-
ial) share a band gap defined by 1.22|ω0| = √

ω0(ω0 + ωe) <

ω < |ω0| + |ωe| = 1.5|ω0|, delimited by the dashed horizontal
gray lines in the figure panels.

Notably, our results show that for ωp below some threshold
value ωp < ωp,th, there are no edge states propagating in

the band gap. For example, for ωp = 1.51|ω0| the edge states
(green lines in the top leftmost panel) only propagate in the
frequency band associated with the first branch of the TM
eigenwaves of the magneto-optic material. Interestingly, even
in this regime the propagation can be highly asymmetric, and
in some frequency range it can be unidirectional.

Remarkably, for ωp > ωp,th ≈ 1.83|ω0| the one-way edge
modes emerge also within the band gap region. It can be
shown that in general the plasma frequency threshold is given

by ωp,th =
√

ω2
0 + ω0ωe +

√
ω0(ω0 + ωe)3. At the transition

ωp = ωp,th, something dramatic happens to the dispersion
diagram (see the top rightmost panel): the branch associated
with the edge states that propagate along the −x direction
is broken into two disconnected pieces. The threshold value
of kx for the upper branch (i.e., the branch within the band
gap) can be found by solving γm

εm
= ε12ikx

ε2
11+ε2

12
with respect to kx .

This equation is obtained from the edge states dispersion (30),
noting that at ω = √

ω0(ω0 + ωe) (lower band gap edge), one
has εef = ∞. In this manner, it is found that the threshold
value of kx is given by

kx,th = 1

c

−
√

ω0(ω0 + ωe)3
(
ω2

p − (ω2
0 + ω0ωe

))
√(

ω2
p − (ω2

0 + ω0ωe +
√

ω0(ω0 + ωe)3
))(

ω2
p − (ω2

0 + ω0ωe −
√

ω0(ω0 + ωe)3
)) . (31)
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FIG. 8. (Color online) One-way edge states when a thin vacuum layer with thickness d separates the magneto-optic material and the plasma.
Solid green lines: d = 0.01c/|ω0|; purple dot-dashed lines: d = 0.025c/|ω0|; blue dashed lines: d = 0.05c/|ω0|. The band gap is delimited by
the dashed horizontal gray lines.

In the limit ωp → ωp,th + 0+, the threshold value ap-
proaches kx,th → −∞. On the other hand, as ωp → +∞, the
threshold value approaches kx,th → 0−. This evolution can be
seen in the sequence of panels ωp = 1.85|ω0| → ωp = 5|ω0|
in Fig. 7. It should be noted that both the upper and lower
branches of the edge states go suddenly into cutoff for
kx = kx,th, and kx = k

(2)
x,th, being the cutoff of the lower branch

k
(2)
x,th approximately (but not exactly) equal to the cutoff of the

first branch kx,th. As seen in Fig. 7, for ωp slightly larger than
2.2|ω0|, the dispersion of the one-way edge modes crosses the
entire band gap of the two bulk materials. For ωp,th < ωp <

2.2|ω0|, the edge modes do not cross the band gap and are de-
fined in the range −∞ < kx < kx,th, such that limkx→−∞ωkx

=
ω∞, where ω∞ is some frequency in the band gap.

This example seems to indicate that the two materials
may be topologically distinct and share a complete band
gap but that this is insufficient to guarantee the existence of
one-way edge states propagating at the interface. This appears
to contradict the bulk-edge correspondence principle that links
the number of edge modes with the difference of the bulk
topological invariants across the interface [9,22,23]. However,
it must be noted that, with exception of the case ωp = 5|ω0|
(more generally for ωp > 2.23|ω0|), in our examples the edge
modes are not confined to the low-spatial frequency limit.
Indeed, for ωp,th < ωp < 2.23|ω0|, there are edge states with
arbitrarily large kx . This suggests that for

√
ω0(ω0 + ωe) <

ωp < 2.23|ω0|, it is essential to include the spatial cutoff in
the material response to have a bulk-edge correspondence.

