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Effective Hamiltonian for electron waves in artificial graphene: A first-principles derivation
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We propose a first-principles effective medium formalism to study the propagation of electron waves in
semiconductor heterostructures with a zero band gap. Our theory confirms that near the K point the dynamics of
a two-dimensional electron gas modulated by an external electrostatic potential with honeycomb symmetry
is described by the same pseudospinor formalism and Dirac massless equation as a graphene monolayer.
Furthermore, we highlight that even though other superlattices based on semiconductors with a zincblende-type
structure can have a zero band-gap and a linear energy-momentum dispersion, the corresponding effective medium
Hamiltonian is rather different from that of graphene, and can be based on a single-component wave function.
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I. INTRODUCTION

The experimental discovery of graphene in 2004 [1] opened
the door to a large scientific activity, and nowadays graphene
physics is one of the most vibrant research fields in condensed
matter physics. One of the fascinating electronic properties of
graphene is that low-energy electrons may be described by a
2D massless Dirac equation. Consequently, the electron states
have a linear energy dispersion with a zero band gap [2,3].
This feature is interesting not only because it may enable
ultrafast carbon-based electronics due to the high electron
mobility, but also to create tunable “one-atom-thick” platforms
for infrared photonic functions [4–7] with a strong non linear
optical response [8].

Recently, other mechanisms have been suggested to mimic
the extraordinary properties of graphene, such as using
ultracold atoms in hexagonal or honeycomb optical lattices
[9–12], using photonic crystals (“photonic graphene”) [13], or
applying a periodic potential onto a two-dimensional electron
gas (2DEG) [14,15]. This latter idea was first described
in Ref. [16], where the authors studied a nanopatterned
electron gas with hexagonal symmetry, and demonstrated
that the electrons behavior is governed by a massless Dirac
equation. The case of a potential with honeycomb symmetry
was considered in Ref. [17], which also reported a possible
realization based on modulation-doped GaAs quantum wells.

The conclusion that electrons may behave as massless Dirac
fermions in a 2DEG modulated by an external potential is
largely rooted in the observation that the energy dispersion is
linear near the corners of the Brillouin zone and on an analogy
with graphene [16,17]. In our view, it would be desirable to
have a more solid theoretical foundation of such an important
result, and have a more complete understanding if linear
dispersing bands do always imply that the time dynamics of
the electron waves is described by a massless Dirac equation.
Indeed, one may wonder if a different type of physics may be
as well compatible with linear dispersing bands.

With this objective in mind, in this paper, we develop a
first-principles effective medium approach to characterize a
two-dimensional gas of noninteracting electrons modulated
by an external potential. Our theory is based on the effective
medium theory for electron waves developed in Ref. [18].
In that work, it was shown that it is possible to introduce an
effective Hamiltonian that describes exactly the time evolution

of electron states that vary slowly on the scale of the unit cell.
Furthermore, the electronic band structure obtained from the
effective medium Hamiltonian is exactly coincident with what
is found from the microscopic Hamiltonian [18]. Here, we
apply an extended version of this theory to demonstrate from
first principles that the electron wave-function envelope in
a nanopatterned 2DEG with honeycomb symmetry satisfies,
indeed, the 2D massless Dirac equation. Moreover, we also
investigate the effective medium description of superlattices
[19] based on semiconductors with zinc-blende-type structure.
Consistent with our previous studies [20–22], it is found the
electron energy dispersion may be linear for some structural
parameters. Interestingly, it is shown that in this system, the
electrons do not have a pseudospin degree of freedom, quite
different from what happens in graphene wherein the electrons
are chiral fermions.

This paper is organized as follows. In Sec. II, we present
a brief overview of the theory of Ref. [18], and apply it to
characterize a 2DEG modulated by an external electrostatic
potential with honeycomb symmetry. It is shown that a
direct application of the method yields a single-component
Hamiltonian characterized by a strongly nonlocal (spatially
dispersive) response. To circumvent this problem, in Sec. III,
the effective medium approach is extended to allow for a
pseudospinor formalism. It is proven that, similar to graphene,
the electrons in the superlattice behave as Dirac fermions and
are described by the massless Dirac equation. A parametric
study of the influence of the external potential amplitude and
of the geometry on the effective Hamiltonian is presented.
In Sec. IV, we analyze an hexagonal superlattice formed by
mercury-cadmium-telluride compounds, and prove that the
time evolution of electron waves in this second platform can
be done based on a single-component wave function. Finally,
in Sec. V the conclusions are drawn.

II. SINGLE-COMPONENT HAMILTONIAN FOR A
POTENTIAL WITH THE HONEYCOMB SYMMETRY

In this section, we describe how to obtain the single-
component effective medium Hamiltonian for an artificial
graphene platform based on a two-dimensional electron gas,
and discuss the characteristics and limitations of such a
description.
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SYLVAIN LANNEBÈRE AND MÁRIO G. SILVEIRINHA PHYSICAL REVIEW B 91, 045416 (2015)

A. Overview of the effective medium approach

In the following, we present a brief overview of the effective
medium approach developed in Ref. [18]. The use of effective
medium concepts (e.g., the effective mass) has a long tradition
in condensed matter physics, and some relevant works can be
found in Refs. [23–28].

To begin with, we consider a periodic system (e.g., a
semiconductor superlattice) described at the microscopic level
by the Hamiltonian Ĥ and whose time evolution is determined
by the Schrödinger equation

Ĥψ(r,t) = i�
∂

∂t
ψ(r,t). (1)

The key idea of the method is to introduce an effective
Hamiltonian Ĥef that describes exactly the time evolution of
initial (t = 0) “macroscopic” states, through a homogenized
Schrödinger equation

(Ĥef�)(r,t) = i�
∂

∂t
�(r,t). (2)

We say that an electron state ψ is macroscopic if it is
invariant after spatial averaging: ψ(r) = {ψ(r)}av, and we
define �(r,t) = {ψ(r,t)}av. Here, we consider that the spatial
averaging operator {}av is equivalent to an ideal band-pass
spatial filter such that for a generic function g depending on
the spatial variable r

{g(r)}av =
∫

g(r − r′)w(r′)dNr′, (3)

where w is a test function whose Fourier transform
w̃(k) = ∫

w(r)e−ik·rdNr has the following properties [18,29]:

w̃(k) =
{

1, k ∈ BZ

0, k /∈ BZ
, (4)

where k is the wave vector and BZ stands for a suitable
primitive cell in the reciprocal space. For example, if the
states that determine the physics of the system are near the
� point then BZ should be taken as the first Brillouin zone.
In the above, N represents the number of relevant spatial
dimensions (in this paper N = 2). From a physical point of
view, the property ψ(r) = {ψ(r)}av is equivalent to say that the
electron state cannot be more localized than the characteristic
spatial period of the system. The effective Hamiltonian Ĥef

is defined so that if ψt=0(r) = {ψt=0(r)}av, i.e., if the initial
time state is macroscopic, then the solutions of Eqs. (1)
and (2) with the same initial time conditions are linked by
�(r,t) = {ψ(r,t)}av. In other words, the effective Hamiltonian
describes the dynamics of the smooth part of the wave function
ψ(r,t). A consequence of this property is that for an initial
macroscopic state:

(Ĥef�)(r,t) = {(Ĥψ)(r,t)}av, t > 0. (5)

Calculating the unilateral Laplace transform of both sides of
the equation [e.g.. the Laplace transform of ψ(r,t) is ψ(r,ω) =∫ ∞

0 dt ψ(r,t) eiωt ], we get

(Ĥef�)(r,ω) = {(Ĥψ)(r,ω)}av. (6)

The above identity may be used to numerically determine the
effective Hamiltonian as detailed below.

