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Abstract: We derive closed analytical formulae for the power emitted by moving charged 

particles in a uniaxial wire medium by means of an eigenfunction expansion. Our 

analytical expressions demonstrate that, in the absence of material dispersion, the stopping 

power of the uniaxial wire medium is proportional to the charge velocity, and that there is no 

velocity threshold for the Cherenkov emission. It is shown that the eigenfunction expansion 

formalism can be extended to the case of dispersive lossless media. Furthermore, in the 

presence of material dispersion, the optimal charge velocity that maximizes the emitted 

Cherenkov power may be less than the speed of light in a vacuum. 
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1. Introduction 

The Cherenkov effect [1,2] has been a topic of continuous interest and research owing to its many 

applications [3], particularly in particle detection in high energy physics [4], in the development of 

light sources [5–7], in spectroscopy of nanostructures [8], amongst others. The Cherenkov effect 

occurs when a charged particle (e.g., an electron) propagates inside a dielectric medium with a velocity 

larger than the electromagnetic wave phase velocity ph /v c n  of the medium (c is the light speed in 

vacuum and n is the refractive index of the medium). A particle with velocity exceeding such a 
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threshold gives rise to a conical wave front, being the emitted light launched along the forward 

direction 
pharccos /v v   measured with respect to the particle velocity v. 

The emission of Cherenkov radiation was experimentally discovered by P.A. Cherenkov in  

1934 [1]. Some years later, I.M. Frank and I.E. Tamm formalized a theoretical explanation of 

Cherenkov’s observations [9]. In recent years, somewhat triggered by the interest raised by the 

theoretical work of Veselago [10], the Cherenkov radiation was also investigated in structured 

materials (metamaterials) [11–23]. In particular, it was proven [11,12,14–16] that in media with a 

negative refractive index, the emitted Cherenkov radiation may be directed backward relative to the 

motion of the particle (reversed Cherenkov effect for which θ > 90°?), contrarily to what happens in 

standard dielectrics (θ < 90°). A similar reversed Cherenkov effect may be also observed in photonic 

crystals [24]. 

Interestingly, another anomalous property of Cherenkov radiation made possible by metamaterials 

is the possibility of having Cherenkov radiation with no threshold for the charged particles  

velocity [17,18,24]. This remarkable property may be useful to improve the characteristics of free-

electron lasers [17]. Such threshold-free Cherenkov emission occurs, for instance, in nanowire 

metamaterials formed by periodic arrays of parallel metallic nanorods [18]. Interestingly, a nanowire 

metamaterial structure enables the generation of nondivergent Cherenkov radiation [19,20], and the 

enhancement of the amount of emitted radiation [18]. It was numerically demonstrated in [18] that the 

stopping power (defined as the average energy loss of the particles per unit of path length) of a 

nanowire metamaterial can be more than two orders of magnitude larger than in natural media. 

 

Figure 1. Illustration of the systems under study: charged particles moving along the  

x-direction with a constant velocity v, inside an unbounded wire medium formed by 

metallic wires embedded in vacuum. (a) A linear array of charged particles; (b) a single 

charged particle. The wires have radius wr  and are arranged in a square lattice with lattice 

constant a. 

The objective of this work is to rigorously calculate the power emitted in the form of Cherenkov 

radiation by charged particles moving inside a nanowire metamaterial. Relying on the quasi-static 

homogenization framework introduced in [25] and performing a modal expansion, here we derive 

closed analytical formulae for the stopping power of the nanowire structure. We are interested in two 
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scenarios: (i) a linear array of charged particles (Figure 1a), and (ii) a single charged particle (Figure 1b) 

moving inside an unbounded wire medium along a direction perpendicular to the nanowires. 

This paper is organized as follows. In Section 2, we characterize the wave dynamics in the uniaxial 

wire medium based on the quasi-static homogenization approach reported in [25]. Then, in Section 3 

we derive closed analytical solutions for the stopping power due to the Cherenkov radiation in the two 

scenarios illustrated in Figure 1, assuming that the wires are perfectly electrical conducting (PEC). In 

Section 4, we generalize the theoretical formalism to the case of lossless dispersive media. Finally, in 

Section 5 the conclusions are drawn. 

