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Spontaneous parity-time-symmetry breaking in moving media
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Optical instabilities in moving media are linked to a spontaneous parity-time-symmetry breaking of the system.
It is shown that in general the time evolution of the electromagnetic waves in moving media is determined
by a non-Hermitian parity-time-symmetric operator. For lossless systems the frequency spectrum of the time
evolution operator may be complex valued, and has a mirror symmetry with respect to the real-frequency
axis. The possibility of optical amplification of a light pulse in the broken parity-time-symmetry regime is
demonstrated.
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I. INTRODUCTION

Unbroken parity-time- (PT -) symmetric Hamiltonians
have been suggested as the basis for a new class of generalized
complex quantum theories that do not require the Hamiltonian
to be Hermitian [1,2]. The discovery that PT -symmetric
Hamiltonians can be used to describe the physical reality—
without violating the condition that the time evolution is
unitary and the reality of the energy eigenvalues—contributed
to deepening the understanding of the quantum mechanics
foundations and extended the set of acceptable theories
to cases previously judged as unphysical. A recent article
discussed some possible limitations ofPT -symmetric theories
as fundamental theories of nature [3].

PT -symmetric Hamiltonians are often defined parametri-
cally, such that a specific physical theory is associated with
a parameter that measures the departure from the Hermiticity
condition. Notably, PT -symmetric systems can undergo an
abrupt phase transition, such that beyond a critical parameter
threshold a spontaneous symmetry breaking occurs and the
energy spectrum becomes complex valued. Most remarkable,
in such conditions the eigenfunctions of the Hamiltonian (Ĥ )
do not have to be eigenfunctions of the PT operator despite
the fact that the operators commute [1,2]. The reason is that
the PT operator is antilinear, and thus [Ĥ ,PT ] = 0 does not
imply that the operators are simultaneously diagonalizable.

PT -symmetric Hamiltonians have also been previously
studied and realized in optics (in the framework of classi-
cal physics) through a judicious inclusion of gain or loss
regions [4–7]. It has been shown that such systems can exhibit
power oscillations, double refractions, and nonreciprocal wave
propagation, and are characterized by phase transitions beyond
which they can become unstable. A transformation optics
design of PT -symmetric photonic structures was reported
in Ref. [8]. The application of PT -symmetric methods to
metamaterials was also discussed in other works [9–11].

In a different line of research, we have recently shown
[12–14] that moving media may support wave instabilities,
such that if the relative velocity of the bodies exceeds
a certain threshold the system may become unstable and
may start spontaneously emitting light. It was shown that
these wave instabilities in noncharged polarizable moving
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media are strictly linked to the Cherenkov and Smith-Purcell
effects [15,16]. The wave dynamics in these systems has
several peculiarities. First, provided the speed of the moving
bodies is enforced to remain time independent, the system
may support exponentially growing oscillations, even in the
presence of realistic material loss and dispersion [12–14].
Second, notwithstanding the exponential growth of the wave
fields, in the absence of external electromagnetic sources the
wave energy and momentum are conserved. Furthermore, the
wave energy density has no lower bound and can be negative.
These seemingly absurd and counterintuitive properties were
discussed in detail in Refs. [12–14]. It was proven that
they do not contradict any physical laws, and that when the
mechanical degrees of freedom of the system are properly
taken into account the total energy density of the system
is always greater than zero. Crucially, it was demonstrated
that a friction-type force acts on the moving bodies to
oppose their relative motion. Thus, the wave instabilities result
from the conversion of kinetic energy into electromagnetic
energy. Interestingly, in the early 70s of the previous century
Zel’dovich conjectured that a rotating object may amplify
certain oscillation modes and transfer rotation energy into
these modes [17]. On a different research direction, Philbin
and coauthors demonstrated that a moving medium could be
mimicked in an optical fiber taking advantage of the nonlinear
response of the fiber [18]. They have theoretically predicted
that an optical soliton could start spontaneously generating
blueshifted light, a process that is the optical analog of the
Hawking effect. This phenomenon was explained as being due
to the coupling of positive-frequency and negative-frequency
oscillators, in part analogous to the instabilities described in
our previous studies [12–14]. Plasma wave instabilities due to
the drift of electrons in semiconductors have been reported in
other works [19,20]. Also, electron-scale instabilities where
the shear kinetic energy flow is converted into electric and
magnetic field energy have been studied in Refs. [21–23]. It
has been suggested that these shear instabilities may be an
important dissipation mechanism in astrophysical jets [23].

Furthermore, in Refs. [12,13,24] we proved that the
Cherenkov-type electromagnetic instabilities in moving media
are strictly linked to noncontact quantum friction, and a fully
quantum mechanical theory for this effect at zero tempera-
ture was developed. A related quantum Cherenkov friction
effect was discussed in Refs. [25,26]. Generically, quantum
friction predicts that two perfectly smooth noncharged moving
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MÁRIO G. SILVEIRINHA PHYSICAL REVIEW A 90, 013842 (2014)

surfaces separated by a vacuum can experience a force of quan-
tum origin that tends to counteract the relative motion [27–35].
Quantum friction can also occur in other scenarios, in-
volving, for example, rotating dielectric bodies [36–39].
Quantum radiation by moving mirrors [40,41] and its con-
nections with sonoluminescence have also been extensively
studied [42–44].

In this work, we link our previous studies of wave
instabilities in moving media with PT -symmetry methods,
and demonstrate that beyond a certain velocity threshold
there is a phase transition and a spontaneous parity-time-
symmetry breaking of the system. We characterize in detail
the electromagnetic fields and the wave momentum density
associated with the natural oscillations of the system in the
broken PT regime. Finally, we numerically study the time-
domain evolution of the electromagnetic fields emitted by a
line source in the presence of wave instabilities, demonstrating
that the emitted fields are amplified in the broken PT regime.
The theory of this work is based on classical electrodynamics.

