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One of the most extraordinary manifestations of the coupling of the electromagnetic field and matter is
the emission of light by charged particles passing through a dielectric medium: the Vavilov-Cherenkov
effect. Here, we theoretically predict that a related phenomenon may be observed when neutral fast
polarizable particles travel near a metal surface supporting surface plasmon polaritons. Based on a classical
formalism, we find that at some critical velocity, even if the initial optical field is vanishingly small, the
system may become unstable and may start spontaneously emitting light such that in some initial time
window the electromagnetic field grows exponentially with time.
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I. INTRODUCTION

The interactions between light and matter are observed in
many forms: the emission, absorption, and scattering of
light, optical forces on nanoparticles, and Raman scatter-
ing, just to name a few. In particular, the generation of light
by charged particles passing either through a medium or
near a diffraction grating has been demonstrated by Vavilov
and Cherenkov [1,2] and by Smith and Purcell [3], and has
important applications in the detection of high-energy
charged particles in astrophysics and particle physics.
These remarkable phenomena can be explained in the
framework of classical electrodynamics because a modu-
lated beam of moving charged particles corresponds to a
time-varying current, thus leading to the emission of light.
On the other hand, the emission of light due to fast

changes in the geometry of electrically neutral macroscopic
bodies (e.g., due to the accelerated motion of material
boundaries) has also been extensively discussed in quan-
tum physics in the context of the dynamical Casimir effect
[4–9]. Moreover, several authors predicted the emission of
radiation either by bodies in relative translational motion
or by rotating objects [10–24]. These effects are understood
as being intrinsic to quantum electrodynamics, and no
classical analog has been reported.
The playground for this work is the scenario wherein a

neutral particle—with no net electric charge, e.g., an
electric dipole—moves closely parallel to an uncharged
metal surface. According to classical theory, the dipole

motion should be totally unaffected by the presence of the
metal surface, provided the electromagnetic field vanishes
and the dipole is in its “ground state” (classical electric
dipole moment is zero), so that there are no charge
oscillations. Indeed, a beam of neutral particles is suppos-
edly uncoupled from the radiation field. Here, we show
that, extraordinarily, if the velocity of the electric dipole is
sufficiently large, a system instability may be developed so
that the dipole oscillations and light emission can be
triggered by vanishingly small optical noise.
It should be noted that related problems have been

studied in the framework of quantum theory, in connection
with the problem of quantum friction [10–24]. Moreover,
related optical instabilities have been recently linked to
quantum friction in the case of nondispersive dielectric
slabs [25–27] (see also Ref. [24]). Quite differently, here
our analysis is fully classical, and both the electromagnetic
field and the dynamics of the pertinent moving bodies are
treated with classical theories.

II. NATURAL OSCILLATIONS OF AN ELECTRIC
DIPOLE ABOVE A MOVING HALF-SPACE

We consider a vertical electric dipole (oriented along the
z direction) standing in free space at a distance d from a
thick metallic region [Fig. 1(a)]. The relative velocity
between the dipole and the metallic region is v, and is
assumed time independent except if stated differently. As
discussed later, having v independent of time may require
some external action to counterbalance optically induced
forces. For convenience, we take the dipole rest frame as
the reference frame wherein all the physical quantities
are defined. To keep the formalism simple, it is supposed
that the dipole can only vibrate along the z direction
(anisotropic particle), but as discussed below, the theory
can be readily extended to the general case where the dipole
response is isotropic.
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First, we characterize the fields radiated by the dipole
when it oscillates with frequency ω. The electromagnetic
fields in the z > 0 region [Fig. 1(a)] are the superposition
of the field radiated by the dipole in free space and the
field scattered by the moving metallic slab,E ¼ Einc þ Es.
The “incident” electric field is given by Einc ¼
∇ ×∇ × ððpe=ε0ÞΦ0Þ for r ≠ r0, where r0 ¼ ð0; 0; dÞ is
the position of the electric dipole, pe ¼ peẑ is the electric
dipole moment,