It was shown in Ref. [18] that the action of the operator Ĥef

on the macroscopic wave function is given in the space and
time domains by the convolution

(Ĥef�)(r,t) =
∫

dN r′
∫ t

0
dt ′ Hef(r − r′,t − t ′)�(r′,t ′).

(7)

The Fourier transform of the kernel Hef(r,t) is denoted
by Hef(k,ω) = ∫

dNr
∫ ∞

0 dt Hef(r,t) eiωte−ik·r. Clearly, the
function Hef(k,ω) completely determines the effective Hamil-
tonian. To obtain an explicit formula for Hef(k,ω), we
calculate the unilateral Laplace transform of the Schrödinger
equation (1) to find that

(Ĥ − E)ψ(r,ω) = −i�ψt=0(r), (8)

with E = �ω. Thus, applying the spatial averaging operator to
both sides of the equation and using (6), it follows that for an
initial macroscopic state:

(Hef�)(r,ω) − E�(r,ω) = −i�ψt=0(r). (9)

Let us now consider the particular case wherein the initial state
is ψt=0(r) ∼ eik·r. Clearly, in these conditions the solution of
Eq. (8) has the k-Bloch property. Functions with the Bloch
property, with k in the BZ, have spatial averages of the form
[18]

�(r) = ψaveik·r, (10)

where

ψav = 1

Vc

∫
�

ψ(r)e−ik·rdNr, (11)

where Vc is the volume of the unit cell � in the spatial
domain. This property and Eq. (7) imply that (Ĥef�)(r,ω) =
Hef(k,ω)�(r,ω) and hence from Eq. (6) we get

Hef(k,ω)�(r,ω) = {(Ĥψ)(r,ω)}av. (12)

Hence, by numerically solving Eq. (8) with respect to ψ for the
initial macroscopic state ψt=0(r) ∼ eik·r and feeding the result
to Eq. (12), it is possible to compute the unknown function
Hef(k,ω) for any value of (k,ω). Note that (Ĥψ)(r,ω) has the
k-Bloch property, and hence {(Ĥψ)(r,ω)}av can be obtained
using a formula analogous to Eq. (10).

One interesting property of the effective Hamiltonian is that
the solutions of

det(Hef(k,ω) − E) = 0 (13)

yield the exact energy band structure of the original micro-
scopic Hamiltonian. For more details the reader is referred
to Ref. [18]. In previous works, this general formalism
was applied to graphene and semiconductor superlattices in
different contexts [20–22,30,31]. Moreover, related effective
medium techniques have been widely used to model the
propagation of light in electromagnetic metamaterials [32–35].

B. Single-component Hamiltonian

Next, we apply the formalism described in the previous
section to characterize a 2DEG under the action of a periodic
electrostatic potential V (r) with the honeycomb symmetry.
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FIG. 1. (Color online) (Left) 2DEG modulated by an applied
potential with the honeycomb symmetry. A primitive cell is delimited
by the dotted lines. The supercell used in the FDFD numerical
calculations is represented by the colored area. (Right) First Brillouin
zone with the usual high-symmetry points.

Similar to Ref. [17], it is assumed that the system corresponds
to a modulation-doped GaAs/AlGaAs quantum well. The
geometry of the patterned 2DEG is represented in Fig. 1
(left). It is assumed that the electric potential is a constant
V0 inside each disk of radius R, and zero outside. A primitive
cell of the honeycomb lattice, with primitive vectors a1 and
a2, is delimited in the figure by the dotted lines. This primitive
cell contains two inequivalent elements each represented by
a different color. The spacing between nearest neighbors is
denoted by a. For the numerical calculations, it is convenient
to consider as well a rectangular supercell containing four ele-
ments (yellow region). The primitive vectors of the reciprocal
lattice, b1 and b2, are represented in Fig. 1 (right) together with
the first Brillouin zone and with some relevant high-symmetry
points.

The microscopic Hamiltonian for this two-dimensional
system is simply

Ĥ = −�
2

2mb

∇2 + V (r), (14)

where the electron effective mass mb is taken as in Ref. [17]:
mb = 0.067m, with m the electron rest mass. This Hamiltonian
for a 2DEG of noninteracting electrons is the starting point of
our first-principles effective medium theory.

As outlined in Sec. II A, the first step to compute the
effective Hamiltonian Hef(k,ω) is to find the microscopic
wave function ψ(r,ω) that satisfies Eq. (8) for a macroscopic
initial state −i�ψt=0(r) = f0eik·r where f0 is an arbitrary
constant (the effective Hamiltonian is independent of the
value of f0). Equation (8) is numerically solved for a fixed
(k,ω) using the finite-difference frequency domain (FDFD)
method. The details can be found in Appendix A 1. From the
knowledge of ψ(r,ω), the effective Hamiltonian Hef(k,ω) is
deduced as follows. Substituting the identity (Ĥef�)(r,ω) =
Hef(k,ω)�(r,ω) and Eq. (10) into Eq. (9), it follows that

(Hef(k,ω) − E)ψav(k,ω)eik·r = f0 · eik·r, (15)

where ψav(k,ω) is defined as in Eq. (11) where Vc should
be understood as the area of the unit cell. Thus, because
the single-component effective Hamiltonian corresponds to
a multiplication operator in the spectral domain, it may be
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FIG. 2. (Color online) Plot of the single-component effective
Hamiltonian Hef near the K point as a function of the nor-
malized wave vector for different directions of propagation
and E = −0.33 meV, Nx = 97, Ny = 117, V0 = −0.8 meV, and
R/a = 0.35. The vertical dashed lines indicate the zeros of Hef − E.

expressed as

Hef(k,ω) = f0 · ψ−1
av (k,ω) + E. (16)

To give an example, we suppose that the structural
parameters are such that V0 = −0.8 meV, R/a = 0.35, and
a = 150 nm. The electronic band structure for this system was
reported in Ref. [17], and hence it will not be repeated here. As
discussed in Ref. [17], for an attractive potential it is possible
to have an electronic band structure with isolated Dirac points.
For the chosen structural parameters, the tip of the Dirac cone
at the K point occurs at the energy level ED = −0.326 meV.
Because we are interested in the physics near the K point, it is
implicitly assumed that BZ in Eq. (4) represents the translation
of the first Brillouin zone to the K point.

In Fig. 2, we depict the calculated scalar effective Hamil-
tonian Hef for the energy E = −0.33 meV. In the numerical
simulations we used a grid with Nx×Ny = 97×117 points.
The effective Hamiltonian Hef is represented as a function
of the wave vector measured with respect to the K point,
so that q = k − K. The function plotted in the figure is
Hef − E versus the magnitude of the normalized wave vector
for different directions of propagation. The angle θ is the angle
between q and the kx axis (see Fig. 1).