II. WAVE DYNAMICS IN MOVING MEDIA

Here, we are interested in the wave interactions in a
system formed by two moving slabs (infinitely extended along
the x and y directions) and separated by a vacuum region
with thickness d (Fig. 1). The two bodies move with speed
vi = vi x̂ (i = 1,2) with respect to some inertial reference
frame (laboratory frame). We suppose that the speeds vi are
enforced to be time independent. As discussed in detail in our
previous works [12,13], having dvi/dt = 0 may require that
either (i) an external mechanical force is applied to the bodies
to counteract radiation induced forces or (ii) the mass density
of the bodies is very large. Notably, when dvi/dt = 0 the
electrodynamics of the system becomes uncoupled from the
equations of motion associated with the mechanical degrees
of freedom (see Appendix A of Ref. [13]), and hence a
fully relativistic treatment of the problem is possible. In
particular, for lossless, dispersionless media the relativistic
relation between the classical D and B fields and the classical
E and H fields is [45,46]

(
D

B

)
=

(
ε0ε

1
c
ϑ

1
c
ζ μ0μ

)(
E

H

)
≡ M ·

(
E

H

)
, (1)

FIG. 1. (Color online) Geometry of the system: two infinitely
extended (in the x and y directions) material slabs separated by an
air gap with thickness d are in relative motion.

where the dimensionless parameters ε, μ, ϑ , and ζ are such
that

ε = εt

(
I − x̂x̂

) + εx̂x̂, εt = ε
1 − β2

1 − n2β2
, (2a)

μ = μt

(
I − x̂x̂

) + μx̂x̂, μt = μ
1 − β2

1 − n2β2
, (2b)

ζ = −ϑ = −ax̂ × I, a = β
n2 − 1

1 − n2β2
, (2c)

where β = v/c, n2 = εμ, and ε and μ are the material
parameters in the rest frame comoving with the pertinent body.
It will be shown in Sec. VI that Eq. (1) can be generalized to
dispersive media. The dynamics of the electromagnetic field is
determined by the Maxwell’s equations which can be written
in a compact form as

N̂ · F = iM · ∂F
∂t

+ ijext, with N̂ =
(

0 i∇×
−i∇× 0

)
.

(3)
where F = (E H)T , G = (D B)T , T denotes the matrix (or
vector) transpose, and M = M(z) is the material matrix defined
by Eq. (1). The six-component vector jext = (je,ext 0)T is writ-
ten in terms of a hypothetical external electric current density
(je,ext). For future reference, we note that the instantaneous
wave energy density is

WEM,P = 1
2 (E∗ · D + H∗ · B) = 1

2 F∗ · M · F. (4)

The symbol “*” denotes complex conjugation, and can be
ignored for real-valued fields. To fully explore the analogy with
quantum physics where the wave function is complex valued,
we allow the electromagnetic fields to be complex valued.

We also introduce the instantaneous electromagnetic and
wave momentum densities defined by, respectively,

gEM = 1

c2

1

2
(E × H∗ + E∗ × H), (5a)

gwv = 1

2
(D∗ × B + D × B∗). (5b)

Again, for real-valued fields the complex conjugation sym-
bol is irrelevant. The electromagnetic (Abraham) momentum
can be regarded as the light momentum. On the other hand,
the wave (Minkowski) momentum has both matter and light
components [12,13,47,48]. As discussed by Barnett [47], the
total momentum of a material medium can be decomposed
as gtot = gkin + gEM = gcan + gwv , where gkin and gcan are
the kinetic and canonical momenta densities of the medium
matter [49], respectively.

The wave flow in the material media originates a stress
along the x direction, such that for the ith body (assumed to
be invariant to translations along the x direction) [13],

F mat
i = dpps,i

dt
. (6)

In the above, pps,i = pwv,i − pEM,i is the x component
of the so-called pseudomomentum of the ith slab, and pwv,i

and pEM,i are x components of the wave and electromagnetic
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momenta:

pwv,i =
∫

Vi

gwvd
3r, pEM,i =

∫
Vi

gEMd3r, (7)

and Vi is the volume of the ith body. In our problem, the stress
F mat

i acts to oppose the relative motion of the two slabs and
hence it is a friction-type force. The external force required to
counterbalance the stress caused by the wave flow is given by
F ext

i,x = −F mat
i = −dpps,i/dt [13].

III. PARITY-TIME SYMMETRY

To establish a precise link between our classical framework,
and the PT -symmetric theories of quantum physics, we
introduce a time reversal operator T ,

F(r)
T→

(
1 0

0 −1

)
· F∗(r), (8)

and a parity transformation P ,

F(r)
P→

(
Rz 0

0 Rz

)
· F(Rz · r), (9)

where F = (E H)T and Rz = −(x̂x̂ + ŷŷ) + ẑẑ is the trans-
formation matrix associated with a twofold rotation about the
z axis. Note that the coordinates are transformed as (x,y,z) →
(−x, − y,z) under the considered parity transformation, and
thus only the x and y coordinates flip sign. Often the parity
transformation is understood as a transformation that flips the
sign of all coordinates, different from what is considered here.
It is important to note that the T operator is not linear due to
the complex conjugation operation. Moreover, the T and the
P operators are defined so that the electromagnetic fields are
transformed consistently with the usual rules of time-reversal
and parity transformations of classical electrodynamics [50].

In the absence of an external source (jext = 0), the equation
that describes the dynamics of the wave fields (3) can be
rewritten in a form alike to the Schrödinger equation with
� = 1:

Ĥcl · F = i
∂F
∂t

, where Ĥcl = M−1 · N̂ . (10)

Thus, the operator Ĥcl describes the time evolution of
the classical fields, analogous to the Hamiltonian operator in
quantum physics. It can be checked that Ĥcl has neither the
time-reversal symmetry nor the parity symmetry because such
symmetries imply flipping the velocities of the moving slabs.
In particular, as a consequence of the lack of time-reversal
invariance, the electromagnetic response of the moving bodies
does not satisfy the Lorentz reciprocity theorem [45].