Φ0¼
eik0jr−r0j
4πjr− r0j ¼

1

ð2πÞ2
ZZ

dkxdky
e−γ0jz−dj
2γ0

eiðkxxþkyyÞ ð1Þ

is the Hertz potential, k0 ¼ ω=c is the free-space wave

number, and γ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y − ω2ε0μ0

q
. In particular,

the transverse incident electric field, Einc
t ¼

Einc
x x̂þ Einc

y ŷ ¼ ∇tð∂=∂zÞΦ0ðpe=ε0Þ, at the interface with
the moving medium can be written as a plane-wave
superposition as

Einc
t jz¼0 ¼

pe

ε0

1

ð2πÞ2
Z Z

dkxdky
ikt

2
e−γ0deiðkxxþkyyÞ; ð2Þ

where kt ¼ kxx̂þ kyŷ. LetR be a (2 × 2) reflection matrix
such that the transverse components of the scattered wave
Es

t ¼ Es
xx̂þ Es

yŷ are related to the transverse components
of an incident plane wave as Es

t ¼ Rðω; kx; kyÞ ·Einc
t .

Then, the transverse scattered field is given by

Es
t ¼

pe

ε0

1

ð2πÞ2
Z Z

dkxdkyRðω; kx; kyÞ ·
ikt

2
e−γ0ðdþzÞeiðkxxþkyyÞ; z > 0. ð3Þ

Using ð∂Es
z=∂zÞ ¼ −∇t · Es

t , it is found that the z component of the scattered field is

Es
z ¼ −pe

ε0

1

ð2πÞ2
Z Z

dkxdkykt ·Rðω; kx; kyÞ · kt
1

2γ0
e−γ0ðdþzÞeiðkxxþkyyÞ; z > 0. ð4Þ

Suppose now that the dipole is characterized by the
electric polarizability αe such that pe ¼ ε0αeEloc;z, with
Eloc;z ¼ Es

z þ Eext
z the local field acting on the particle and

Eext
z the field due to some hypothetical external optical

excitation. In general, the dipole oscillations are driven by
the external field, and the electric dipole moment satisfies

ðα−1e − CintÞ
pe

ε0
¼ Eext

z ; ð5Þ

where the interaction constant Cint is such that Es
zðr0Þ ¼

Cintpe=ε0, i.e.,

Cint¼
1

ð2πÞ2
Z Z

dkxdky½−kt ·Rðω;kx;kyÞ ·kt�
1

2γ0
e−2γ0d:

ð6Þ

Here, we are interested in the natural oscillations of the
system with Eext

z ¼ 0. Clearly, the natural oscillations occur
for frequencies ω such that

α−1e ðωÞ − CintðωÞ ¼ 0. ð7Þ

Because of the radiation loss, manifested in the dynamics
of the dipole oscillations by means of the Abraham-Lorentz
self-force [28], the electric polarizability of a dipole

FIG. 1. (a) A vertical electric dipole stands above a semi-infinite metallic region moving with a relative velocity v. (b) Two metallic
semi-infinite spaces are separated by a vacuum gap with thickness d. The lower region moves with a relative velocity v.
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oscillator is required to satisfy (in case there are no other
mechanisms of loss) the Sipe-Kranendonk condition [29]

Imfα−1e g ¼ − 1

6π

�
ω

c

�
3

; ð8Þ

and, thus, is complex valued. Hence, typically Eq. (7) only
has solutions with natural frequencies ω ¼ ω0 þ iω00 com-
plex valued with ω00 < 0. These solutions correspond to
damped oscillations (e−iωt ¼ e−iω0teω

00t) such that the
energy of the dipole is converted into radiation. For
example, suppose that the dipole polarizability is described
by a standard Lorentz-type dispersion model

α−1e ¼ 1

6π

�
ω0

c

�
3
�
Q

�
1 − ω2

ω2
0

�
− i

�
ω

ω0

�
3
�
; ð9Þ

with a resonant response at ω ¼ ω0 and quality factor
Q. Note that Imfα−1e g satisfies the Sipe-Kranendonk
condition. For resonators with a large quality factor
Q ≫ 1, the solution of Eq. (7) can be found with pertur-
bation theory:

ω ≈ ω0

�
1þ i

1

2Q

�
−6π

�
c
ω0

�
3

ImfCintgjω¼ω0
− 1

��
:

ð10Þ
The sign of the term in the inner brackets is the same as

the sign of Imfα−1e ðω0Þ − Cintðω0Þg. In particular, if the

dipole is sufficiently distant from the moving medium, Cint
is negligible and Imfα−1e ðω0Þ − Cintðω0Þg < 0, so that the
oscillations are indeed damped.

III. COMPENSATION OF THE
RADIATION LOSS

Surprisingly, we show next that when the relative
velocity between the dipole and the moving medium is
sufficiently large and is kept constant in the time window of
interest, the system may become unstable and support
exponentially growing oscillations (ω00 > 0).
For simplicity, first we use a nonrelativistic approxi-

mation (v=c ≪ 1) to obtain kt ·Rðω; kx; kyÞ · kt≈
k2jjRp;coðω − vkx; kx; kyÞ, where k2∥ ¼ kt · kt and Rp;co is

the reflection coefficient for p-polarized waves calculated
in the frame comoving with the metal slab (see
Appendix A). Note that Rp;co is evaluated at the
Doppler-shifted frequency ~ω ¼ ω − vkx and can be written
explicitly as

Rp;co ¼
ε0γm − εmγ0
ε0γm þ εmγ0

; with

γm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y − ω2εmμ0

q
:

ð11Þ

When the effects of time retardation are neglected,
γm ≈ γ0 ≈ k∥, we have

FIG. 2. (a) Real part and (b) imaginary part of the interaction constant as a function of frequency for a point dipole placed at a distance
d ¼ 1 nm (ωspd=c ¼ 0.0135) above a silver semispace in relative motion. The relative velocity of the silver semispace is
v ¼ 5.26ωspd ¼ 0.07c. Green lines: Γ ¼ 0.002ωsp; black lines: Γ ¼ 0.2ωsp; blue lines: Γ ¼ 2.0ωsp. The solid lines represent the
nonrelativistic calculation [Eq. (13)] and the dashed lines represent the exact relativistic calculation. (c) Imaginary part of the interaction
constant as a function of ωspd=v in the nonrelativistic lossless limit (Γ ¼ 0þ). Purple dot-dashed line: ω ¼ 0.1ωsp; blue dashed line:
ω ¼ 0.5ωsp; green solid line: ω ¼ 1.0ωsp; black dotted line: ω ¼ 1.1ωsp. (d) Imaginary part of the interaction constant at ω ¼ ωsp
(for d ¼ 1 nm and v ¼ 5.26ωspd) as a function of the normalized collision frequency Γ in the nonrelativistic limit [Eq. (13)].
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Rp;co ≈
ε0 − εm
ε0 þ εm

: ð12Þ

Within this approximation, we obtain the following
explicit formula for the interaction constant:

CintðωÞ ≈
1

ð2πÞ2
Z Z

dkxdky
εmð ~ωÞ − ε0
εmð ~ωÞ þ ε0

k∥
2
e−2k∥d: ð13Þ

In the following, we assume that the metal permit-
tivity has a Drude-type dispersion εm=ε0 ¼ 1−
2ω2

sp=½ωðωþ iΓÞ�, with Γ > 0 the collision frequency
and ωsp the frequency of the surface plasmon resonance
such that RefεmðωspÞ=ε0g ¼ −1.
Figures 2(a) and 2(b) depict the real and imaginary parts