Throughout this work, we assume that in the case of a time harmonic regime, the time dependence 

is of the form i te  . 

2. Wave Dynamics in Uniaxial Wire Media 

In this section, we characterize the free oscillation modes of the electromagnetic field in a uniaxial 

wire medium (Figure 1) by reducing the problem to the calculation of the spectrum of a Hermitian 

operator. To this end, we rely on the quasi-static homogenization framework introduced in [25]. 

Within this approach, the electromagnetic response of the wire medium is expressed in terms of 

additional variables with known physical meaning, namely an additional potential   related to the 

average electric potential drop from a given wire to the boundary of the associated unit cell and an 

additional current I  that represents the electric current flowing along the wire [25]. The wave 

dynamics in the uniaxial wire medium (Figure 1) is described by an eight-component state vector 

( , , , )TIF E H , which consists of the macroscopic electric and magnetic fields, the additional 

potential and the current. Assuming that the wires are PEC, the state vector satisfies a differential 

system of the form 

L̂ i
t


  



F
F M  (1) 

where L̂  is a first-order linear differential operator (fully independent of the medium response), M  is 

an 8  8 material matrix that describes the response of the wire medium and that depends solely on the 

geometry of the structure and on the electromagnetic properties of the involved materials. The explicit 

formulas for L̂  and M  can be found in Appendix A. 

Let us introduce an inner product  such that for two generic eight-component vectors 1F  and 

2F  we have 

3 *

2 1 2 1

1

2
d

V
  F F r F M F  (2) 

where x y zV L L L    is the volume of the region of interest. In the end, we take the limit V  . 

The symbol “*” denotes complex conjugation. Since M  is positive definite, it is evident that 

0F F  for 0F , and thus  really defines an inner product in the space of eight-component 

vectors. Indeed, F F  has the physical meaning of the stored energy normalized to the volume of the 

system [26] 
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where 0  is the electric permittivity of free-space, h  is the relative permittivity of the host medium, 

0  is the magnetic permeability of free-space, 2

cA a , and wC  and wL  are the effective capacitance 

and inductance of the wires per unit length of a wire, respectively [25]. 

Importantly, it may be checked that the operator 
1

L̂


M  is a Hermitian operator in the Hilbert space 

of eight-component vectors that satisfy periodic boundary conditions with an inner product defined as 

in Equation (2), i.e., 
1 1

2 1 2 1
ˆ ˆL L

 

  F M F M F F . In particular, it follows that 
1

L̂


M  has a 

complete set of eigenfunctions ( , , , )T

n n n n nIF E H , such that 

1
ˆ

n n nL 


 M F F
 

(4) 

where n  are the eigenfrequencies and n = 1,2,.... The normalization of the modes is chosen so that 

they are orthonormal, i.e., 

3 *

,

1

2
m n m n m nd

V
   F F r F M F

 
(5) 

Since the set of eigenfunctions nF  is complete, a generic eight-component vector F  can be 

expanded as follows 

,n n n n

n

d d F F F F

 
(6) 

The effective medium is invariant to translations, and thus the dependence of the eigenfunctions on 

the spatial coordinates is of the form ie k r . It is evident that for each wave vector k  the eigenvalue 

problem Equation (4) reduces to a standard 8  8 matrix eigensystem. Hence, there are eight different 

eigenwaves (eigenfunctions). Consistent with [27], it is found that the eigenfunctions split into the 

following classes: transverse electric (TE) waves, transverse magnetic (TM) waves, and transverse 

electromagnetic (TEM) waves. For a fixed k , the eigenvalue problem Equation (4) has exactly two 

solutions of each type. Because the system is invariant under a composition of a parity transformation  

( ) and the complex conjugation operation ( ), the two eigenmodes of the same type differ by the 

 symmetry transformation. The eigenfrequency n  of a given mode is transformed as n n   

under the  operation. In addition, for a fixed k , the eigenvalue problem Equation (4) also 

supports two longitudinal static (LS) (electrostatic and magnetostatic) modes associated with 0n  . 