On the other hand, the PT symmetry requires flipping the
velocities of the slabs twice, and hence our system is expected
to be PT symmetric. This can be explicitly checked by noting
that the composition of time-reversal operator T and of the
parity operator P acts on the electromagnetic fields as

F(r)
PT→ F̃(r) ≡

(
Rz 0

0 −Rz

)
· F∗ (Rz · r) . (11)

Straightforward calculations show that

N̂ · PT = PT · N̂, (12a)

M · PT = PT · M, (12b)

where N̂ and M are operators defined as in Eqs. (1)–(3). We
used the fact that the system is invariant to translations along
the x and y directions, and that M is real valued because the
dielectrics are lossless. Hence, from the commutation relations
(12) it is obvious that Ĥcl also commutes with thePT operator:

[Ĥcl,PT ] ≡ Ĥcl · PT − PT · Ĥcl = 0. (13)

Hence, Ĥcl is indeed a PT -symmetric operator, and the

mapping F(r)
PT→ F̃(r) transforms solutions of Maxwell’s

equations into solutions of Maxwell’s equations such that if
F(r,t) is a solution then PT · F(r, − t) also is. Interestingly,
the transformation F(r) → F̃(r) plays a crucial role in the
quantization theory developed in our previous work [12], but
its connection with the PT operator was unnoticed. Because

the PT -time operator is idempotent one has F(r) = ˜̃F(r).
To further develop the analogy of our system with PT -

symmetric Hamiltonians, let us consider a natural mode of
oscillation Fω associated with the frequency ω (time variation
is e−iωt ), such that

Ĥcl · Fω = ωFω. (14)

Because [Ĥcl,PT ] = 0 we can state that

Ĥcl · F̃ω = ω∗F̃ω. (15)

Therefore, the PT -transformed eigenfunction is associated
with the complex conjugated oscillation frequency. Note that
for a transverse to z spatial variation eikxxeikyy a real-valued
transverse wave vector (kx,ky) remains invariant under a
PT transformation, and thus if Fω ↔ (ω,kx,ky) then F̃ω ↔
(ω∗,kx,ky).

Consistent with the ideas of quantum physics [1,2], we say
that Ĥcl has an unbroken PT symmetry if the spectrum of
Ĥcl is real valued. In such a case, it is seen from (14) and
(15) and from the fact that the PT operator is idempotent and
antilinear, that the eigenfunctions of Ĥcl may be chosen to
satisfy F̃ω = Fω; i.e., the eigenfunctions can be chosen so that
they are invariant under a PT transformation.

On the other hand, in case of a broken PT symmetry
the spectrum of Ĥcl includes complex-valued frequencies.
From (14) and (15) it follows that if f is an eigenfunction
associated with the complex-valued frequency ωc = ω′ + iω′′
with ω′′ > 0 (f ↔ ωc = ω′ + iω′′) then e = f̃ is another eigen-
function associated with the complex conjugated frequency
(e ↔ ωc = ω′ − iω′′) [12]. Notably, as amply discussed in
Refs. [12,13], an oscillation with frequency ωc = ω′ + iω′′
with ω′′ > 0 (ω′′ < 0) corresponds to exponentially growing
(decaying) fields, and thus to an optical instability. Therefore,
this analysis demonstrates that the emergence of optical
instabilities in moving media is related to a spontaneous
parity-time-symmetry breaking.

Crucially, when Ĥcl can be identified with a Hermitian
operator its spectrum must be real valued, and thus the PT
symmetry is unbroken. This is guaranteed to occur in the case
where the material matrix M is positive definite. In that case,
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MÁRIO G. SILVEIRINHA PHYSICAL REVIEW A 90, 013842 (2014)

we can introduce the following weighted inner product [12,48]:

〈F2|F1〉 = 1

2

∫
d3r F∗

2 · M (z) · F1. (16)

It can be readily checked that because M is symmetric
and real valued 〈F2|ĤclF1〉 = 〈ĤclF2|F1〉. Thus, in these
conditions Ĥcl is Hermitian and the system has an unbroken
PT symmetry.1 Using (1) and (2) it can be shown that
provided all the material bodies move with a speed lower
than the corresponding Cherenkov emission threshold in the
considered reference frame, i.e., provided |v(z)| < c/n(z),
the material matrix is positive definite [12,48]. Note that
〈F|F〉 = ∫

d3r WEM,P is the total wave energy stored in the
system.

Most dramatically, when the speed of at least one of the
material bodies exceeds the associated Cherenkov emission
threshold (|vi | > c/ni) the material matrix M becomes indef-
inite. In such a case (16) defines an indefinite inner product,
and the property 〈F2|ĤclF1〉 = 〈ĤclF2|F1〉 does not guarantee
the reality of the spectrum of Ĥcl, and optical instabilities may
occur [12]. Therefore, the spontaneous symmetry breaking of
the system requires that the speed of one or more material
bodies exceeds the Cherenkov emission threshold.

IV. SPONTANEOUS SYMMETRY BREAKING

For a system of weakly interacting dielectric bodies,
the modes associated with electromagnetic instabilities and
PT -symmetry breaking can be understood as the result of
the hybridization of specific guided modes supported by the
individual slabs [13]. The selection rules for the interacting
guided modes (i = 1,2) impose (i) the matching between
the frequencies (ω1 = ω2) and the wave vectors (kx,1 = kx,2,
ky,1 = ky,2) of the modes, and that (ii) ω̃1ω̃2 < 0 where ω̃i

is the oscillation frequency of the mode associated with the
ith slab measured in the respective comoving frame [13].
By generalizing the results of Ref. [13] to the relativistic
regime, it can be shown that the condition for spontaneous
PT -symmetry breaking is

|v�| > v�,th, where v� = v2 − v1

1 − v1v2
1
c2

(17)

represents the relative velocity of slab 2 with respect to slab 1
in the frame comoving with slab 1, and the threshold velocity
is

v�,th = c

1
n1

+ 1
n2

1 + 1
n1

1
n2

. (18)

This result is also consistent with a calculation of Pendry
for the case of identical dielectric slabs [28]. Based on
this, one can distinguish three situations. The first one is
when |vi | < c/ni , i = 1,2. In this case Ĥcl is a Hermitian
operator and thus its frequency spectrum is real valued and

1Alternatively, we could define Ĥcl = M−1/2 · N̂ · M−1/2 so that
Ĥcl · U = i∂tU with U = M1/2 · F. This Ĥcl is Hermitian with respect
to the canonical inner product provided the real-symmetric material
matrix M is positive definite.

the wave energy is non-negative. The second possibility is
that |v�| < v�,th and either |v1| > c/n1 or |v2| > c/n2. In
this case the Hermitian symmetry is lost and the wave energy
can be negative. However, the operator Ĥcl has an unbroken
PT symmetry with a real-valued frequency spectrum. Finally,
the third case occurs when |v�| > v�,th, and corresponds to
a spontaneous PT -symmetry breaking wherein the operator
Ĥcl has a complex-valued frequency spectrum.