of Cint as a function of frequency for a point dipole placed
at a distance d ¼ 1 nm above a thick silver slab moving
with relative velocity v ¼ 0.07c. In the simulations, we use
ωsp=2π ¼ 646 THz [30] and consider different values for
Γ to model the effect of metal absorption. The curves
associated with Γ ¼ 0.2ωsp are expected to model realistic
silver loss at ω ≈ ωsp [30]. The solid lines in Figs. 2(a)
and 2(b) are computed using Eq. (13), whereas the dashed
lines are obtained based on the exact relativistic formu-
lation and taking into account the effects of time retardation
[Eqs. (6) and (A7)]. As seen, even in the presence of
strong material loss, the imaginary part of ImfCintgd3
can be negative in a relatively wide frequency range [see
Fig. 2(b)]. Very importantly, negative values of ImfCintgd3
imply a radiation loss reduction and that the excited surface
plasmon polaritons (SPPs) return to the dipole some of the
radiated power [Eq. (7)].
Remarkably, in this example the radiation loss can

be overcompensated, i.e., Imfα−1e ðωÞ − CintðωÞg > 0,
because Imfα−1e g [purple line in Fig. 2(b)] is typically
well above the lines representing ImfCintg. To understand
the consequences of this intriguing property, let us suppose
that the dipole response is modeled by Eq. (9). Desirably,
the resonance quality factor Q must be much larger
than unity, and the mass of the dipole should be small
so that it can be accelerated to large velocities. Without
loss of generality, we consider that ω0 ¼ 0.69ωsp (i.e.,
λ0 ¼ 671 nm) and that Q ¼ 7.6 × 107. These parameters
may model the semiclassical response of a neutral lithium
atom (Li I) [31,32,33]. It is important to emphasize that our
Lorentz dispersion model is completely classical. Feeding
these values to Eq. (10) and supposing that d ¼ 1 nm and
v ¼ 0.07c, we find that the dipole supports natural oscil-
lations characterized by ω ≈ ω0ð1þ i1.1 × 10−5Þ when it
stands above a thick silver film (Γ ¼ 0.2ωsp). Hence, quite
dramatically, our theory indicates that when the radiation
loss is overcompensated, the dipole may support free
oscillations characterized by a complex frequency
ω ¼ ω0 þ iω00, with ω00 > 0, so that the system becomes

unstable and the oscillations tend to grow exponentially
with time.
To unveil the conditions under which it is possible to

have this optical instability, we derive an explicit formula
for ImfCintg in the limit of vanishing material loss
(Γ → 0þ). In this limit, one has

Im

�
εmð ~ωÞ− ε0
εmð ~ωÞþ ε0

�
¼ωspπ

2
½δð ~ω−ωspÞ−δð ~ωþωspÞ�: ð14Þ

Thus, from Eq. (13) and using ~ω ¼ ω − vkx, it is easily
found that in the lossless case

Im

�
CintðωÞ

�
¼ 1

d3

�
G

�
ωd
jvj ;

ωspd

jvj
�
−G

�
−ωd
jvj ;

ωspd

jvj
��

;

Γ ¼ 0þ; ð15Þ

with

Gða;bÞ¼ 1

8π
b
Z∞
0

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þða−bÞ2

q
e−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þða−bÞ2

p
: ð16Þ

Figure 2(c) shows ImfCintgd3 as a function of ωspd=jvj
for different values of ω. As seen, for sufficiently small
values of ωspd=jvj, the imaginary part of ImfCintgd3 can be
negative. The minimum value of ImfCintg ≈ −10−4=d3
occurs at the frequency of oscillation ω ¼ ωsp (green solid
line), i.e., at the surface plasmon resonance, and for
ωspd=jvj ≈ 0.19. Thus, the optimal relative velocity is
v ¼ 5.26ωspd. By decreasing the distance d between the
dipole and the moving surface, the absolute value of
ImfCintg < 0 can be made arbitrarily large. For ω ¼ ωsp,
v ¼ 5.26ωspd and Γ ¼ 0þ, the condition to have over-
compensation of the radiation loss is −1=6πðωsp=cÞ3þ
10−4=d3 > 0, and this yields ωspd=c < 0.12. For silver
films, this condition imposes that d < 8.9 nm, but for other
materials with lower plasma resonance frequencies (e.g.,
semiconductors or graphene), greater distances may be
allowed. We show in Appendix B that when the dipole
response is isotropic, slightly larger distances may be
admissible. Thus, to overcompensate the radiation loss,
it is required that the dipole is sufficiently near the moving
surface, and in addition that the velocity is sufficiently
large (ideally, v ¼ 5.26ωspd). In the limit v → 0, ImfCintg
is always positive. For velocities larger than the optimal
value, the coupling between the dipole and the surface
plasmons is less effective, and, thus, the dipole is required
to move closer to the metal surface in order for the
radiation loss to be overcompensated. Figure 2(d) shows
ImfCintðωspÞg as a function of the collision frequency Γ,
further demonstrating that even in the presence of strong
loss it is possible to have ImfCintg negative.
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IV. CONDITIONS FORANOPTICAL INSTABILITY