As seen, for every direction θ , the function Hef − E

intersects the horizontal axis at exactly one point (here,
negative values of q are understood as being calculated for the
opposite direction θ + π ). Moreover, the position of the zeros
is nearly independent of the angle θ . This is consistent with
the fact that the solutions of Eq. (13) give the dispersion of the
stationary states, which for a graphenelike system, due to the
isotropy, should depend only on q and not on θ . Importantly,
Fig. 2 also demonstrates that the effective Hamiltonian Hef

depends strongly on q, and that it can have pole singularities
for some specific values q. This means that the time evolution
operator is strongly spatially dispersive. In other words, the
inverse Fourier transform in k of Hef(k,ω) is spread over a wide
region of space, which implies that the action of the effective
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Hamiltonian on � is nonlocal. This property is undesired
because the associated formalism is impractical and lacks
elegance. In the next section, we prove that by considering
a modified effective medium approach wherein the averaged
wave function is described by a pseudospinor it is possible to
overcome these problems.

III. TWO-COMPONENT HAMILTONIAN FOR A
POTENTIAL WITH THE HONEYCOMB SYMMETRY

The nonlocal spatial action of the single-component effec-
tive Hamiltonian can be attributed to the fact that the electron
wave function can have significant fluctuations within each
unit cell because the system is formed by two inequivalent
sublattices, i.e., that there are two inequivalent elements per
unit cell. This observation suggests that our definition of
macroscopic state may be too restrictive for this system,
because it does not allow us to consider electronic states
that are more localized than the unit cell, and hence the
two sublattices are not discriminated. As demonstrated in the
following, it is possible to avoid these problems by extending
the definition of macroscopic states.

A. Two components effective Hamiltonian

To begin with, let us decompose the crystal into two regions,
each described by a characteristic function χi(r) (i = 1,2)
such that χ1(r) + χ2(r) = 1. Specifically, the characteristic
functions are chosen such that χi(r) delimits a triangle
centered on each disk of the same type and is equal to 1
in the region ©i and 0 in the complementary region (see
Fig. 3 and compare with the supercell represented in Fig. 1).
Note that this partition can be obtained through a process
similar to the one used to construct the Wigner-Seitz cell, but
rather than picking neighbor lattice points one picks elements
from different sublattices. Hence χi(r) are the characteristic
functions associated with the two sublattices of the crystal.

Based on this decomposition, we introduce the notion
of generalized macroscopic state, as a state that can be
decomposed as ψ(r) = χ1(r)ψ1(r) + χ2(r)ψ2(r) for some
functions ψi (i = 1,2) with ψi(r) = {ψi(r)}av. Clearly, this
definition generalizes that of Sec. II A. The idea is now to
introduce a generalized effective Hamiltonian that allows us

FIG. 3. (Color online) Representation of the χi(r) function that
generates the pseudospinor wave function �.

to characterize the time evolution of generalized macroscopic
states.

To this end, we introduce a pseudospinor given by

� =
(

�1

�2

)
=

(
ψχ1

ψχ2

)
. (17)

This decomposition is inspired by the well known property that
each component of the pseudospinor in graphene is associated
with a specific sublattice of the material [2]. We note that
ψ = �1 + �2, and thus from the microscopic Schrödinger
equation (1) it is possible to write

(χ1 + χ2)

(
Ĥ − i�

∂

∂t

)
(�1 + �2) = 0, (18)

This scalar equation is equivalent to the matrix system(
χ1Ĥχ1 χ1Ĥχ2

χ2Ĥχ1 χ2Ĥχ2

)
︸ ︷︷ ︸

Ĥg

·� = i�
∂

∂t
�, (19)

where Ĥg is a generalized two-component microscopic Hamil-
tonian. We want to obtain an effective medium description of
the above time evolution problem with the macroscopic state
given by the spatially averaged pseudospinor �.

To this end, assuming an initial generalized macroscopic
state of the form ψt=0(r) = χ1(r)ψ1,t=0(r) + χ2(r)ψ2,t=0(r),
we calculate the Laplace transform of Eq. (19) to obtain

(Ĥg − E) · � (r,ω) =
(−i� ψ1,t=0 χ1

−i� ψ2,t=0 χ2

)
. (20)

The effective Hamiltonian operator Ĥg,ef is defined so that
(Ĥg,ef{�}av)(r,t) = {(Ĥg�)(r,t)}av for any initial generalized
macroscopic state [compare with Eq. (5)]. To find an explicit
formula for Ĥg,ef(k,ω) in the Fourier domain, we follow the
same steps as in Sec. II A. Assuming that the initial state is
such that −i� ψi,t=0(r) = fieik·r (i = 1,2), with the weights
fi generic constants, it is simple to prove that

(Hg,ef(k,ω) − E) · {�}av

= f1

{(
χ1

0

)
eik·r

}
av

+ f2

{(
0
χ2

)
eik·r

}
av

, (21)

where {�}av is defined as

{�}av =
(

1

Vc

∫
�(r,ω) · e−ik·rdN r

)
eik·r

= �aveik·r. (22)

Because the volume fraction of the two regions is identical,
we have{(

χ1

0

)
eik·r

}
av

=
(

1

Vc

∫
χ1(r)dNr

)(
1
0

)
eik·r = 1

2

(
1
0

)
eik·r.

(23)

Thus Eq. (21) becomes

[Hg,ef(k,ω) − E] · �av = f1
1
2

(
1
0

)
+ f2

1
2

(
0
1

)
. (24)

Let now �(1) and �(2) be the two independent solutions of
(20), corresponding respectively to f1 = 1, f2 = 0 and f1 = 0,
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f2 = 1. Then, it is possible to write the matrix equation

[Hg,ef(k,ω) − E] · (�(1)
av �(2)

av

) = 1

2

(
1 0
0 1

)
, (25)

or equivalently,

Hg,ef(k,ω) = E + 1
2

(
�(1)

av �(2)
av

)−1
. (26)

In summary, we demonstrated that the two component effective
Hamiltonian can be written in terms of the functions �(i) (i =
1,2) as shown above. From the definition, �(i) satisfies Eq. (20)
with −i� ψj,t=0 = δi,j eik·r (j = 1,2). It is easy to check that
it can be written as

�(i) =
(

ψ (i)χ1

ψ (i)χ2

)
, (27)

where ψ (i) (i = 1,2) is the solution of the scalar problem

(Ĥ − E)ψ (i) = χie
ik·r. (28)

Thus, to compute the two-component Hamiltonian Hg,ef(k,ω),
one needs to solve two independent scalar problems. This op-
erator describes exactly the time evolution of any generalized
macroscopic state with a pseudospinor formalism.

B. Single-component Hamiltonian obtained
from the pseudospinor formalism

It should be clear from the previous section that Hg,ef is a
generalization of Hef defined in Sec. II. This suggests that Hef

can be written in terms of Hg,ef. In the following, we obtain
the explicit relation between the two Hamiltonians.

To begin with, we note that solving Eq. (8) for a macro-
scopic initial state −i�ψt=0(r) = f0eik·r is equivalent to solve
Eq. (20) with an initial state −i� ψi,t=0(r) = fieik·r (i = 1,2)
with f1 = f2 = f0. Fixing f1 = f2 = f0 in Eq. (24), we find
after straightforward manipulations that for such an excitation

�av = f0

2
[Hg,ef(k,ω) − E]−1 ·

(
1
1

)
. (29)

Then, noting that ψav = �1,av + �2,av, it follows that

ψav = f0

2

∑
i,j

[(Hg,ef(k,ω) − E)−1]i,j , (30)

and thus, by substitution into Eq. (16), the single-component
Hamiltonian Ĥ

(s)
ef deduced from Ĥg,ef is

H
(s)
ef (k,ω) = 2∑

i,j [(Hg,ef(k,ω) − E)−1]i,j
+ E. (31)

We numerically verified that H
(s)
ef given by the above formula

is exactly coincident with scalar effective Hamiltonian, Ĥef ,
obtained with the calculation method described in Sec. II, as
it should be. This coincidence supports the correctness of our
numerical codes.