To study the properties of the guided modes for a broken
PT symmetry, we calculated the modal dispersions ω =
ω′ + iω′′ vs kx with ky = 0 for two identical finite-thickness
dielectric slabs with n1 = n2 = 14 and hs ≡ h1 = h2. The
slabs are backed by perfectly conducting (PEC) metallic plates
and are separated by a vacuum region with thickness d (see
Fig. 1; the PEC plates are not shown). It is assumed that v1 = 0,
v2 = c/5 so that the relative velocity of the two slabs is larger
than the threshold for PT -symmetry breaking. The guided
modes are calculated by solving a dispersion equation written
in terms of the reflection coefficients that characterize the wave
scattering by the moving slabs (see the Appendix). Generally,
in the relativistic calculation the modes only split into s- and
p-type polarizations when ky = 0.

The calculated modal dispersions are shown in Fig. 2. The
first column of Fig. 2 represents the dispersion kx vs ω of the
individual slabs, calculated in the pertinent comoving frame.
In our example, the instabilities result from the hybridization
of the individual modes that satisfy ω/(kxc) ≈ v�/(2c) =
1/10 [13]. The mode that leads to the strongest interaction
is marked in the figure with a circle. The corresponding
hybridized modal diagrams are shown in the second and
third columns. As seen, because of the PT symmetry the
complex-valued solutions occur in pairs, such that if ω is
an oscillation frequency associated with an instability then
ω∗ also is. Figure 2 shows the dispersions calculated with
both nonrelativistic (solid lines) and relativistic (dashed lines)
approaches. The calculation details are described in the
Appendix. Apart from a small shift, the relativistic calculation
is consistent with the nonrelativistic one.

To further understand the instability properties, we cal-
culated the field profiles for the p- and s-polarized modes
for the same geometry as in Fig. 2 (see Figs. 3 and 4). The
calculation is fully relativistic, and all the fields are calculated
in the laboratory frame. To do this, first the fields in the
vacuum gap are found, and then we use the continuity of
the tangential components of the electromagnetic field at the
interfaces and the relativistic field transformations [46,50] to
compute the fields in the frame comoving with each slab.
Finally, these fields are relativistically transformed back into
the laboratory reference frame. The details are omitted for
conciseness. In our calculations, except if stated otherwise, the
fields are normalized so that 〈F̃|F〉 = ε0A0hs × [1 V 2/m2],
where A0 = Lx × Ly represents the cross-sectional area of
the slabs. The field profiles are calculated at t = 0. Note that
because of the instability the field amplitudes vary with time.

Figures 3 and 4 show that the electromagnetic fields in
the two slabs are nearly in quadrature. Interestingly, for p

polarization the magnetic field Hy is quite small in the vacuum
gap, which contrasts with the s-polarization case wherein the
electric field Ey has a significant amplitude in the gap. As
already discussed in Ref. [13], this can be explained by the fact
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FIG. 2. (Color online) Top row: Dispersion diagrams for p-polarized waves. Bottom row: Dispersion diagrams for s-polarized waves. First
column: Dispersion diagram of the guided modes for a single material slab calculated in the comoving frame. Second and third columns:
Dispersion ω′ + iω′′ vs kx in the lab frame for ky = 0. In these plots the solid lines represent the nonrelativistic calculation and the dashed lines
the exact relativistic calculation. The distance between the slabs is d = 0.75hs and v1 = 0, v2 = c/5, and n1 = n2 = 14. The normalization
factor for the transverse wave vector is kx0 = 1.60/hs for p-polarized waves, and kx0 = 2.41/hs for s-polarized waves.

that an interface between a high-dielectric-constant material
and the vacuum may be seen as a perfect magnetic conductor
(PMC) by a p-polarized wave in the dielectric, and hence the
p-polarized guided modes of the individual slabs hybridize
weakly. As a consequence of this, ω′′ = Im{ω} is almost two
orders of magnitude larger for s-polarized waves as compared
to p-polarized waves.

The field components normal to the interface, Ez and Hz,
are generally discontinuous. Note that even though the slabs do

not have a magnetic response in the respective comoving frame
(B = μ0H), in another frame there is a magnetic response and
magnetoelectric coupling [Eq. (1)], and hence B 
= μ0H and
Hz is allowed to be discontinuous at the boundary with the
moving slab (z = 0).

Figures 3 and 4 also depict the wave energy density
(WEM,P ), the x component of the wave momentum density
(gw,x), and the x component of the electromagnetic momentum
density (gEM,x). By numerically integrating these profiles, we
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FIG. 3. (Color online) Top row (unities [V/m]): electromagnetic fields distribution for a p-polarized guided mode associated with a system
instability (ωhs/c = 0.1580 + i0.000 18 and kxhs = 1.56) and for the same configuration as in Fig. 2. The field amplitudes are normalized
such that 〈F̃|F〉 = ε0A0hs × [1 V2/m2]. Green solid lines: absolute value; black dashed lines: real part; blue dot-dashed lines: imaginary part.
Bottom row (unities [V2/m2]): profiles of the normalized wave momentum density, electromagnetic momentum density, and wave energy
density.
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FIG. 4. (Color online) Top row (unities [V/m]): electromagnetic fields profile for a s-polarized guided mode associated with a system
instability (ωhs/c = 0.235 + 0.007i and kxhs = 2.33) and for the same configuration as in Fig. 2. The field amplitudes are normalized such
that 〈F̃|F〉 = ε0A0hs × [1 V2/m2]. Green solid lines: absolute value; black dashed lines: real part; blue dot-dashed lines: imaginary part. Bottom
row (unities [V2/m2]): profiles of the normalized wave momentum density, electromagnetic momentum density, and wave energy density.

verified that the total wave momentum and the total wave
energy identically vanish:

pwv,x = A0

∫ d+hs

−hs

gwv,xdz = 0,

Ewv = A0

∫ d+hs

−hs

WEM,P dz = 0. (19)

It was analytically demonstrated in Ref. [12] that the
result Ewv = 0 holds exactly for any electromagnetic mode
associated with a complex-valued frequency. Similarly, it
can be proven that pwv,x = 0 always holds in the same
circumstances. On the other hand, an inspection of the plots in
Figs. 3 and 4 reveals that in general the total electromagnetic
momentum pEM,x does not vanish, and hence varies with time.
The rate of change of the total momentum of the system
when the translational velocity of the bodies is enforced to be
constant is thus dpkin,x/dt + dpEM,x/dt = dpEM,x/dt 
= 0.