As we discuss next, the optical instabilities can be
understood as being the result of the hybridization of the
dipole resonance (ω ≈ ω0) and the SPPs supported by
the silver slab with negative frequencies ( ~ω ≈ −ωsp) in the
metal comoving frame. Here, ~ω is the Doppler-shifted
frequency, i.e., the frequency in the frame comoving with
the silver slab. For simplicity, in this discussion a vanishing
material loss is assumed (Γ ¼ 0þ). In the near-field
approximation, the guided modes of the silver slab (i.e.,
the SPPs) occur for ~ω ¼ �ωsp, which correspond to the
poles of the reflection coefficient when Γ ¼ 0þ [Eq. (12)].
The interaction of a high-Q dipole with the silver slab is
completely characterized by ImfCintðω0Þg. Clearly, from
Eq. (14) ImfCintðω0Þg is determined by two interactions
with opposite effects: (i) the interaction with SPPs with
~ω ¼ ωsp, kx ¼ ðω0 − ωsp=vÞ, and ky arbitrary, and (ii) the
interaction with SPPs with ~ω ¼ −ωsp, kx ¼ ðω0 þ ωsp=vÞ,
and ky arbitrary. Hence, in general, the oscillations of the
dipole are determined by the hybridization of the dipole
resonance with surface plasmons with either positive
( ~ω ¼ ωsp) or negative frequencies ( ~ω ¼ −ωsp). As seen
from Eq. (13), for small d, the strength of each interaction is

determined by the factor k∥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. Thus, the inter-

action with negative frequencies ( ~ω ¼ −ωsp) may dominate
whenω0 ≈ ωsp because surface plasmons with ~ω ¼ ωsp and
kx ¼ 0 interact weakly with the dipole. In summary, for a
sufficiently small distance d, the oscillations of the dipole
may be determined by the hybridization of the dipolar
resonance (ω ¼ ω0) with surface plasmon polaritons with
negative frequencies ~ω ≈ −ωsp. It is this interaction
between positive and negative frequencies that creates
the opportunity to have the system instabilities and an
exponentially growing oscillation.
More generally, one could consider the interaction of a

dipole with a generic moving waveguide, for example, a
finite thickness dielectric slab. In this case, it is possible to
write in the nonrelativistic regime

CintðωÞ ¼
−1
ð2πÞ2

Z Z
dkxdkyRp;coð ~ω; kx; kyÞ

k2∥
2γ0

e−2γ0d;

ð17Þ
with ~ω ¼ ω − vkx. For a passive material, the reflection
coefficient satisfies the restriction

−ωImfRp;coðω; kx; kyÞg > 0;

when k2x þ k2y − ω2=c2 > 0. ð18Þ

To prove this result, we note that if Rp;co is the reflection
coefficient for the electric field under plane-wave excita-
tion, then for an incident field with amplitude Einc the
total transverse electric field in the vacuum region is

E ¼ ð1þ Rp;coÞEinc while the transverse magnetic field
is η0H ¼ Ypð1 − Rp;coÞEinc, where, η0 is the vacuum
impedance and Yp ¼ ð1=iγ0Þðω=cÞ is the normalized wave
admittance for p-polarized waves in the vacuum. In
particular, the component of the time-averaged Poynting
vector flowing towards the interface along the normal
direction is