As discussed before, taking into account the spatial dis-
persion of the material response in the interface problem is
not trivial. An approximate but simple way to introduce a
spatial cutoff is to insert a thin vacuum layer (with thickness
d) in between the magneto-optic material and the plasma.
The justification for this is that for small values of kx

(|kxd|  1), the vacuum layer plays no role because the guided
wavelength is much larger than the thickness of the vacuum
gap. On the other hand, for large values of kx (|kxd| � 1), the
vacuum layer mimics the spatial cutoff (27), which imposes
limk→∞M(ω,k) = M∞ being M∞ the material matrix of the
vacuum. Figure 8 depicts the dispersion of the edge states

that propagate in the band-gap region for different values
the vacuum-layer thickness d. The details of the calculations
are omitted for conciseness. The material parameters of the
magneto-optic material and of the plasma are as in Fig. 7.

Comparing Figs. 7 and 8, it is seen that with the vacuum
layer (i.e., with a spatial cutoff), there are always edge states in
the band gap. Importantly, in the examples with ωp = 1.51|ω0|
and ωp = 2.0|ω0|, the dispersion of the edge modes tends to
be more and more concentrated at high-spatial frequencies
when d → 0+. This explains why some of these edge modes
are not seen when d = 0 (Fig. 7), as the branch with kx > 0
becomes effectively concentrated at k = ∞ (ωp = 2.0|ω0|)
or moves toward the upper band gap edge (ωp = 1.51|ω0|).
In contrast, the edge states associated with ωp = 5.0|ω0|
are virtually independent of d and are associated with low-
spatial frequencies. Hence, consistent with theory developed in
Sec. III, to have a bulk-edge correspondence it seems essential
to include the high-spatial frequency cutoff in the analysis.

V. CONCLUSION

It was demonstrated that notwithstanding that the underly-
ing wave vector space is open and unbounded it is possible to
calculate Chern invariants of a wide class of well-behaved
continuous media described by a bianisotropic spatially
dispersive material matrix. Generally, a local material—with
effective parameters independent of the wave vector—does not
belong to this class. However, the response of a local material
can be arbitrarily well approximated by that an element of
the subclass of well-behaved Hamiltonians. We explicitly
constructed such a Hamiltonian by introducing a spatial cutoff
kmax in the local material response. In principle, the Chern
invariant is independent of the considered cutoff when kmax

in Eq. (15) is sufficiently large. Thus, the proposed theory
enables us to topologically classify continuous media and
gives important insights on the emergence of edge states at
interfaces of topologically inequivalent continuous materials.
We hope that the proposed ideas may contribute to deepen the
understanding of topological photonics and to further develop
this subject.
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APPENDIX A: PARTIAL FRACTION DECOMPOSITION
OF THE MATERIAL MATRIX

In this Appendix, it is shown that the material matrix M =
M(ω,k) of a dispersive lossless material may be written for ω

in the real-frequency axis as

M(ω,k) = M∞ −
∑

α

sgn(ωp,α)

ω − ωp,α

A2
α, (A1)

with Aα = [−sgn(ωp,α)(ResM)α]1/2 � 0, i.e., Aα is a positive
(semi-)definite matrix. In the above, sgn = ± is the sign of
a real number, M∞ = limω→∞M(ω,k), ωp,α are the (real-
valued) poles of the frequency response, (ResM)α represents
the corresponding residue, and the wave vector k is real valued.
An immediate consequence of Eq. (A1) is that

∂

∂ω
[ωM(ω,k)] = M∞ +

∑
α

|ωp,α|A2
α

(ω − ωp,α)2 . (A2)

To simplify the notations, in what follows the dependence of
M on k is omitted.

To prove Eq. (A1), we start by noting that due to the
causality of the material response, the matrix M is required to
be an analytic function of ω in the upper-half frequency plane
(Im{ω} > 0) for any fixed k [26,27]. In particular, M does not
have any poles in the upper-half plane. Hence, from Cauchy’s
theorem we can state that 0 = 1

2πi

∮
C

M(�)−M∞
�−ω

d�, where C

is a closed contour contained in the semiplane Im{�} � 0,
and it is assumed that ω is in the real axis and is exterior
to C. We take C as the contour that consists of the real axis
(excluding the poles of the integrand, ωp,α , α = 1,2,..., and
ω) and a semicircle of infinite radius in the upper-half plane.
In the vicinity of a given pole, the contour C consists of a
semicircle of infinitesimal radius contained in the upper-half
plane. Assuming that the material response decays sufficiently
fast at infinity and calculating the integrals over the semicircles
around the poles, it is found that

0 = 1

2πi
P.V.