Significantly, gEM,x is two orders of magnitude smaller
than gwv,x . This demonstrates that pw,i ≈ pps,i where pps,i =
pw,i − pEM,i . Thus, the stress acting on the ith slab due
to the wave flow satisfies F mat

i = dpps,i/dt ≈ dpwv,i/dt ,
consistent with the discussion in Ref. [13]. In order to
enforce the velocities to be time independent, an external
mechanical force is required to pump the instantaneous power
Pext = −v2dpps,2/dt = −v22ω′′pps,2 ≈ −v22ω′′pw,2 into the
system. It is evident from Figs. 3 and 4 that the wave
momentum stored in the moving slab is negative, pw,2 < 0,
and hence Pext > 0 as it should be to pump the exponentially
growing oscillations.

It is relevant to highlight that the wave energy density
in the moving slab (slab 2) can be negative. This is a
consequence of the requirement that to have a spontaneous
PT -symmetry breaking it is necessary that the total wave
energy vanishes, Ewv = 0, and hence the wave energy in slab
2 (Ewv,2 = ∫

slab 2 WEM,P d3r) must be negative. The quantity

−dEwv,2/dt has a simple physical interpretation: It is exactly
the instantaneous power flowing through the interfaces of the
second slab in the form of electromagnetic energy, i.e., the
flux of the Poynting vector through the wall z = 0. For an
analytical proof of this result see Eq. (A8) of Ref. [13]. Thus,
a moving slab with negative stored energy effectively behaves
as a source that pumps the rest of the system.

As discussed in Refs. [12,13], notwithstanding Ewv,2 < 0,
the total energy in slab 2 is positive and grows in time. Indeed,
we have [12]

dEtot,2

dt
= −v2

dpps,2

dt
+ dEwv,2

dt
. (20)

In our example, we can write dEtot,2/dt = 2ω′′(−v2pps,2

+ Ew,2). We numerically verified that for the s-polarized
mode represented in Fig. 4 one has −v2pps,2 = 0.99 and
Ew,2 = −0.55 in unities of ε0A0hs × [1 V2/m2], confirming
that dEtot,2/dt > 0.

Notably, from the plots of gEM,x it is seen that the elec-
tromagnetic momentum (and hence also the electromagnetic
energy) flows in opposite directions in the two slabs. In
particular, the wave attached to slab 2 is a backward wave
(gEM,x and kx have opposite signs), whereas the wave attached
to slab 1 is a forward wave (gEM,x and kx have the same
sign). Hence, the energy radiated through the interface of
slab 2 to the vacuum region is dragged by the moving
slab (copropagating wave), whereas the energy radiated to
the interior of slab 2 propagates in the opposite direction
(counterpropagating wave). Thus, the emitted light propagates
in different directions in the interior and exterior of the moving
slab, and this explains that the total wave momentum is
conserved.

In the limit of a weak interaction, it is possible to estimate
that the wave momentum stored in the ith slab satisfies [12,13]
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FIG. 5. (Color online) (a) Normalized wave momentum (in unities [V2/m2]) as a function of the normalized velocity of slab 1, v1, in the
lab frame. The velocity of slab 2 in the frame of slab 1 is kept invariant and equal to v� = c/5. The structural parameters are as in Fig. 2 and
the fields are normalized as 〈F̃|F〉 = ε0A0hs × [1 V2/m2]. The wave is p polarized. Green solid line: wave momentum in slab 1; blue dashed
line: wave momentum in slab 2; black dot-dashed line: analytical formula [Eq. (21)]. (b) Normalized force acting on slab 1 as a function of the
normalized velocity of slab 1 in the lab frame with v� = c/5. The fields are normalized as 〈F̃|F〉 = �|ω|/2. Green solid line: p polarization;
blue dashed line: s polarization.

at t = 0,

|pwv,1| ≈ |pwv,2| ≈
∣∣∣∣ kx

2ω
〈F̃|F〉

∣∣∣∣ . (21)

To confirm the validity of this approximation, we numeri-
cally computed the wave momentum stored in the two slabs
for different velocities v1 of slab 1, assuming that the relative
velocity (v�) of the two slabs is kept constant. Thus, for
each v1 we solved the relativistic dispersion equation (see
the Appendix) and found the values of (ω,kx) associated with
the peak value of ω′′ for p-polarized waves. Note that because
of the Doppler effect, (ω,kx) can vary substantially with v1.
In Fig. 5(a) we depict the numerically calculated pwv,i as
a function of v1, superimposed on the result predicted by
Eq. (21). As seen, the agreement is very good. Note that as
v1 → −c/10 (i.e., v1/|v�| + 1 → 0.5) the wave momentum
becomes quite large with the considered field normalization
because ω′ → 0. Even though for clarity the plot is truncated,
the agreement between Eq. (21) and the numerical results is
similarly good in the limit v1 → −c/10 (not shown).

Finally, we investigate how the stress associated with the
wave flow (friction force) changes with v1 in conditions similar
to Fig. 5(a). In this example, we suppose that the fields are
normalized so that 〈F̃|F〉 = �|ω|/2, with � the reduced Planck
constant, consistent with the quantum vacuum normalization.
Note that the field normalization depends on v1 (or equivalently
on the reference frame) because ω also does. Specifically,
we numerically calculated Fx,1 = dpw,1/dt = 2ω′′pw,1 for
both the p- and the s-polarized guided modes at t = 0 [see
Fig. 5(b)]. As previously discussed, the friction force satisfies
F mat

1 = dpps,1/dt ≈ dppw,1/dt . Remarkably, the numerical
results suggest that Fx,1 is independent of v1 when the relative
velocity v� of the slabs is fixed. Moreover, consistent with
Ref. [13] the friction force is much stronger for s-polarized
waves, as compared to p-polarized waves. This happens
because the s-polarized guided modes hybridize more strongly
than the p-polarized waves. Note that Fx,1 > 0 so that the
friction force acts to reduce the relative velocity.

V. LIGHT AMPLIFICATION

One exciting opportunity created by the broken PT
symmetry is the amplification of an optical pulse. To illustrate

this, we consider the geometry of Fig. 6(a), wherein a line
current equidistant of the two slabs (placed at z = z0 = d/2)
radiates an optical pulse of finite duration. In the frequency
domain, the line current is modeled by the current density
je = I (ω)δ(x)δ(z − z0)ŷ where I (ω) is the Fourier transform
of the current pulse I (t). It is straightforward to check that in
the vacuum gap (0 � z � d) the electromagnetic fields in the
frequency domain can be written as

H = ∇ × (I
ŷ), (22a)

E = iωμ0I
ŷ, (22b)

where the scalar potential 
 = 
(x,z) must satisfy ∇2
 +
k2

0
 = −δ(x)δ(z − z0) with k0 = ω/c. The potential 
 =

(x,z) can be written as


 = 
0 + 
sc, (23)

where 
0 is the free-space Green’s function,


0 = i

4
H

(1)
0 (k0ρ) = 1

2π

∫
dkx

e−γ0|z−z0|

2γ0
eikxx, (24)

where H
(1)
0 is the Hankel function of the first kind and

order zero, ρ =
√

x2 + (z − z0)2 and γ0 =
√

k2
x − ω2ε0μ0.