Sav ¼
jEincj2
2η0

RefYp�ð1þ Rp;coÞð1 − R�
p;coÞg: ð19Þ

For a passive material at rest, one must impose that
Sav ≥ 0. Taking into account that Yp is pure imaginary

when γ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y − ω2ε0μ0

q
is positive, we immedi-

ately arrive at the condition (18). This proves that when
v ¼ 0, the interactions of the dipole with evanescent waves
(waves with γ0 > 0) give a positive (negative) contribution
to ImfCintðωÞg when ω is positive (negative). In other
words, when v ¼ 0, the interactions of the dipole with the
near field contribute to increase the loss and reduce the
lifetime of the dipole oscillations.
Notably, for a moving system, the picture can change

significantly. Indeed, from Eqs. (17) and (18), the incident
evanescent waves associated with a transverse wave vector
such that the Doppler-shifted frequency ~ω ¼ ω − vkx has a
sign different from ω give a negative (positive) contribution
to ImfCintðωÞg when ω is positive (negative), and thus
contribute to increase the lifetime of an oscillation.
Moreover, in the lossless limit, the main contribution to

ImfCintðωÞg comes from the poles of Rp;coð ~ω; kx; kyÞ,
similar to the case of SPPs [see Eqs. (13) and (14)]. It is
well known that the poles of the reflection coefficient
determine the dispersion of the guided modes
ωg ¼ ωgðkx; kyÞ. Hence, to have ImfCintðωÞg ≠ 0, it is
required that ~ω ¼ ωgðkx; kyÞ; i.e., the condition

ω ¼ ωgðkx; kyÞ þ vkx ð20Þ

needs to be satisfied for some guided mode branch. For
ω > 0, a certain guided mode gives a negative (positive)
contribution to ImfCintðωÞg when ωgω < 0 (ωgω > 0).
Note that the modal branches can be associated with either
positive or negative frequencies. Indeed, because of the
reality of the fields, if ~ω ¼ ωgðkx; kyÞ is a guided mode
branch, then ~ω ¼ −ωgð−kx;−kyÞ is also.
The minimum requirement to have an optical instability

is that the condition (20) is satisfied for some guided mode
with ω ¼ ω0 and that ωgω0 < 0, where ω0 is the resonant
frequency of the dipole. This yields the selection rules

ω0 ¼ ωgðkx; kyÞ þ vkx and ωgω0 < 0. ð21Þ

Even though necessary, these conditions are insufficient
to guarantee the emergence of an instability because the
gain provided by an interaction between the dipole and a
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guided mode that satisfies Eq. (21) must also be sufficiently
large to supplant all the loss channels [e.g., the radiation
loss of the dipole, and the interactions with other guided
modes that satisfy the first condition in Eq. (21) but
have ωgω0 > 0].
From the selection rule (21), one also sees that for an

interaction between positive and negative frequencies,
vkx > 0. Moreover, for ky ¼ 0, we see that

jvj ¼
����ω0

kx
− ωgðkxÞ

kx

���� ¼
����ω0

kx

����þ
����ωgðkxÞ

kx

���� ≥ jvph;coj; ð22Þ

where vph;co ¼ ωgðkxÞ=kx is the wave phase velocity
in the frame comoving with the medium. Thus, an
electromagnetic instability requires that the relative veloc-
ity must exceed the phase velocity of the guided mode. A
metal slab supports waves with arbitrarily small phase
velocities near the SPP resonance due to a singularity in the
density of states. For other types of waveguides, the
condition jvj ≥ jvph;coj may determine a velocity threshold.
For example, for a standard dielectric waveguide with
refractive index n, one has jvph;coj > c=n, and hence, the
instabilities can occur only when jvj ≥ c=n. Interestingly,
this threshold is the same as in the Cherenkov problem,
which further confirms that the two phenomena are intrinsi-
cally related. Furthermore, similar to the Cherenkov prob-
lem, the instability threshold is determined by the phase
velocity rather than by the group velocity.