It is interesting to note that Eq. (31) explicitly shows that
the zeros of H

(s)
ef (k,ω) − E occur for the same values of

(k,ω) as the poles of (Hg,ef(k,ω) − E)−1. This is equivalent
to say that the zeros of Hef(k,ω) − E are coincident with
the zeros of det(Hg,ef(k,ω) − E). This is a consequence of
the fact that the electronic band structure of the microscopic

Hamiltonian is exactly predicted by the two effective medium
formulations [18].

C. Stationary states near the K point

As mentioned in section II A, the stationary electronic states
of the 2DEG can be obtained from the pseudospinor effective
Hamiltonian Hg,ef by finding the solutions of

det(Hg,ef(k,E) − E) = 0. (32)

In this work, we are mainly interested in the physics near the
high-symmetry K point. Hence, it is convenient to simplify
the formalism and use an analytical approximation for Hg,ef to
solve the secular equation. For electron states with the spatial
spectrum concentrated near the K point, we can approximate
Hg,ef by its Taylor series:

Hg,ef(k,E) � Hg,ef(K,E) + ∂Hg,ef(k,E)

∂kx

∣∣∣∣
k=K

qx

+ ∂Hg,ef(k,E)

∂ky

∣∣∣∣
k=K

qy, (33)

with kx , ky , and qx , qy the components of the wave vectors
k and q = k − K, respectively. In practice, the derivatives
of the effective Hamiltonian are numerically evaluated with
finite differences. The band energy diagram E(k) of the
system is then obtained by solving (32) using the approximate
expression of Hg,ef(k,E). Notably, we numerically verified
that the two component Hamiltonian is a smooth slowly-
varying function of q (not shown), and hence the above Taylor
expansion is typically a quite good approximation for the
Hamiltonian. This contrasts with the singular behavior of the
single-component effective Hamiltonian (see Fig. 2).

The energy dispersion diagrams obtained with this ap-
proach for a system with the same parameters as in Fig. 2
(R/a = 0.35 and V0 = −0.8 meV) are depicted in Fig. 4
(dashed lines). Each plot corresponds to a specific angle of
propagation θ , with θ defined in the same way as in Fig. 2. The
solid lines correspond to the exact electronic band structure,
and were obtained with the plane wave method [17,36,37] by
solving

det

[(
�

2

2m
(k − G)2 − E(k)

)
δG,G′ + Ṽ (G′ − G)

]
= 0,

(34)

where G, G′ are the reciprocal lattice vectors and Ṽ is the
Fourier transform of the potential. As seen in Fig. 4, there
is a very good agreement between the plane-wave method
and the effective medium results near the K point for all
the directions of propagation. Note that the results are not
exactly coincident because of the approximation implicit in
the Taylor expansion of Hg,ef near the K point. However, the
proximity between the two sets of curves confirms that Eq. (33)
is, indeed, quite accurate. Moreover, our effective medium
results corroborate the findings of Ref. [17]: near the K point,
the energy dispersion diagrams are linear, isotropic, with a
zero band gap. These properties are not the only similarities of
the modulated 2DEG with graphene. In fact, we shall prove in
the following that the electronic states pseudospinor may also
be determined by a 2D massless Dirac fermion Hamiltonian

045416-5
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FIG. 4. (Color online) Electronic band structure near the K point for different propagation directions and for a modulated 2DEG with a
potential V0 = −0.8 meV, a ratio R/a = 0.35, and a number of nodes in the FDFD grid Nx = 97 and Ny = 117. Dashed red lines: calculated
with the two-component effective Hamiltonian. Solid blue lines: calculated with the plane wave method.

ĤD = �vF σ · q, where vF is the equivalent “Fermi velocity”
and σ are the Pauli matrices. However, a renormalization of
the pseudospinor is required. The reason is discussed in the
next sections.

D. Macroscopic probability density for the stationary states

The probability density function is of fundamental im-
portance in quantum mechanics since it is essential to make
physical predictions. Within the usual microscopic framework,
it is given by Pmic = ψ∗ · ψ . Evidently, it can also be written
in terms of the pseudospinor (17) as Pmic = �∗ · �. Hence the
average probability density for a Bloch wave is

Pmic,av = {�∗ · �}av = 1

Vc

∫
�∗ · �dN r. (35)

One important observation is that, in general, the averaging
operation does not commute with multiplication operation

{�∗ · �}av 
= {�}∗av · {�}av . (36)

This indicates that in general the squared amplitude of the
spatially averaged wave function cannot be identified with the
probability density in the macroscopic framework. This may
look peculiar at first sight, but actually the situation is quite
analogous to what happens in macroscopic electrodynamics

wherein the formula for the stored energy calculated using the
macroscopic electromagnetic fields differs from the formula
for the stored energy calculated using the microscopic fields
[29,38].

It is demonstrated in Appendix B (see also the supple-
mentary materials of Ref. [31]) that for stationary (Bloch)
electronic states the following relation holds exactly:

{�∗ · �}av = 2 {�}∗av ·
(

1 − ∂Ĥg,ef(k,E)

∂E

)
· {�}av . (37)

Hence, we can write

Pmic,av = Pmac, (38)

where the macroscopic probability density is defined as

Pmac = 2 {�}∗av ·
(

1 − ∂Ĥg,ef(k,E)

∂E

)
· {�}av . (39)

Thus the formula for the macroscopic probability density
differs from that of the microscopic probability density.

For convenience, we define the Dirac energy, ED , as
the energy for which the valence and conduction bands
coincide. Interestingly, our numerical calculations indicate that

near the Dirac energy 1 − ∂Ĥg,ef(k,E)
∂E

varies slowly. Thus the
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FIG. 5. (Color online) Relative difference between Pmic,av and
P0

mac as a function of energy for a modulated 2DEG with the same
parameters as in Fig. 4. Two different directions of propagation are
considered.

macroscopic probability density may be approximated by

Pmac ≈ P0
mac = 2 {�}∗av · A0 · {�}av , (40)

with A0 = 1 − ∂Ĥg,ef(k,E)
∂E

|E=ED,k=K.
To confirm the validity of this formula, we numerically

calculated the relative difference between Pmic,av and P0
mac

for the stationary states of the system near ED and for two
directions of propagation θ . As seen in Fig. 5, in the considered
energy range, the error in the approximation is smaller than
15% for a direction of propagation with θ = 90◦, and smaller
than 5% for θ = 0◦. Notice that the error vanishes at the
Dirac energy because in this case Pmac is equal to P0

mac, and
from Eq. (37) the relative difference between the probability
densities is exactly zero at this point. We also verified (not
shown) that within numerical precision, Pmic,av = Pmac for all
energy values.