The potential 
sc is created by the scattering of 
0 at
the interfaces of the moving dielectric slabs. Because our
excitation is such that ∂/∂y = 0 the radiated fields are s

polarized, and hence it is possible to write 
sc is terms of the
electric field reflection coefficients Rs,i at the two boundaries.
Specifically, we have that


sc = 1

2π

∫
dkx

1

2γ0
(A+e−γ0(z−z0) + A−e+γ0(z−z0))eikxx,

(25)
where the constants A+,A− are the solutions of the system
(supposing that z0 = d/2 and that the interfaces with slabs 1
and 2 are at z = d and z = 0, respectively):

A−eγ0d/2 = Rs,1(1 + A+)e−γ0d/2, (26a)

A+eγ0d/2 = Rs,2(1 + A−)e−γ0d/2. (26b)
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FIG. 6. (Color online) (a) A line source in between two moving dielectric slabs is excited by a current pulse. (b) The current pulse used in
the numerical simulations.

The corresponding solution is

A− = Rs,1e
−γ0d (1 + Rs,2e

−γ0d )

1 − Rs,1Rs,2e−2γ0d
, (27a)

A+ = Rs,2e
−γ0d (1 + Rs,1e

−γ0d )

1 − Rs,1Rs,2e−2γ0d
. (27b)

The reflection coefficients Rs,i = Rs,i(ω,kx) are calculated
as explained in the Appendix [Eq. (A12)]. Using Eqs. (22)–
(27) and calculating the inverse Fourier transform in frequency,
it is possible to write the radiated electric field as

Ey(x,z,t) = 1

(2π )2

∫
dω e−iωt iωμ0I (ω)

∫
dkx

1

2γ0
eikxx

×
{
e−γ0|z−z0|+ e−γ0d

1 − Rs,1Rs,2e−2γ0d

× [
Rs,2

(
1 + Rs,1e

−γ0d
)
e−γ0(z−z0)

+Rs,1
(
1 + Rs,2e

−γ0d
)
e+γ0(z−z0)]}. (28)

The integration in kx is over the real axis. Because the
system response is required to be causal, the inverse Fourier
(Laplace) transform in frequency must be calculated over a line

parallel to the real-frequency axis, Im{ω} = ω′′
int such that ω′′

int
is larger than the peak value of Im{ω} for all natural frequencies
of oscillation. In other words, the system response is required
to be analytic (with no poles) in the semiplane Im{ω} > ω′′

int.
For the system parameters of Fig. 2 the peak value of Im{ω}
is estimated to be max ω′′hs/c = 0.007 (mode represented in
Fig. 4). In our calculations the inverse transform was evaluated
along the line defined by ω′′

inths/c = 0.012.
The current excitation pulse in the time domain is taken to

be of the form

I (t) = I0Re
{
e−(t−td )2/(2σ 2

I )e−iω0t
}
, (29)

where I0 is the peak current, ω0 is the oscillation frequency,
td is roughly the instant wherein the current pulse is peaked,
and σI determines the duration of the pulse. In the numerical
simulations the parameters used were σI c/hs = 30, td = 4σI ,
and ω0hs/c = 0.235. Note the value of ω0 matches the value
of the real part of the oscillation frequency associated with the
system instability in Fig. 4. The profile of the current pulse
in the time domain is represented in Fig. 6(b). In the spectral
domain the current is given by I (ω) = ∫

dtI (t)eiωt , which can
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FIG. 7. Time evolution of the field (Ey) radiated by a current pulse with finite duration placed at the origin. The distance between the slabs
is d = 0.75hs , v1 = 0, and n1 = n2 = 14. The field Ey is calculated at the interface with the second slab and for (a) x = −10hs , (b) x = hs , (c)
x = 10hs , and (d) x = 19hs . The results of the first row are for the case (i) v2 = c/5 whereas the results of the second row are for (ii) v2 = 0.
The development of a field instability due to the spontaneous parity-time-symmetry breaking is evident in case (i).
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be written as

I (ω) = I0σI

√
2π

1

2

∑
±

ei(ω±ω0)td e− σ2
I (ω±ω0)2

2 . (30)

Using this formalism we computed the emitted electric field
Ey at the interface with the moving slab (z = 0) for a system
with the same parameters as in Fig. 2 and for v1 = 0. The
profiles of Ey as a function of time for different positions
(x = const) along the structure are represented in Fig. 7 for
two cases, (i) v2 = c/5 (first row in Fig. 7) and (ii) v2 = 0
(second row in Fig. 7).

As seen, when both slabs are at rest (i.e., v2 = 0, cor-
responding to the second row in Fig. 7) the excited optical
field is guided along the structure and the peak amplitude is
roughly the same for all observation points. The propagation
velocity of the optical pulse is of the order c/n indicating that
most of the energy propagates in the dielectric slabs. Rather
differently, when the relative velocity of the two slabs exceeds
the threshold for a spontaneous PT -symmetry breaking (i.e.,
v2 = c/5, corresponding to the first row in Fig. 7), the optical
pulse is amplified as it propagates in the waveguide. Indeed,
comparing Fig. 7(bi) with Fig. 7(biv) it is seen that after a
propagation distance of only 18hs the amplitude of the pulse
is increased by a factor of roughly 1.7. Moreover, comparing
the first and second rows of Fig. 7, it is evident that the pulse
arrives earlier at observation points with x > 0 when v2 = c/5.
This is explained by the fact that v2 is larger than c/n by a factor
of 2.8 and hence the moving slab drags the emitted optical field
so that the velocity of propagation is increased. These results
suggest the possibility of having an optical amplifier based on
the relative motion of two polarizable bodies.