3. Stopping Power of Uniaxial Wire Media 

Next, the theoretical formalism of Section 2 is used to obtain the power emitted due to the 

Cherenkov radiation by charged particles moving inside a uniaxial wire medium. In the presence of an 

external source, the electrodynamics of the problem is described by the system of equations: 

extL̂ i i
t


  



F
F M J

 
(7) 
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where extJ  is an eight-component vector given by 
ext ext( , ,0,0)TJ j 0 , where extj  is the electric current 

density and 0 is the zero vector. In the frequency domain Equation (7) becomes 

ext,L̂ i    F M F J
 

(8) 

where F  and 
ext,J  are Fourier transforms in time. Expanding F  as in Equation (6) and taking into 

account that ˆ
n n n

n

L d  F M F , it is found that Equation (8) is equivalent to: 

 
1

ext,n n n

n

d i  


   F M J

 
(9) 

Thus, because of the orthogonality Equation (5) the coefficients nd  must satisfy: 

1

ext,

1
n n

n

d i 
 



 


F M J

 
(10) 

Thus, we finally conclude that: 

   
1

ext,

1
n n

n n

i 
 



 


F r F r F M J

 
(11) 

The stopping power is given by 0 /P v , where 0P  is the total instantaneous power extracted from 

charged particles moving at a constant velocity [2]. Specifically, 3

0 extP d   r E j , being E  the total 

electric field that acts on the charged particles. It should be noted that as the charged particles are not 

accelerated, the self-field does not contribute to the stopping power [2]. Within the eight-component 

vector notation, 0P  can be expressed as 

   3

0 ext, ,P d t t   r F r J r
 

(12) 

In what follows, we obtain analytical expressions for the stopping power in the two scenarios 

illustrated in Figure 1. 

3.1. Array of Charges Moving inside the Wire Medium  

Here, we consider the situation wherein a linear array of charged particles moves inside an 

unbounded wire medium with a constant velocity v and along a direction perpendicular to the wires 

(Figure 1a). Supposing that the motion is confined to the 0z z  plane, the current density of the 

moving charges may be written as    ext 0
ˆ

yen v z z x vt    j x , where yn  is the number of charges 

per unit of length along the y-direction and e  is the electron charge. In this case, 

ext, 0 s
ˆ( )

i x
v

yen z z e


   J u , where s
ˆ ˆ( , ,0,0)Tu x 0  should be understood as an eight-component unit 

vector. Then, it is straightforward to check that Equation (11) reduces to: 

     *

0 s

1 1
ˆ, ,

2

i x
v

y n n

n n

ien dx dy x y z e
V




 



     


 F r F r F u

 
(13) 

Next, we write the eigenmodes nF  in the form ,0

i

n m m e   k r

k kF F F , where 
,0mk

F  is a constant vector 

independent of r , k  is the wave vector associated with the eigenmode, and the index m = TE, TM, 
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TEM or LS, determines the electromagnetic mode type. In the continuous limit (V  ), the discrete 

summation in Equation (13) must be replaced by an integration over k  such that 

3

3

1 1

(2 )n m

d
V 

  k . Hence, it follows that: 

     0

*

,0 s3

3

ˆ1 1

(2 ) 2

x y z
i xi k x k y k zm v

y m

m m

ien d dx dy e e



  

   
  


 

k

k

k

F u
F r k F r

 
(14) 

where m k  are the resonant frequencies associated with the Floquet eigenmodes with wave vector k . 