E. Massless Dirac equation

We are now ready to show that the modulated 2DEG may
be described by the massless Dirac equation. The starting point
is to generalize Eq. (33) and expand the effective Hamiltonian
in the spectral domain in a Taylor series near ED and K so that

(Ĥg,ef − E) · {�}av � −(E − ED)A0 · {�}av + qxA1 · {�}av

+ qyA2 · {�}av, (41)

where the matrix A0 is defined as in the previous section,

A1 = ∂Ĥg,ef(k,E)
∂kx

|E=ED,k=K and A2 = ∂Ĥg,ef(k,E)
∂ky

|E=ED,k=K.
Next, we introduce a renormalized pseudospinor

�D =
√

2 · A1/2
0 · {�}av e−iK·r, (42)

which from Eq. (40) is such that for stationary states the pro-
bability density is given by the squared amplitude of the
renormalized pseudospinor Pmac ≈ �D · �∗

D . Note that the
Hermitian A0 matrix is necessarily positive definite and is
not unitary. The secular equation (Ĥg,ef − E) · {�}av = 0 is
equivalent to (ĤD − E) · �D = 0 with (ĤD − E) = A−1/2

0 ·
(Ĥg,ef − E) · A−1/2

0 . Simple manipulations show that in the

spatial domain:

ĤD = ED − i

(
∂

∂x
Ã1 + ∂

∂y
Ã2

)
, (43)

where Ã1 = A−1/2
0 · A1 · A−1/2

0 and Ã2 = A−1/2
0 · A2 · A−1/2

0 .
Interestingly, our numerical calculations reveal (see
Appendix C) that Ã1 and Ã2 are of the form

Ã1 = �vF (cos φ · σx − sin φ · σy),

Ã2 = �vF (sin φ · σx + cos φ · σy), (44)

where φ ≈ 60◦, vF is some constant that depends on the
structural parameters of the 2DEG, and σx = (0 1

1 0

)
and σy =(0 −i

i 0

)
are the usual Pauli matrices. Thus the operator ĤD can

be written in a compact form as

ĤD = ED − i�vF

(
∂

∂x ′ σx + ∂

∂y ′ σy

)
, (45)

where ∂
∂x ′ and ∂

∂y ′ are the directional derivatives along the
directions φ = 60◦ and φ = 60◦ + 90◦, respectively,

∂

∂x ′ = cos φ
∂

∂x
+ sin φ

∂

∂y

∂

∂y ′ = − sin φ
∂

∂x
+ cos φ

∂

∂y
. (46)

Thus ĤD is exactly the 2D massless Dirac Hamiltonian, and the
renormalized pseudospinor associated with stationary states is
a solution of the time-independent Dirac equation (ĤD − E) ·
�D = 0. It should be noted that the original coordinate axes
need to be rotated by φ = 60◦ to get an Hamiltonian operator
consistent with that of graphene. Our honeycomb lattice is
actually rotated by 30◦ with respect to the definition usually
adopted for graphene [2]. It can be verified that after a suitable
similarity transformation ĤD assumes the usual form in the
standard coordinate system of graphene.

We would like to underline that in order to obtain a 2D
massless Dirac Hamiltonian it was essential to renormalize
the pseudospinor such that for stationary states, Pmac ≈
�D · �∗

D , because only in these conditions the analogy with
graphene is complete. Notably, without this renormalization
the Hamiltonian Ĥg,ef is not equivalent to a massless 2D Dirac
Hamiltonian.

To further explore the analogy with graphene, next we
numerically confirm that each component of the pseudospinor
corresponds to a state localized on a different sublattice of
the 2DEG. The eigenfunctions of the Dirac Hamiltonian
ĤD in the conduction band are proportional to

( 1
eiθq

)
, where

θq = φ + arctan
( qy

qx

)
and qx , qy are measured relatively to

the Dirac point. Note that θq depends on the rotation angle
φ = 60◦ previously discussed. Hence the two components
of the pseudospinor �D are in phase for θq = φ and out of
phase for θq = φ − π . To verify the connection between the
microscopic and the macroscopic theories, we numerically
calculated the microscopic wave function associated with a
wave vector q oriented along the directions θq = 60◦ and θq =
−120◦. In the simulations, it was assumed that R/a = 0.35,
V0 = −0.8 meV, and that E − ED = −0.329 meV.
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FIG. 6. (Color online) Density plot of Re[ 1
�1,av

ψ(r,ω)e−ik·r] for
θq = 60◦ and −120◦.

Figure 6 depicts the numerically calculated functions
Re[ 1

�1,av
ψ(r,ω)e−ik·r], i.e., the real part of the wave function

envelope normalized to the first component �1,av of the
pseudospinor {�}av. The normalization to �1,av is done to
ensure that the argument of the Re[· · ·] operator is dominantly
real-valued. The white circles in Fig. 6 represent the positions
of the disks where the potential is applied. One can see that
for an angle of θq = 60◦, the wave function envelope is in
phase inside all disks, and therefore both components of the
pseudospinor (17) are also in phase. On the contrary, for an
angle of θq = −120◦, the wave function envelope is out of
phase inside the disks of the two different sublattices and thus
the same is true for the components of the pseudospinor, as we
wanted to show.

Up to now, the discussion was focused in the stationary
states of the modulated 2DEG. Notably, the operator ĤD also
describes the time dynamics of generalized macroscopic states.
This can be easily demonstrated by calculating the inverse
Laplace-Fourier transform of the right-hand side of Eq. (41)
and noting that for a time evolution problem it must vanish for
t > 0. This yields

i�
∂

∂t
A0 · �̃av = EDA0 · �̃av − i

(
∂

∂x
A1 + ∂

∂y
A2

)
· �̃av,

t > 0, (47)

where �̃av = {�}av e−iK·r is the envelope of the macroscopic
wave function. Using now the definition of �D [see Eq. (42)],
it is easy to show that

i�
∂�D

∂t
= ĤD · �D, (48)

and hence the time evolution of generalized macroscopic states
is indeed described by the massless 2D Dirac equation.

F. Parametric study

By varying the geometric parameters or the strength of the
potential it is possible to tune the characteristics of the Dirac
cones. Hence, it is useful to present a parametric study of the
effective Hamiltonian parameters. Figures 7 and 8 show the
dependance of the Dirac energy ED , of the Fermi velocity

vF and of the elements of the matrix A1/2
0 with the strength

of the potential V0 and with the normalized disk radius R/a,
respectively. The range of values considered for V0 is such that
the only available stationary states near ED are associated with
the Dirac cones, in agreement with the study of Ref. [17].

First, we remark that the matrix A1/2
0 is an (almost diagonal)

real-valued symmetric matrix whose elements remain almost
constant when changing either the potential or the normalized
radius R/a. Also, as expected, ED becomes more negative as
V0 is decreased and as R/a is increased.

On the other hand, consistent with what is reported in
Ref. [17], it is seen that the Fermi velocity increases as the
absolute value of the potential is decreased, and exhibits
a parabolic dependence on R/a. Moreover, the value of
vF is of the same order of magnitude as v

(nf )
F = 2π�

3
√

3mba
=

1.4×104 m s−1 [17], which is roughly two orders of magni-
tude smaller than in graphene. Here, we would like to note
that the value for v

(nf )
F reported in Ref. [17] is overestimated

by a factor of 10, likely due to a typo. Linear dispersing bands
have exciting applications in terahertz photonics, and in the
enhancement of the nonlinear optical response [8,22].