VI. SPONTANEOUS PT -SYMMETRY BREAKING IN
DISPERSIVE MOVING SYSTEMS

Up to now, we considered systems formed by nondispersive
dielectrics. It was seen that to have a broken PT symmetry
it is necessary that the relative velocity of the two slabs (i.e.,
the media wherein light propagates) exceeds the speed of light
in the slabs. This is a quite-strict requirement because for
nondispersive dielectrics the speed of light is c/n, which in
practice, for most dielectrics, is only a few times smaller than
the speed of light in vacuum.

It is possible to somewhat alleviate this problem by
considering dispersive media [14,28]. In theory, dispersive
media may allow for wave propagation with arbitrarily low
phase velocities, and thus the velocity threshold for a broken
PT symmetry can be much less than the speed of light, so
that the wave instabilities may be possibly observed with
nonrelativistic velocities. It is shown next that the parity-
time-symmetry concepts can be readily extended to dispersive
media provided the material loss is negligible.

The response of a dispersive dielectric is characterized in
the comoving frame by a frequency-dependent permittivity
ε = ε(ω̃) where ω̃ is the frequency measured in the comoving
frame (for simplicity in what follows it is assumed that
μ = μ0). Similar to what was already discussed in Sec. II,
the same material is seen in a different inertial reference frame
as a bianisotropic medium. The constitutive relations (1) and
(2) remain valid in the frequency domain. However, now the

frequency ω̃ must be written in terms of the frequency ω

in the laboratory frame using the relativistic Doppler shift
formula [50]:

ω̃ = γv(ω − vkx), with γv = 1/
√

1 − (v/c)2. (31)

Therefore, the material matrix in the laboratory frame
depends both on the frequency (ω) and on the wave vector
(kx), so that the response of a moving material is characterized
by both frequency and spatial dispersion. Hence, because
we are interested in z-stratified structures, in our problem
M = M(z; ω,kx).

For frequency dispersive systems the time evolution prob-
lem cannot be reduced to a Schrödinger-type equation, and
hence the analogy with quantum theory is imperfect. However,
as shown next, the main ideas of Sec. III are recovered
in the spectral domain. Indeed, using the reality condition
ε∗(ω̃) = ε(−ω̃∗), it is straightforward to verify that

M(z; −ω∗, − k∗
x ) · PT = PT · M(z; ω,kx). (32)

To make further progress it is necessary to assume that the
materials are lossless so that ε(ω̃) = ε(−ω̃). In that case, we
can write

M(z; ω∗,k∗
x ) · PT = PT · M(z; ω,kx) (lossless system).

(33)

Hence, using Eq. (12a) it is seen that in the spectral domain
Ĥcl(ω,kx) = M−1 · N̂ satisfies

Ĥcl(ω
∗,k∗

x ) · PT − PT · Ĥcl(ω,kx) = 0. (34)

This result is the counterpart of [Ĥcl,PT ] = 0 for nondis-
persive lossless systems. From here, we see that if Ĥcl(ω,kx) ·
Fω,kx

= ωFω,kx
then Ĥcl(ω∗,k∗

x ) · PT · Fω,kx
= ω∗PT · Fω,kx

.
This property is the analog of Eqs. (14) and (15) and establishes
that the frequency spectrum of a system formed by lossless
dispersive moving slabs has a mirror symmetry with respect
to the real-frequency axis; i.e., the complex eigenfrequencies
occur in complex conjugated pairs and the corresponding
eigenvectors are related by the PT transformation. In the
presence of material loss, the time evolution of the system
cannot be described by a PT -symmetric operator because the
time-reversal operation acts to turn the material dissipation
into material gain.

In order to numerically confirm these results, we computed
the dispersion diagrams of the natural modes supported by two
identical metallic half spaces in relative motion (h1 = h2 →
∞ in Fig. 1). The material response is modeled by a Drude-
dispersion model with εm/ε0 = 1 − 2ω2

sp/[ω(ω + i�)], where
� > 0 is the collision frequency and ωsp is the surface plasmon
resonance frequency such that Re{εm(ωsp)/ε0} = −1. In the
simulations we used ωsp/2π = 646 THz which is expected to
model the response of silver [51].

In the first example, we computed the modal dispersion
ω = ω′ + iω′′ vs kx with ky = 0 for a lossless system � = 0+
when the vacuum gap thickness is d = 10 nm, v1 = 0, and
v2 = 2ωspd = 0.27c. For the details of the modal diagram
calculations see Ref. [14]. As shown in Figs. 8(a) and 8(b),
the frequency spectrum is complex valued. Moreover, the
complex poles occur in complex conjugated pairs, which is
the fingerprint of a broken PT symmetry. Similar to Fig. 2,
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FIG. 8. (Color online) Two silver semispaces (h1 = h2 → ∞) separated by a vacuum gap with thickness d = 10 nm [ωspd/c = 0.135] are
in relative motion. (a) Real part and (b) imaginary part of oscillation frequencies of two natural modes (black and green lines) as a function
of the normalized kx for � = 0, and v2 = 2ωspd . The transverse wave number is normalized to kx0 = 2ωsp/v2. In all the plots, ky = 0, and
the solid lines represent the nonrelativistic calculation and the dashed lines the exact relativistic calculation. (c) and (d) Similar to (b) but for
� = 0.1ωsp and � = 0.5ωsp , respectively.

the relativistic calculation (dashed lines) is consistent with
the nonrelativistic one (solid lines). Notably, the instability
is more broadband in presence of material dispersion, and
even more interesting, the peak value of ω′′/ω′ is several
orders of magnitude larger in this example. This indicates
that the presence of material dispersion promotes, indeed, the
enhancement of the system instabilities.

In the presence of material loss, Eq. (34) is no longer valid,
and hence the complex-valued natural oscillation frequencies
do not need to occur in complex-conjugated pairs. This
property is illustrated in Figs. 8(c) and 8(d) for the cases � =
0.1ωsp and � = 0.5ωsp, respectively (see also Ref. [14]). Note
that the system can support exponentially growing oscillations
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FIG. 9. (Color online) Similar to Fig. 8(b), but ω′′ is calculated as
a function of v2 for kx = 2ωsp/v2, � = 0, and ky = 0. The calculation
is nonrelativistic and only the mode with ω′′ > 0 is represented.

with ω′′ > 0 even in the presence of realistic material loss (see
Fig. 8(c); for silver � ≈ 0.2ωsp, see Ref. [14]).