Straightforward simplifications give the final result for F : 

   

 

0

0

*

,0 s

0

*

,0 s
/  

0

1 1
ˆ

4

1 1
ˆ         

4

z

y

z

x

y

ik z

y z x m m x

m m k

ik z

y z m m
k vm m
k

ien dk dk e k
v

ien dk e








  

  










  
     

   

 
   

 





k k

k

k k

k

F r F r F u

F r F u

 

(15) 

Next, we calculate the inverse Fourier transform to obtain F  in the time domain. As usual,  

the singularity of the integrand is avoided by replacing 0i    (integration path is in the upper 

half plane, consistent with the causality of the system response). Using again ,0

i

m m e  k r

k kF F , it is 

found that: 

 
 

   0 *

,0 ,0 s2

0

1
ˆ,

8 0

zx

y

ik z zik x vt

y z x m m

m m x
k

v
t ien dk dk e e

k v i 







 
   
  
 

 k k

k

F r F F u

 

(16) 

We are now ready to determine the stopping power of the nanowire metamaterial. Substituting the 

above formula into Equation (12) and using  ext 0 s
ˆ( , , ) y

x
x z t en z z t

v
 

 
    

 
J u  one obtains: 

 
 

2

2
0

,0 s2

0

ˆ
8 0

y

y

z x m

my m x
k

en vP i
dk dk

L k v i  



 
  
  
 

 k

k

F u

 

(17) 

where 
yL  represents the width of the array of charged particles along the y-direction, so that 

y y yN n L  is the total number of moving charges. Using the identity [28]: 

 
1 1

P.V.
0

i x
x i x



 

  
(18) 

where P.V. stands for the Cauchy principal value, we may rewrite Equation (17) as follows: 

 

 
  

2

2
0

,0 s2

0

2

2

,0 s

0

ˆP.V.
8

ˆ  
8

y

y

y

z x m

my m x k

y

z x m x m

m k

en vP i
dk dk

L k v

en v
dk dk k v

 

 






 
   

 

  





k

k

k k

F u

F u

 

(19) 
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The first term is pure imaginary and hence the corresponding integral must vanish. Therefore, 

Equation (19) becomes simply 

 
  

2

2
0

,0 s

0

ˆ
8

y

y

z x m x m

m ky

en vP
dk dk k v

L
 

 

   k k
F u

 
(20) 

This formula shows that the natural modes that contribute to the Cherenkov radiation satisfy the 

selection rules m
xk

v


 k  and 0yk  . This is consistent with the fact that in the frequency domain the 

excitation varies with x and y as 
ext, ~

i x
ve


J . It is important to emphasize that there are natural modes 

with m k  positive, and modes with m k  negative, and that the two set of modes are related by the  

transformation. As previously mentioned, the index m identifies the electromagnetic mode type (TE, 

TM, TEM or LS). It is easy to check that the TE and LS modes are not excited in the scenario of 

Figure 1a because 
,0 s

ˆ 0m  
k

F u . Thus, the sum over m may be restricted to TEM and TM modes. 

The main radiative channel in the uniaxial wire medium is associated with the TEM eigenmode [18]. 

This mode has no cutoff frequency and is the only one that propagates below the plasma frequency of the 

effective medium (
p pc  , with    p 0 w/ 2 / ln / 2 0.5275 /wa L a r a      ) [25,27,29]. 

The dispersion characteristic of the (positive and negative frequency) TEM eigenmodes is given by 

hzk c   , where h h/c c  . Then, from Equation (20) it is possible to write: 

 
   

 

2

2
0

h h TEM, ,0
0

2

2

TEM, ,0
0

h

ˆ
8

2
ˆ    

8

y

y

y

z x z x z x
k

y

y

x
k

en vP
dk dk k c k v k c k v

L

en v
dk

c

 











       

 





k

k

E x

E x

 

(21) 

The electric field associated with the TEM modes is of the form 
TEM, ,0 ||~ A

k
E k , where A is a 

normalization constant such that 1F F  and ||
ˆˆ  k k k zz  is the transverse component of the wave 

vector. Using Equation (A1–A4) together with Equation (3) one can prove that 

  

2
2 p

2 2 2 2 2

p 0 hx y x y

A
k k k k



  


  
 so that 

  