IV. HgCdTe HEXAGONAL SUPERLATTICE

In the second part of this paper, we apply the effective
medium formalism to a different physical system with linearly
dispersing bands. Specifically, in a previous work [22], we
have shown how by combining mercury-cadmium-telluride
(HgCdTe) semiconductor alloys it may be possible to realize
a superlattice [19] with an isotropic zero-effective mass
and a single valley linear energy-momentum dispersion near
the � point. Here, we compute the effective Hamiltonian
of the superlattice, and demonstrate that in this second platform
the electrons do not have a pseudospin. HgCdTe quantum
wells have recently elicited great attention in the context of
the quantum spin Hall effect [39,40].

A. Microscopic Hamiltonian

The geometry of the heterostructure under study is depicted
in Fig. 9. Similar to the previous sections, it is a two-
dimensional structure (we are only interested in propagation in
the xoy plane) formed by two lattice matched semiconductors.
As discussed in Ref. [21], the physics of electron waves
in binary compounds with a zinc-blende-type structure may
be described by a potential V and by a dispersive (energy
dependent) effective mass parameter m. In Fig. 9, the host
material (in the exterior region) is characterized by parameters
Vh and mh, whereas the “disk”-type inclusions are charac-
terized by the parameters Vi and mi . As detailed below, V

and m depend on the energy levels of the conduction and
valence bands of each material. Consistent with the analysis
of Refs. [21,22], and with the generalized Ben Daniel-Duke
boundary conditions [23,24,41], this heterostructure may be
modeled by a Hamiltonian Ĥ such that

Ĥψ(r) = −�
2

2
∇ ·

(
1

m(r)
∇ψ(r)

)
+ V (r)ψ(r). (49)
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FIG. 7. (Color online) Dirac energy, Fermi velocity, and elements of the A1/2
0 matrix as a function of the potential V0 obtained with the

effective medium theory for the Dirac cone near the K point. In these simulations it was assumed that R/a = 0.35.

Similar to Ref. [22], we consider that the host material is
Hg0.75Cd0.25Te whereas the material of the inclusions is HgTe.
These materials are nearly lattice matched. Note that unlike
the 2DEG studied in the first part of the paper, the unit cell of
the HgCdTe superlattice contains only one element.

Following Refs. [21,22,42] (see also Ref. [23]) for narrow
gap binary compounds of the groups II-VI the potential V for
each bulk material can be identified with the conduction band
edge energy, V (E) = Ec, with Ec = E�6 . On the other hand,
the dispersive effective mass may be assumed to be of the
form m(E) = 1

2v2
P

(E − Ev), with Ev = E�8 the energy level
associated with the edge of the light-hole band and vP the
Kane’s velocity.

For simplicity, here we assume that the elements of our 2D
superlattice can be described by the same parameters as the
corresponding bulk materials. Hence, for an Hg0.75Cd0.25Te-
HgTe superlattice, V in Eq. (49) is such that

Vh = Ev,h + Eg(x = 0.25), Vi = Ev,i + Eg(x = 0). (50)

In the above, Eg = Eg(x) stands for the band-gap energy
of the ternary compound HgxCd1−xTe, which is calculated
with Hansen’s formula at zero temperature [43,44], where
x represents the mole fraction. Notably, the electronic band
structure of HgTe is inverted, so that the conduction (�6) band
(with an S-type symmetry) lies below the valence (�8) band
(with a P -type symmetry), and the band-gap energy is negative
[20,45]. The valence band offset for the considered pair of

materials can be estimated equal to [21,22]

Ev,h = Ev,i − 0.0875 eV. (51)

The dispersive masses of the relevant semiconductors are

mh = 1

2v2
P

(E − Ev,h), mi = 1

2v2
P

(E − Ev,i), (52)

where the Kane velocity is supposed to be the same in the two
media vP = 1.06×106 m s−1 [43].

B. Effective Hamiltonian and stationary states

The scalar effective Hamiltonian of the superlattice is
computed in the same way as in Sec. II B. Now, BZ should be
taken as the first Brillouin zone because for this superlattice
the Dirac cone emerges at the � point [22]. The details of the
numerical implementation of the FDFD method are described
in Appendix A 2.

Interestingly, different from the example of Sec. II, our
numerical calculations show that the effective Hamiltonian Hef

is a smooth function of k at the origin. Hence, it is possible to
expand Hef in a Taylor series in k as follows:

Hef(k,E) � Vef(E) + �
2

2
k · m

−1
ef (E) · k, (53)
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FIG. 8. (Color online) Dirac energy, Fermi velocity, and elements of the A1/2
0 matrix as a function of R/a obtained with the effective

medium theory for the Dirac cone near the K point. In these simulations it was assumed that V0 = −0.8 meV.

where Vef(E) = Hef(k = 0,E) and the inverse effective mass
tensor is

m
−1
ef (E) = 1

�2

⎡
⎣ ∂2Hef (k,E)

∂k2
x

∣∣∣
k=0

∂2Hef (k,E)
∂kx∂ky

∣∣∣
k=0

∂2Hef (k,E)
∂kx∂ky

∣∣∣
k=0

∂2Hef (k,E)
∂k2

y

∣∣∣
k=0

⎤
⎦, (54)

FIG. 9. (Color online) Hexagonal superlattice with primitive
vectors a1 and a2. The potential and electron effective mass are Vh and
mh outside the disks, and Vi and mi inside. The rectangular supercell
used for the FDFD discretization is represented by the colored area.

with kx and ky the components of wave vector with respect to
the x and y directions, respectively. Note that Hef is an even
function of k. In particular, within the validity of Eq. (53) the
energy-dependent effective Hamiltonian can be written in the
space domain in the form

Ĥef = −�
2

2
∇ · m

−1
ef (E) · ∇ + Vef . (55)

Based on an analogy with electromagnetic metamaterials,
it was found in Ref. [22] that the effective mass tensor and the
effective potential of the superlattice may be approximated by

mef(E) = mh

(1 − fV )mh + (1 + fV )mi

(1 + fV )mh + (1 − fV )mi

, (56)

Vef = Vh(1 − fV ) + VifV , (57)

where fV represents the volume fraction of the HgTe in-
clusions. In the next section, we compare these analytical
formulas with the results obtained with the numerically
calculated Hef(k,E).

The dispersion of the electronic states of the superlattice
can be found by solving the secular equation (13). In terms of
the effective mass tensor and of the potential, it reduces to

�
2

2
k · m

−1
ef (E) · k = E − Vef(E). (58)

C. Numerical results

Using the formalism described in the previous section, we
computed the effective parameters and the energy dispersion
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FIG. 10. (Color online) Effective parameters and electronic band structure near the � point for an HgCdTe superlattice with fV = fV0/2.
The solid lines represent the analytical results, whereas the discrete symbols/dashed lines are obtained from the numerically calculated effective
Hamiltonian.

diagrams for different Hg0.75Cd0.25Te-HgTe superlattices with
a lattice constant a = 12as , where as = 0.65 nm is the atomic
lattice constant of the semiconductors. In our previous work,
it was predicted that for a critical volume fraction of the
inclusions,

fV0 = Ev,h + Ev,i − 2Vh

Ev,h − Ev,i − 2 (Vh − Vi)
, (59)

the superlattice is characterized by a zero band gap at the
energy level E = Vef , where Vef is given by Eq. (57). For the
considered superlattice, fV0 = 0.247.