∫
M(�) − M∞

� − ω
d�+ 1

2πi
(−πi)
∑

α

(ResM)α
ωp,α − ω

+ 1

2πi
(−πi)[M(ω) − M∞], (A3)

where P.V. denotes the principal value of the integral over
the real axis and (ResM)α is the residue associated with the
pole ωp,α . Note that for spatially dispersive media, ωp,α and
(ResM)α may depend on the wave vector. The obtained result
can be rewritten as

M(ω) − M∞ = 1

πi
P.V.

∫
M(�) − M∞

� − ω
d�+
∑

α

(ResM)α
ω − ωp,α

.

(A4)

Importantly, for ω in the real axis and lossless media, the
material matrix is required to satisfy M = M† [Eq. (4)]. This

implies that the integral over the real axis vanishes, and hence
we obtain the following partial fraction decomposition of the
material matrix:

M(ω) = M∞ −
∑

α

Bα

ω − ωp,α

, Bα = −(ResM)α. (A5)

From here, it follows that

∂

∂ω
[ωM(ω)] = M∞ +

∑
α

ωp,αBα

(ω − ωp,α)2 . (A6)

As discussed in the main text, ∂
∂ω

[ωM(ω)] is required
to be positive definite [Eq. (5)]. This is only possible if
Bαsgn(ωp,α) � 0; that is, Bαsgn(ωp,α) must be non-negative.
Therefore, it is possible to write

Bα = sgn(ωp,α)A2
α, (A7)

with Aα = [sgn(ωp,α)Bα]1/2 � 0, which is a (semi-)positive
definite Hermitian matrix. Substituting this result into
Eq. (A5), we readily obtain the desired result [Eq. (A1)].

APPENDIX B: THE GENERALIZED ELECTROMAGNETIC
PROBLEM

Let us consider a dispersive material characterized by the
material matrix M = M(ω,k). In the spectral domain (∂t ↔
−iω and ∇ ↔ ik), Maxwell’s equations (1) are equivalent to

N̂ · f = ωM(ω,k) · f + ij, with

N̂ =
(

0 −k × 13×3

k × 13×3 0

)
. (B1)

The objective of this Appendix is to obtain a formalism
equivalent to (B1) but with the time dynamics determined
by a first-order in time partial differential system [Eq. (7) of
the main text], analogous to the Schrödinger equation. With
this purpose, we introduce the auxiliary fields

Qα = |ωp,α|1/2

(ω − ωp,α)
Aα · f, α = 1,2,..., (B2)

where ωp,α and Aα are defined as in Appendix A and in
general may depend on the wave vector k. Evidently, one may
write

ωQα = ωp,αQα + |ωp,α|1/2Aα · f. (B3)

Using the partial-fraction decomposition of the material matrix
(A1), it is found that

g = M · f = M∞ · f −
∑

α

sgn(ωp,α)
1

|ωp,α|1/2 Aα · Qα.

(B4)
Hence, from Eq. (B3), we get

ωg = ωM∞ · f −
∑

α

sgn(ωp,α)
1

|ωp,α|1/2 Aα

·[ωp,αQα + |ωp,α|1/2Aα · f]

= ωM∞ · f−
∑

α

|ωp,α|1/2Aα · Qα−
∑

α

sgn(ωp,α)A2
α · f.

(B5)
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Thus, substituting this formula into Maxwell’s equations (B1)
and calculating the inverse Fourier transform in time of the
resulting equation and of Eq. (B3), we obtain the desired first-
order in time partial differential system:

(
N̂ +
∑

α

sgn(ωp,α)A2
α

)
· f +
∑

α

|ωp,α|1/2Aα · Qα

= i
∂

∂t
M∞ · f + ij, (B6a)

|ωp,α|1/2Aα · f + ωp,αQα = i
∂

∂t
Qα. (B6b)

Notably, this set of equations can be written in a matrix
form, L̂ · Q = i ∂

∂t
Mg · Q + ijg , with the relevant symbols

defined as in Eq. (7) in the main text. Because Aα and M∞

are Hermitian matrices, it is easy to check that the operators
L̂ and Mg are also Hermitian with respect to the canonical
inner product. This implies that for a fixed k, the operator
Ĥcl = M−1

g · L̂ is Hermitian with respect to the weighted inner
product (9).