2 2
2 p

TEM, ,0 2 2 2 2 2

p 0 h

ˆ x

x y x y

k

k k k k



  
 

  
k

E x

 

(22) 

Substituting this formula into Equation (21) with 0yk  , and calculating the integral in xk  over the 

first Brillouin zone ( / , /a a  ) [31], it is finally found that: 

2

p0

0 ph

1
arctan

2

y ye n NP v

v c a

 

  

 
   

   

(23) 

where y y yN n L  is the total number of moving charges. Thus, the contribution of the TEM mode to 

the stopping power is always nonzero and increases with the velocity v. The integration was restricted 
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to the Brillouin zone, because the effective medium theory breaks down when /xk a  [30,31]. 

Indeed, in the framework of a microscopic theory, the TEM waves have always a transverse wave 

vector confined to the first Brillouin zone. Our theory is expected to capture accurately the physics of 

the Cherenkov effect when the moving charges do not excite spatial harmonics with /xk a . This 

requires that the electron beam longitudinal width (along the direction of motion) is larger than the 

period a of the nanowire material. Hence, the  -function in the definition of extj  should be understood 

as a function peaked at the origin with a width of the order of the lattice constant of the wire medium. 

In Figure 2, we compare the analytical Equation (23) (solid lines) with the numerical results 

calculated with the theory of [18] (discrete symbols). An excellent agreement between the two 

formalisms is revealed, supporting in this manner the validity of Equation (23). 

 

Figure 2. Stopping power ( 0 /P v ) as a function of the normalized velocity ( /v c ) for a 

linear array of charged particles moving inside the uniaxial wire medium (Figure 1a) 

formed by PEC wires, h 1  , 1100 myn   , 320 10yN   , and different values of the lattice 

spacing a and radius of the wires wr . (i) 200 nma   and w 0.05r a ; (ii) 400 nma   and 

w 0.05r a ; (iii) 800 nma   and w 0.05r a ; (iv) 200 nma   and w 0.15r a . Solid lines: results 

obtained from the analytical Equation (23); Discrete symbols: numerical results based on 

the theory of [18]. 

The property that stands out from Figure 2 is the fact that there is no threshold for the velocity of 

the moving charged particles. Therefore, unlike usual dielectric materials, the uniaxial wire medium 

allows extracting power from the charges even when they are moving at relatively low velocities. 

It can be also seen from Figure 2 that, as the separation between the wires a is reduced, the 

magnitude of the stopping power increases. In fact, this could be expected from the analytical  

Equation (23) because the plasma frequency is inversely proportional to the lattice spacing, 
p ~1/ a . 

Such an enhancement of the stopping power occurs because the photonic states density increases with 

the density of wires [18], leading to a boost of the number of available radiative channels. On the other 

hand, Figure 2 shows that the value of the stopping power also increases with the radius of the wires. This 

happens because the coupling between the charges and the wires becomes stronger for larger radii.  

Even though the main radiative channel in the uniaxial wire medium is related to the TEM mode, it 

is known [18] that the TM mode can provide a secondary radiative channel and thereby also contribute 
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to the Cherenkov emission. However, the TM radiative channel only becomes available for velocities 

greater than the threshold h/v c   [18]. In particular, when the host medium is a vacuum ( h 1  ), 

as considered in Figure 2, the TM mode does not contribute to the stopping power, and Equation (23) 

is exact. It may be checked that when h 1   and the host material dispersion is ignored, the 

contribution of the TM mode to the stopping power is infinitely large. Thus, if the host is not a vacuum 

it is essential to include the effects of material dispersion in the calculation of the stopping power. We 

discuss how the material dispersion can be taken into account in Section 4.  