Figures 10, 11, and 12 represent the numerically calculated
effective parameters E − Vef and mef and the energy dispersion
for the volume fractions fV0/2, fV0 , and 2fV0 , respectively. The
out-of-diagonal components of the effective mass tensor are
zero, and hence only the diagonal components are represented
in the figures. The effective medium results correspond to the
discrete symbols/dashed lines and are superimposed on the
results (solid lines) predicted by the analytical formulas (56)
and (57). In the simulations, we fixed the energy scale so
that when fV = fV0 the tip of the Dirac cone is associated
with the energy level E = 0. This corresponds to choosing
Ev,i such that (Ev,h + Ev,i)Vi − 2Ev,iVh = 0 [22]. As seen,
there is an excellent agreement between the analytic and
effective medium results. Moreover, in Ref. [22], it was shown

that the analytical formulas compare very well with exact
electronic band structure calculations based on the plane-wave
method. This demonstrates that the single-component effective
Hamiltonian describes correctly the propagation of electron
waves in the HgCdTe superlattice, and thus that the electrons
do not have a pseudospin degree of freedom as in the modulated
2DEG studied in the first part of the paper. A comparison
between Kane-like electrons in semicondutor heterostructures
and Dirac-like electrons in graphene was also reported in
Ref. [46].

It is important to mention that the effective medium
parameters have several extra resonances, which are not
predicted by the analytical formalism. These resonances are
associated with hybridized heavy-hole states, and give rise to
extra nearly flat bands in the electronic band diagrams (not
shown). As already discussed in Ref. [22], this property is the
semiconductor counterpart of “plasmons” in metallic photonic
crystals [47,48]. The stationary states of the superlattice occur
for the energy levels for which the effective parameters
E − Vef and mef have the same sign, in agreement with
(58). The two effective parameters play a role similar to the
permittivity and permeability in electromagnetics [21,42].

As found in Ref. [22], the electronic states of the superlattice
associated with the energy E = Vef are electron-like (�6 band),
whereas the states associated with the energy for which mef = 0
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FIG. 11. (Color online) Similar to Fig. 10 but for fV = fV0 .

are light-hole-like (�8 band). Thus the effective medium results
of Figs. 10–12 confirm that for small values of fV (fV < fV0 )
the superlattice has a normal band structure similar to the
host material, whereas for large values of fV (fV > fV0 )
the band structure is inverted similar to HgTe inclusions.
The critical volume fV = fV0 marks the topological transition
from a normal to an inverted band structure, and is associated
with a single valley Dirac cone at the � point. Because the
electrons do not have a pseudospin, their time evolution is not
described by a massless Dirac equation. Indeed, in the present
case, the linear energy dispersion is not a consequence of a
symmetry of the system, but rather due to the topological band
structure transition. Related band structure transitions have
been reported in HgCdTe quantum wells [39,40], and mark
the point beyond which the transport associated with edge
states becomes possible.

V. CONCLUSION

Using a first-principles effective medium approach, it was
demonstrated that the electronic band structure of electron
waves in a 2DEG modulated by an electrostatic potential
with honeycomb symmetry is characterized by the massless
2D Dirac equation near the corners of the Brillouin zone,
exactly as in graphene. Moreover, it was theoretically shown
that the same formalism may also describe the time evolution
of initial “macroscopic” electronic states, and the precise link

between the microscopic and effective medium frameworks
was derived. In particular, our theory highlights the connection
between the components of the pseudospinor and the values
of the microscopic wave function in the two sublattices of the
2DEG. In addition, we characterized HgCdTe superlattices,
and demonstrated that in this second platform the electrons
can also have zero effective mass and linearly dispersing
bands. However, different from the 2DEG artificial graphene,
in this second system the electrons are achiral fermions and a
pseudospinor description is not required. Moreover, the Dirac
cone emerges at the � point and results from a topological band
structure transition, rather than from the structural symmetry.
Finally, we note that the ideas introduced in this paper can
be readily extended to photonic systems, and may enable
an effective medium description of electromagnetic waves in
“photonic graphene” [13].
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APPENDIX A: CALCULATION OF THE MICROSCOPIC
WAVE FUNCTION WITH THE FDFD METHOD

In order to determine the solution ψ(r,ω) of Eq. (8),
we use the well-known FDFD method based on the Yee’s
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FIG. 12. (Color online) Similar to Fig. 10 but for fV = 2fV0 .

mesh [49]. This frequency domain method is well suited
to model finite-sized structures with complex geometries. In
this approach, the unit cell is divided into many rectangular
subcells and the differential operators are replaced by finite
difference operators on each node of the mesh.

1. Honeycomb lattice

Here, we describe the implementation of the FDFD method
for the honeycomb lattice studied in Sec. II.

a. The unit cell

The primitive cell of the honeycomb lattice is not rectangu-
lar (see the region delimited by the dotted lines in Fig. 1),
and consequently this cell is not adequate for the FDFD
discretization of Eq. (8). Hence, to simplify the formulation of
the FDFD problem, we use a rectangular supercell containing
four elements and generated by the vectors a1 and 2a2 − a1.
This supercell is represented by the colored area in Fig. 1
(left). The coordinates of the primitive vectors in the Cartesian
coordinate system are

a1 = a
√

3x̂, (A1)

a2 =
√

3

2
ax̂ + 3

2
aŷ, (A2)

where a is the nearest-neighbor distance.

The coordinates of the reciprocal lattice vectors b1 and b2

represented in Fig. 1 (right) are

b1 = 2π

a
√

3

(
x̂ − 1√

3
ŷ
)

, (A3)

b2 = 4π

3a
ŷ. (A4)

b. FDFD discretization

For an initial macroscopic state −i�ψt=0(r) = eik·r (play-
ing the role of a source), the problem to be solved [Eq. (8)]
reduces to[−�

2

2mb

(
∂2

∂x2
+ ∂2

∂y2

)
+ V (x,y) − E

]
ψ(r) = eik·r. (A5)

As illustrated in Fig. 13, the supercell is discretized using
a uniform grid, with Nx and Ny nodes along the x and y

directions, respectively. The grid spacing along the x and
y directions are �x = a

√
3

Nx
and �y = 3a

Ny
. The differential

operators are discretized as in Refs. [50,51],

∂2ψ(i,j )

∂x2
= ψ(i + 1,j ) − 2ψ(i,j ) + ψ(i − 1,j )

(�x)2
, (A6)

∂2ψ(i,j )

∂y2
= ψ(i,j + 1) − 2ψ(i,j ) + ψ(i,j − 1)

(�y)2
. (A7)
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FIG. 13. (Color online) Geometry of the grid mesh for the FDFD
discretization of the supercell in the particular case Nx = Ny = 3.