In order to demonstrate Eq. (10) in the main text, let us
consider now two generic solutions, QA(r,t) = Q̃Ae−iωAt eik·r
and QB(r,t) = Q̃Be−iωB t eik·r of the generalized problem
[Eq. (7)], with a space-time dependence of the form e−iωt eik·r.
Note that the wave vector is the same for both fields, but the
frequency ω may be different. The fields QA and QB are not
necessarily natural modes of the system and may be associated
with some external current excitations, jA and jB , respectively.
The envelopes of the generalized state variables are Q̃A and
Q̃B . Let fA(r,t) = FAe−iωAt eik·r and fB(r,t) = FBe−iωB t eik·r
be the corresponding solutions of Maxwell’s equations (B1).
Then, from Eq. (B2) it is straightforward to verify that

1

2
Q̃∗

B · Mg · Q̃A = 1

2

[
F∗

B · M∞ · FA + F∗
B ·
∑

α

Aα

|ωp,α|1/2

(ωB − ωp,α)
· |ωp,α|1/2

(ωA − ωp,α)
Aα · FA

]
, (B7)

where Mg is defined as in Eq. (7). Using Eq. (A1), it is possible write the above result in a rather compact manner:

1

2
Q̃∗

B ·Mg·Q̃A = 1

2
F∗

B ·
[
ωBM(ωB,k) − ωAM(ωA,k)

ωB − ωA

]
· FA. (B8)

In particular, in the limit ωB = ωA ≡ ω (it is always possible to take this limit because QA and QB are generally driven by
external excitations jA and jB), it is found that

1

2
Q∗

B · Mg · QA = 1

2
f∗
B · ∂

∂ω
[ωM(ω,k)] · fA. (B9)

Choosing QA = QB ≡ Q, one finally obtains Eq. (10) of the main text.

APPENDIX C: THE BERRY POTENTIAL ASSOCIATED WITH THE GENERALIZED PROBLEM

In what follows, we derive the conditions under which the identity [Eq. (14)] is valid. To this end, we substitute Eq. (B2) into
the definition of the Berry potential [Eq. (13)] to obtain

Ank = 1

2
if∗

nk · M∞ · ∂kfnk + 1

2
if∗

nk ·
∑

α

Aα,k
|ωp,α,k|1/2

(ωnk − ωp,α,k)
∂k

[
Aα,k

|ωp,α,k|1/2

(ωnk − ωp,α,k)
· fnk

]
. (C1)

In the above formula, we indicate explicitly the possible dependence of Aα,k and ωp,α,k on the wave vector and assumed that
M∞ is independent of k. Using Eq. (A2), the Berry potential can be rewritten as

Ank = 1

2
if∗

nk · ∂

∂ω
[ωM(ω,k)]ωnk

· ∂kfnk + 1

2
if∗

nk ·
∑

α

Aα,k
|ωp,α,k|1/2

(ωnk − ωp,α,k)
∂k

[
Aα,k

|ωp,α,k|1/2

(ωnk − ωp,α,k)

]
· fnk. (C2)

Taking into account that Ank is real valued and that Aα,k is Hermitian, it follows that

Ank = Re

{
1

2
if∗

nk · ∂

∂ω
[ωM(ω,k)]ωnk

· ∂kfnk + 1

2
if∗

nk ·
∑

α

|ωp,α,k|
(ωnk − ωp,α,k)2 (Aα,k · ∂kAα,k) · fnk

}

= Re

{
1

2
if∗

nk · ∂

∂ω
[ωM(ω,k)]ωnk

· ∂kfnk

}
+ 1

2
f∗
nk · M̃(ωnk,k) · fnk, (C3)

where we defined

M̃(ω,k) = i
∑

α

|ωp,α,k|
(ω − ωp,α,k)2

1

2
[Aα,k,∂kAα,k], (C4)
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and [Aα,k,∂kAα,k] = Aα,k · ∂kAα,k − ∂kAα,k · Aα,k stands for
the commutator of the two operators. It should be noted that
M̃(ω,k) represents a pair of Hermitian matrices: one matrix
is associated with the derivative along the kx direction (x̂ · ∂k)
and determines the component Ank · x̂ of the Berry potential,
whereas the second matrix depends on the derivative along the
ky direction and determines Ank · ŷ. It does not seem possible
to further simplify Eq. (C3) without further assumptions.