3.2. Single Charge Moving inside the Wire Medium  

In what follows, we extend the study of Section 3.1 to the case wherein a single charged particle 

moves inside the nanowire structure along a straight line with constant y and z (namely, 0y y  and 

0z z ) (Figure 1b). In this scenario, the current density may be written as 

     ext 0 0
ˆev z z y y x vt      j x , and hence in the frequency 

domain    ext, 0 0 s
ˆ

i x
ve z z y y e


     J u . Using again Equation (11) it is found after some 

simplifications that: 

 
 

 0 03 *

,0 s2

1 1
ˆ

8 0

y z
ik y ik z

x m m

m m

ie d k e e
vi






  

 



 
    

   
 k k

k

F r k F r F u

 

(24) 

Calculating the inverse Fourier transform in time, we obtain: 

 
 

     0 03 *

,0 ,03

1
ˆ,

16 0

y zx
ik y y ik z zik x vt

m m s

m m x

ie v
t d e e e

k v i 

 


  

 
 k k

k

F r k F F u

 

(25) 

Substituting this result into Equation (12) and using the Equation (18), we obtain the total 

instantaneous power extracted from the moving charge: 

 
 

2
23

0 ,02
ˆ

16
m x m s

m

ev
P d k v 


   k kk F u

 

(26) 

Hence, the natural modes that contribute to the Cherenkov radiation by a single moving charge 

satisfy a single selection rule m
xk

v


 k . When the nanowires stand in a vacuum ( h 1  ) only the TEM 

modes can satisfy this selection rule, because for TE and TM waves xk
c v

 
   while for LS waves 

,0
ˆ 0m s 

k
F u  when 0xk  . Hence, in what follows we restrict our attention to the TEM waves 

contribution to Cherenkov emission. Proceeding as in the previous subsection, and using Equation (22) 

it is found that: 
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2
2

0 TEM, ,02

h

2 2 2

p

2 2 2 2 2 2
h p 0 h

ˆ
8

     
8

z x
h

x y v
k k

c

x

x y

x y x y

ev
P dk dk

c

kev
dk dk

c k k k k





   



 


  

 

 

kE x

 

(27) 

The double integral is divergent if the integration range is taken to be all space. However, as 

previously discussed, it is known that the values of  ,x yk k  for a TEM wave are required to lie within 

the first Brillouin zone (    / , / / , /a a a a      ) [31]. For convenience, we approximate the 

square shaped Brillouin zone by a circular region ( maxk k ) with the same area ( max 2 /k a ). Then, 

the integral Equation (27) may be written in cylindrical coordinates as follows: 

 

 

max
2 2 22

p

0 2 2 2
h 0 0 p 0 h

cos

8

k
ev

P dkd k
c k

  


   



 

 

(28) 

Thus, the stopping power for a single moving charge is: 

22
p0

2 2

0 ph

4
ln 1

16

P v e

v c a

 

  

 
   

   

(29) 

Therefore, analogous to what happens in the scenario wherein an array of charges moves inside the 

nanowire material (see Equation (23)), the stopping power is also here an increasing linear function of 

the velocity v of the charged particles. 

 

Figure 3. Stopping power ( 0 /P v ) as a function of the normalized velocity ( /v c ) for a 

single charged particle moving inside the uniaxial wire medium (Figure 1b) formed by 

PEC wires, h 1  , and different values of the lattice spacing a and radius of the wires wr , 

calculated using the closed-analytical Equation (29). (i) 200 nma   and w 0.05r a ;  

(ii) 400 nma   and w 0.05r a ; (iii) 800 nma   and w 0.05r a ; (iv) 200 nma   and w 0.15r a . 

In Figure 3, we depict the dependence of the stopping power on the velocity v of the charged 

particle for different structural parameters, calculated using Equation (29). Similar to the case of a 
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linear array of moving charges, it is seen that the stopping power increases as the separation between 

the wires a is reduced or the radius of the wires is enlarged. 

It is interesting to note that the power extracted per charge in the case of the linear array is given by 
22

p0

0 ph

1
arctan

2

y

y

e nP v

N c a

 

  

 
   

 

 which differs from the power extracted by a single moving 

charge. Indeed, we have that: 

2 2
0 psingle charge p

0

plinear array

4
ln 1

1

8
arctan

y

y

P a

nP

N a









 
  

 
 
  
   

(30) 

In particular, if the number of charges per cell is large, one has / 1p yn   and consequently 

0
0 single charge

linear arrayy

P
P

N
 . Therefore, one sees that the interference between the fields emitted by a 

linear array of moving charges contributes to enhance the stopping power. The physical justification is 

that the interference of emitted fields suppresses radiation channels with 0yk  , and promotes the 

emission into the xoz plane, which is a more efficient process. (
2

TEM, ,0
ˆ

k
E x  reaches a maximum in the xoz 

plane).  