Crucially, for ω = ωsp the two metallic semispaces support
surface plasmons with arbitrarily small phase velocities,
vph = ω/kx → 0 when ω → ωsp and � = 0+. Hence, in
the continuous lossless limit, the threshold velocity for a
spontaneous parity-time-symmetry breaking vanishes: v�,th =
0. This property is illustrated in Fig. 9. However, in the
presence of material loss the threshold velocity for a system
instability is evidently nonzero because the phase velocity
has a lower bound and because the “gain” must surpass the
absorption. As shown in Ref. [14], for the realistic silver
loss and d = 10 nm the threshold velocity is as large as
v�,th ∼ ωspd = 0.135c.

VII. CONCLUSION

It was demonstrated when the relative velocity of two
sheared lossless dielectrics exceeds a certain threshold, the
time evolution of the electromagnetic waves is described by
a non-Hermitian parity-time-symmetric operator. For suffi-
ciently large relative velocities, the system may enter into
a broken parity-time-symmetry regime and electromagnetic
instabilities may arise due to the spontaneous conversion of
kinetic energy into light. We characterized the properties of
the electromagnetic fields associated with an exponentially
growing wave instability. It was shown that in the reference
frame wherein one of the slabs is at rest, the light emitted
towards the exterior of the moving slab copropagates with the
moving slab, whereas the light emitted towards the interior
of the moving slab propagates in the opposite direction, such
that the total wave momentum is conserved. We studied the
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time evolution of the electromagnetic field in the presence
of a light source in the broken PT regime, and showed
that the emitted optical pulse is amplified as it propagates
in the structure. Moreover, it was proven that for dispersive
lossless dielectrics the parity-time-symmetry breaking may
have no velocity threshold. Finally, we would like to note
that even though our study deals with light propagation in
material media, similar effects are expected to occur in other
physical systems (e.g., for sound waves) wherein two slabs that
support wave propagation are sheared with a relative velocity
exceeding twice the wave velocity in the media.
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APPENDIX: THE MODAL EQUATION

In this Appendix, we derive the dispersion equations used
to characterize the natural oscillations of the system in Fig. 1.

We start by considering that the field variation in the x

and y coordinates is of the form ei(kxx+kyy). It was shown
in Ref. [14] that the transverse electric fields evaluated in
the frame comoving with the pertinent medium (Ẽx,Ẽy) are
related to the corresponding fields evaluated in the laboratory
frame (Ex,Ey) as(

Ẽx

Ẽy

)
= (1 + A) ·

(
Ex

Ey

)
, (A1)

where 1 is the identity matrix and

A(ω,kx,ky,v) = γv

(
0 0

βc
ky

ω
1 − 1

γv
− βc kx

ω

)
, (A2)

with β = v/c and γv = 1/
√

1 − v2/c2. In this Appendix,
the quantities with a tilde hat are calculated in the frame
comoving with the medium where the material response is
described by the parameters ε,μ. Because the (cD,H) fields are
relativistically transformed in the same manner as the (E,cB)
fields [45], the transverse magnetic fields are also linked by(

H̃x

H̃y

)
= (1 + A) ·

(
Hx

Hy

)
. (A3)

Let us consider a plane wave propagating in the medium,
and introduce characteristic impedance matrices such that in
the comoving frame we can write(

Ẽx

Ẽy

)
= Zco

c (ω̃,k̃x,k̃y) ·
(

H̃x

H̃y

)
, (A4)

whereas in the laboratory frame we have(
Ex

Ey

)
= Zc(ω,kx,ky) ·

(
Hx

Hy

)
. (A5)

The frequencies and transverse wave numbers in the two
frames are linked by the relativistic Doppler shift formu-

las [50],

ω̃ = γv(ω − vkx), k̃x = γv(kx − ωv/c2), k̃y = ky. (A6)

Then, it is evident that

Zc(ω,kx,ky) = (1 + A)−1 · Zco
c (ω̃,k̃x,k̃y) · (1 + A). (A7)

It can be verified that in the comoving frame,

Zco
c (ω̃,k̃x,k̃y) = 1

ω̃εk̃z

(
k̃x k̃y k̃2

y + k̃2
z

−k̃2
x − k̃2

z −k̃x k̃y

)
, (A8)

where k̃z =
√

k̃2
x + k̃2

y − ω̃2εμ is the z-propagation constant
for a plane wave.

For simplicity, in this article we restrict our attention to
waves with ky = 0 so that the normal modes can be split into
s- and p-polarized modes. It can be checked that for ky = 0
the characteristic impedance matrix is antidiagonal, so that it
is possible to introduce two scalar characteristic impedances
for s- and p-polarized waves:

Zs
c = −Ey

Hx

, Zp
c = Ex

Hy

. (A9)

Explicit calculations show that

Zs
c = k̃2

x + k̃2
z

ω̃εk̃z

1

γv

(
1 − βc kx

ω

) , Zp
c = k̃z

ω̃ε
γv

(
1 − βc

kx

ω

)
.

(A10)

Next, we note that the z-propagation constant of a plane
wave is the same in the frame comoving with the slab and
in the laboratory frame. Hence, it follows that in the relevant
medium,

kz = k̃z =
√

γ 2
v (kx − ωv/c2)2 + k2

y − γ 2
v (ω − vkx)2εμ,

(A11)

where we used the Doppler shift formulas (A6).
Using Eqs. (A10) and (A11) and standard transmission

line theory, it is now straightforward to find the reflection
coefficient for a plane wave incident on the ith interface. For
the case wherein the relevant slab is backed by a PEC plate
and has thickness hi it is found that

Rl,i = −iZl
c,i tan(k̃z,ihi) − Zl

c,0

−iZl
c,i tan(k̃z,ihi) + Zl

c,0

, l = s,p. (A12)

The quantities with subscript i are evaluated at the slab
side of the interface, and the quantities with subscript 0 are
evaluated at the vacuum side.

Following Refs. [13,14], the dispersion equation for the
natural oscillation frequencies in an air cavity with thickness
d and delimited by two moving dielectric slabs is given by

1 − e−2γ0dRl,1(ω,kx,v1)Rl,2(ω,kx,v2) = 0, (A13)

where l = s,p determines the field polarization, γ0 =√
k2
x − ω2/c2, and Ri,l(ω,kx,vi) (i = 1,2) is the reflection

coefficient for the ith interface defined as in Eq. (A12).
The nonrelativistic calculations of Fig. 2 are based on the

approximation Rl(ω,kx,v) ≈ Rl(ω − kxv,kx,0) in Eq. (A13).
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