Next, we examine the case wherein the matrices Aα,k have
a dependence on k of the form

Aα,k = ckAα,0 (C5)

where Aα,0 is a constant matrix and ck is some scalar
function of the wave vector. It is immediate to check that
in such circumstances [Aα,k,∂kAα,k] = 0, and hence M̃(ω,k)
vanishes. Hence, for such a subclass of spatially dispersive
media the Berry potential is given by the formula of Raghu
and Haldane [Eq. (14)].

Let us study now the interesting situation wherein the
material matrix satisfies Eq. (15). Clearly, the residues of the
material matrix are of the form −(ResM)α,k = 1

1+k2/k2
max

Bα,0,
where Bα,0 is independent of the wave vector. Taking into
account that Aα,k = [−sgn(ωp,α,k)(ResM)α,k]1/2 (see Ap-
pendix A), it is evident that Aα,k satisfies Eq. (C5). This
confirms that the Berry potential associated with the subclass
of spatially dispersive media with a response as in Eq. (15)
can be computed using the formula of Raghu and Haldane
[Eq. (14)].

Returning again to the general case in Eq. (C3), it is relevant
to note that the second addend in the rightmost identity of
this equation is always Gauge invariant. Thus, in principle
this second term is free of singularities in the k plane. If this
term also decays sufficiently fast at infinity then from Stoke’s
theorem, its integral over the Riemann sphere vanishes. In such
a case, the second addend can be ignored in the calculation of
the Chern number, and one recovers again the result in Eq. (14).

APPENDIX D: THE BERRY POTENTIAL IN THE
RIEMANN SPHERE

Here, we discuss how to define the Berry potential over the
Riemann sphere. To this end we recall that the stereographic
projection (17) defines a one-to-one mapping of the k plane
plus infinity onto the Riemann sphere (kx,ky) → κ . Thus, the
electromagnetic field envelope fnk may be seen as a function
of κ , i.e., may be regarded as being defined over the Riemann

sphere. Hence, the Berry potential in the Riemann sphere is
given by (compare with the corresponding definition (14) in
the plane)

ARS,κ = Re

{
i f∗

nk · 1

2

∂

∂ω
[ωM(ω,k)]ωnk

· Gradκ fnk

}
. (D1)

In the above formula, Gradκ is the surface gradient [43],
and k is understood as a function of κ determined by the
inverse stereographic projection (kx,ky) = (κx,κy) 1

1−κz
. Using

the surface gradient definition [43], it is possible to prove that
(the symbol ⊗ stands for the tensor product of two vectors)

ARS,κ = 1√
E

Ak · (x̂ ⊗ t̂x + ŷ ⊗ t̂y), (D2)

with t̂i = ∂κ
∂ki

/| ∂κ
∂ki

| (i = x,y) and E = ∂κ
∂kx

· ∂κ
∂kx

= ∂κ
∂ky

· ∂κ
∂ky

=
4

(k2+1)2 . Here, ∂κ
∂ki

is determined using the stereographic

projection (17). Note that t̂x and t̂y form an orthonormal basis
of the tangent space in each point of the Riemann sphere, and
thus ARS,κ is tangent to the spherical surface with unit radius.
The Berry curvature in the Riemann sphere is defined as

FRS,κ = Div(n̂ × ARS,κ ), (D3)

where n̂ is the outward unit vector normal to the sphere
surface and Div stands for the surface divergence operator
[43]. Taking into account that if B = b1

∂κ
∂k1

+ b2
∂κ
∂k2

, then

DivB = 1
E

∂
∂k1

(Eb1) + 1
E

∂
∂k2

(Eb2) [43] and that t̂x × t̂y = −n̂
it is easily found that

FRS,κ = 1

E
Fk, (D4)

where Fk = ∂Ax

∂ky
− ∂Ay

∂kx
is the Berry curvature in the plane.

The Chern number is the integral of the Berry curvature in the
sphere

CRS = 1

2π

∫∫
RS

ds FRS,κ . (D5)

Since the element of area in the sphere’s surface is ds =
E dkx dky it is finally found that

CRS = 1

2π

∫ +∞

−∞

∫ +∞

−∞
dkxdkyFκ = C, (D6)

i.e., the Chern number in the Riemann sphere can be calculated
using the Berry curvature defined in the plane [Eq. (16)].
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