4. Generalization to Dispersive Media 

The analysis of Section 3 assumes that both the host medium and the nanowires are dispersionless. 

However, in practice, the permittivity of realistic materials depends on frequency. In general, the 

effects of material dispersion are essential to obtain a finite emitted power. Next, we explain how the 

theory can be generalized in a straightforward manner to the case of lossless dispersive media. 

It is well known that one can model the electromagnetic response of lossless dispersive dielectrics 

and metals using a Hermitian formulation (see [32]). Using such an approach, it is possible to describe 

the wave dynamics as in Equation (7), but with different operators L̂  and M  and for an extended state 

vector ( , , , ,...)TIF E H  with 8 M  components, where the additional M  variables describe the 

internal degrees of freedom of the pertinent dielectrics and metals. Based on such a formulation, it is 

possible to repeat all the steps of Section 3 and prove that the stopping power for the configuration of 

Figure 1a is still given by Equation (20), which is equivalent to:  
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(31) 

Performing the integration in zk  it is found that: 
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where 
   m

z xk k  is obtained by solving 0m xk v  k  with respect to zk . Only modes that satisfy 

  Im 0
m

zk   contribute to the emitted power. The leading factor of two is due to the fact that we only 

consider branches with 
 

0
m

zk  . The sum is restricted to modes with positive frequencies because 

0m xk v  k  cannot be simultaneously satisfied by two modes that differ by the  transformation. 

As in previous examples, the integration in xk  is restricted to the first Brillouin zone. 

Of course, in the presence of dispersive materials, the dispersion of the eigenwaves m k  is different 

from what was considered in Section 3. The simplest way to determine m k  is using the effective 

medium dielectric function  ,  k  of the nanowire material, which can be calculated as detailed  

in [33,34]. Similarly, 
,0mk

E  can also be determined using the effective medium dielectric function 

 ,  k , apart from a multiplicative constant A. Now the challenge is to determine the value of the 

multiplicative constant A. Indeed, 
,0mk

E  is formed by a subset of elements of the extended eigenvector 

mk
F  which should be normalized such that 1m m k kF F . Thus, it may seem that one needs to know 

the explicit expressions of operators L̂  and M  to determine the unknown multiplicative constant. 

Fortunately, this is not so, and it is possible to find 
,0mk

E  based uniquely on the dielectric function 

 ,  k , without knowing the explicit forms of L̂  and M . 

The key observation is that m mk kF F  is precisely the stored electromagnetic energy of the system 

(per unit of volume), independent of the number of internal degrees of freedom of the pertinent 

dielectrics and metals. To prove this, we note that Equation (7) implies that: 

1 1

ext
ˆ| | | |i L

t

 
   



F
F M F F F M J

 

(33) 

where the inner product is defined as in Equation (2). Because the operator 
1

L̂


M  is Hermitian with 

respect to the considered inner product, it follows that: 

1

extRe | Re |
t

    
     

   

F
F F M J

 

(34) 

Therefore, it is possible to write: 

 3 *

ext

1
| Re

d
d

dt V
  F F r F J

 

(35) 

Noting that the extended excitation vector with 8 M  components must be of the form 

ext ( , ,0,0,....)T

extJ j 0  we finally conclude that: 

 3 *

ext| Re
d

V d
dt
      F F r E j

 

(36) 

The right-hand side of the above equation is precisely the power pumped into the system by the 

external electric current, and hence, for a lossless system, the left-hand side must be the time rate of the 

stored electromagnetic energy. Therefore, the stored electromagnetic energy is exactly | VF F . 
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It is well known that the stored energy density in a medium described by the dielectric function 