Hence Eq. (A5) reduces to

−�
2

2mb

(
ψ(i + 1,j ) − 2ψ(i,j ) + ψ(i − 1,j )

(�x)2

+ ψ(i,j + 1) − 2ψ(i,j ) + ψ(i,j − 1)

(�y)2

)
+V (i,j ) · ψ(i,j ) − E · ψ(i,j ) = eik·r(i,j ), (A8)

where r(i,j ) refers to the vector position at the node (i,j ) of
the grid (see Fig. 13). For the nodes located at the boundaries
of the supercell, one or more adjacent node(s) may lie outside
the grid. However, these nodes can be brought back inside the
supercell using the Bloch-periodic boundary conditions:

ψ(x + ‖a1‖,y) = ψ(x + a
√

3,y) = ψ(x,y)eikxa
√

3, (A9)

ψ(x,y + ‖2a2 − a1‖) = ψ(x,y + 3a) = ψ(x,y)ei3kya,

(A10)

where ‖‖ refers to the norm of a vector, and kx , ky are the
components of the wave vector along the x and y directions.

The system of equations (A8) is equivalent to a standard
linear system with Nx×Ny equations and Nx×Ny unknowns
[the ψ(i,j )]. This system can be solved with standard numer-
ical methods, and its solution can then be used to compute the
effective Hamiltonian as explained in Sec. II.

2. Hexagonal superlattice

The FDFD method implementation for the hexagonal
superlattice studied in Sec. IV is very similar to what was
described in the previous section. In this case, we used a

supercell generated by the primitive vectors 2a1 − a2 and a2

(see the colored area in Fig. 9), with a1 =
√

3
2 ax̂ + 1

2aŷ and
a2 = aŷ and a the lattice constant. For an initial macroscopic
state −i�ψt=0(r) = eik·r, the equation to be solved is

−�
2

2

[
∂

∂x

(
1

m(r)

∂ψ(r)

∂x

)
+ ∂

∂y

(
1

m(r)

∂ψ(r)

∂y

)]
+V (r)ψ(r) − Eψ(r) = eik·r. (A11)

The differential operators are discretized by using staggered
subgrids for ψ , ∂xψ and ∂yψ similar to Yee’s approach [49].
This gives

∂

∂x

(
1

m(i,j )

∂ψ(i,j )

∂x

)
= 1

(�x)2

(
ψ(i + 1,j ) − ψ(i,j )

m
(
i + 1

2 ,j
)

− ψ(i,j ) − ψ(i − 1,j )

m
(
i − 1

2 ,j
) )

, (A12)

∂

∂y

(
1

m(i,j )

∂ψ(i,j )

∂y

)
= 1

(�y)2

(
ψ(i,j + 1) − ψ(i,j )

m
(
i,j + 1

2

)
− ψ(i,j ) − ψ(i,j − 1)

m
(
i,j − 1

2

) )
, (A13)

where the grid spacings along the x and y directions are �x =
a
√

3
Nx

and �y = a
Ny

. In this manner, the problem is reduced to a
Nx×Ny linear system, analogous to the previous section.

APPENDIX B: PROBABILITY DENSITY FUNCTION
IN THE EFFECTIVE MEDIUM APPROACH

In this Appendix, we demonstrate the relation (37) that links
the microscopic and macroscopic probability densities. This
result extends the findings of Refs. [29,31,52].

For convenience, we denote �e = {�}av and introduce the
inner product

〈�1 |�2 〉 = 1

Vc

∫
�

�∗
1 · �2 dN r. (B1)

Moreover, it is easy to show that for a Bloch mode gk with k
in the Brillouin zone, we have the following property:

〈gk|gk〉 = {g∗
k · gk}av. (B2)

The starting point is to consider a family of solutions � =
�(r,E) of Eq. (20) parameterized by the energy E, and for
initial conditions such that f1 = f2 = f0. Thus � = �(r,E)
satisfies

(Ĥg − E) · � =
(

χ1 0
0 χ2

)(
1
1

)
f0eik·r. (B3)

From Sec. III A and from the definition of the effective
Hamiltonian, it is evident that

(Hg,ef(k,E) − E) · �e = 1

2

(
1
1

)
f0eik·r. (B4)

Hence, by combining the two equations, it is possible to write

(Ĥg − E) · � = 2

(
χ1 0
0 χ2

)
· (Hg,ef(k,E) − E) · �e. (B5)
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Differentiating both sides with respect to E and taking the
inner product of the resulting equation with �, we get〈

�

∣∣∣∣(Ĥg − E) · ∂�

∂E

〉
− 〈�|�〉

= 2

〈
�

∣∣∣∣
(

χ1 0
0 χ2

)
· [Hg,ef(k,E) − E] · ∂�e

∂E

〉

− 2

〈
�

∣∣∣∣
(

χ1 0
0 χ2

)
·
(

1 − ∂Hg,ef(k,E)

∂E

)
· �e

〉
. (B6)

Using the fact that
(
χ1 0
0 χ2

) · � = � and Eq. (22), it is found
that 〈

�

∣∣∣∣
(

χ1 0
0 χ2

)
·
(

1 − ∂Hg,ef(k,E)

∂E

)
· �e

〉

=
(

1

Vc

∫
�

�∗eik·r dN r
)

·
(

1 − ∂Hg,ef(k,E)

∂E

)
· �av

= �∗
e ·

(
1 − ∂Hg,ef(k,E)

∂E

)
· �e. (B7)

Based on similar arguments, it is possible to verify that〈
�

∣∣∣∣
(

χ1 0
0 χ2

)
· [Hg,ef(k,E) − E] · ∂�e

∂E

〉

= �∗
e · [Hg,ef(k,E) − E] · ∂�e

∂E
. (B8)

On the other hand, because Ĥg is Hermitian (thus Hg,ef is also
an Hermitian matrix) and from Eq. (B5), it follows that〈

�

∣∣∣∣(Ĥg − E)
∂�

∂E

〉

=
〈
2(

χ1 0
0 χ2

) · (
Hg,ef(k,E) − E

) · �e

∣∣∣∣∂�

∂E

〉

= 2

〈
�e

∣∣∣∣(Hg,ef(k,E) − E) ·
(

χ1 0
0 χ2

)
· ∂�

∂E

〉

= 2�∗
e · [Hg,ef(k,E) − E] · ∂�e

∂E
. (B9)

Then by substitution of the previous results into (B6), we
conclude that

〈�|�〉 = 2�∗
e ·

(
1 − ∂Hg,ef(k,E)

∂E

)
· �e. (B10)

This result and Eq. (B2) yield (37), as we wanted to prove.
Note that because f0 in Eq. (B4) is an arbitrary function
of the energy, the derived result applies to any solution of
(B4), and in particular to the electronic stationary states
[f0(E) = 0].

APPENDIX C: THE MATRICES Ã1 AND Ã2

To illustrate the accuracy of the identities in Eq. (44), we
consider the particular case wherein the structural parameters
of the 2DEG satisfy V0 = −0.8 meV and R/a = 0.35, as
in Fig. 2. The numerically computed matrices are such that
(showing three significant figures)

1

�vF cos φ
Re(Ã1) =

(−5.39×10−3 0.999
0.999 8.97×10−3

)
, (C1)

1

�vF sin φ
Re(Ã2) =

(
6.62×10−3 1.00

1.00 −6.03×10−3

)
, (C2)

−1

�vF sin φ
Im(Ã1) =

(−7.84 × 10−11 −0.999
0.999 −8.35 × 10−10

)
, (C3)

1

�vF cos φ
Im(Ã2) =

(−2.26 × 10−11 −1.00
1.00 2.05 × 10−9

)
, (C4)

with φ = 60◦ and vF = 9.03×103 m s−1. These results
demonstrate that Eq. (44) is very accurate.
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