 ,  k  for a complex natural mode with a space-time variation i t ie e k r  is [2,35,36] 

 * *

em 0

1 1
,

2 2
W   



      
  

E k E H H
 

(37) 

This demonstrates that the normalization condition 1m m k kF F  is equivalent to: 

 * *

0

1 1
1 ,

2 2
m m m m  



      
  

k k k kE k E H H
 

(38) 

In order to validate this generalized formulation, we consider now a wire medium formed by silver 

(Ag) nanowires. It is assumed that Ag follows the lossless Drude dispersion model 2 2

m m1 /    , 

where m  is the plasma frequency of the material ( m / (2 ) 2175 THz   ) [37]. The wire medium is 

characterized using the effective medium model described in [18,33,34]. Similar to Section 3.1, in this 

case, the Cherenkov emission is only determined by the quasi-TEM mode. 

 

Figure 4. Stopping power ( 0 /P v ) as a function of the normalized velocity ( /v c ) for a 

linear array of charged particles moving inside the uniaxial wire medium (Figure 1a) 

formed by Ag wires, h 1  , 1100 myn   , 320 10yN   , and different values of the lattice 

spacing a and radius of the wires wr . (i) 200 nma   and w 0.05r a ; (ii) 400 nma   and 

w 0.05r a ; (iii) 800 nma   and w 0.05r a ; (iv) 200 nma   and w 0.15r a . Solid lines: results 

obtained from Equation (32); Discrete symbols: numerical results based on the theory of 

[18]. 

In Figure 4, we show that the results obtained with our generalized theory and the numerical results 

of [18] (discrete symbols) agree perfectly. It is important to highlight that, in the presence of material 

dispersion, the stopping power may not vary monotonically with the velocity (curve (i)), and that the 

optimal velocity value may be less than c (for curve (i) the optimal velocity is 0.75v c ). 

In summary, we have demonstrated that the stopping power of a nanowire material formed by 

arbitrary dispersive lossless metals and dielectrics can be computed using Equation (32) where m k  

and ,0mk
E  are completely characterized by the effective medium dielectric function  ,  k , 

independent of the specific dispersive models that characterize the dielectrics and the metal. The 

electric field 
,0mk

E  is normalized so that Equation (38) is satisfied. 



Photonics 2015, 2 715 

 

 

5. Conclusion 

In this work, we derived closed analytical expressions for the stopping power associated with the 

Cherenkov emission of charged particles moving inside a uniaxial wire medium formed by PEC 

nanowires. Relying on an eigenwave expansion formalism, it was shown that, in the absence of 

material dispersion, the stopping power is an increasing linear function of the charged particles 

velocity. In addition, it was explained how the theoretical framework can be generalized to dispersive 

media. The results are completely consistent with the numerical analysis reported in [18], and provide 

further physical insights into the mechanisms that enable the threshold-free Cherenkov radiation by the 

uniaxial wire medium. 
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Appendix A 

In this Appendix, it is shown how the system of equations that define the electrodynamics of the 

uniaxial wire medium can be written in the compact form as  ˆ /L i t   F M F , where 

( , , , )TIF E H  is the eight-component state vector. 

Within the quasi-static homogenization approach introduced in [25], the macroscopic 

electromagnetic fields in a uniaxial wire medium formed by PEC wires satisfy the following equations: 

0
t
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After simple manipulations, it is possible to rewrite this system of equations in the form 

 ˆ /L i t   F M F , where the first-order linear differential operator L̂  is  

ˆ0 0

0 0 0

ˆ=
0 0 0

ˆ 0 0

c

c

c c
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(A5) 

and the material matrix M  that describes the electromagnetic response of the medium is 

h 0

0

w

c

w

c

0 0 0

0 0 0

0 0 0=

0 0 0

C

A

L

A

 



 
 
 
 
 
 
 
 
 

M

 

(A6) 

The matrix M  is Hermitian and real valued, i.e., 
†

M M . 
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