V. OPTICALLY INDUCED FORCE

Evidently, to support growing oscillations, the system
must be pumped somehow. Because there is no explicit
optical pump, the system is mechanically pumped. Indeed,
in the previous calculations the relative velocity of the
electric dipole and the silver slab was assumed constant. As
we prove next, this is only possible if an external mechani-
cal force that counteracts the optically induced forces is
applied to the pertinent bodies. The optical force acting on
the electric dipole is

FL ¼ ∇r0 ½pe · E� þ
d
dt

ðpe ×BÞ; ð23Þ

where r0 represents the coordinates of the dipole center
of mass [34,35]. Supposing that the electric dipole oscil-
lates along the z direction, the x component of the force can
be decomposed into two terms: Fx ¼ Fx;1 þ Fx;2, where
Fx;1 ¼ peð∂Eloc;z=∂xÞ, Fx;2 ¼ ðd=dtÞð−peBloc;yÞ, and
Eloc;z ¼ Es

z and Bloc;y ¼ Bs
y are the local fields (scattered

by the moving silver slab) at the position of the dipole. With
the help of Eqs. (3) and (4), it is straightforward to evaluate
the time-averaged Fx;1 and Fx;2 for a natural mode of
oscillation characterized by the complex-valued frequency
(10). The calculations are given in Appendix C. Note that
for real-valued frequencies, the time-averaged force Fx;2

vanishes, but for complex-valued frequencies, it can be
different from zero.
In Fig. 3(a), we depict the time-averaged force as a

function of time for the case of an electric dipole standing at
a distance of 1 nm from a thick silver slab that moves with
speed v ¼ 0.07c. The time averaging is done over one
period of oscillation, T0 ¼ c=λ0. As seen, both Fx;av;1 and
Fx;av;2 are positive, and this proves that the optical force
acts to drag the dipole towards the direction of motion of
the silver slab. In this example, the gradient component of
the force (Fx;1) is several orders of magnitude larger than
the component (Fx;2) associated with the time derivative of
the pseudomomentum [36].
In Figs. 3(b) and 3(c), we represent the local field

(scattered by the moving silver slab) acting on a dipole
driven at ω ¼ ωsp. As seen, the local field consists of an
SPP-type wave dragged by the moving slab, such that for
x < 0, the field is near zero. Clearly, to keep the relative
velocity constant, one must apply an external force −Fx to
the electric dipole and an approximately symmetric force
þFx to the moving silver slab. The work done by the
external forces is thus Fxv > 0. Evidently, it is this
mechanical work that drives the exponentially growing
oscillations of the optical field and permits having light
generation. In the absence of the external forces (as in a
realistic experiment), an optical friction force acts against
the relative motion and thus causes a decrease of the
relative velocity v. In such a case, the field instabilities and
the exponential growth are sustained only in the time
window wherein v is above the threshold required to have
an overcompensation of the radiation loss.
To estimate the strength of the involved forces, the

electric dipole moment pe of the neutral particle at the
initial time t ¼ 0 is taken equal to the transition dipole
moment de of the Li I atom [32,33]. Moreover, the mass of
the neutral particle is taken equal toM ≈ 6 amu, consistent
with the atomic mass of Li I. In this case, in the conditions
of Fig. 3(a), the optical force acting on the particle at t ¼ 0
is Fx;av ¼ 0.017 pN, whereas the optical power pumped
into the system is of the order of Fx;avv ¼ 0.35 μW.
The time required to slow down the velocity of the particle
to 99% of its initial value is t0.01 ≈ 0.01v=a, with
a ¼ Fx;av=M (for simplicity, in this rough estimation,
Fx;av is assumed time independent). This yields t0.01≈
5.6 × 107T0, where T0 is the period of oscillation of the
emitted radiation. This time window is, thus, rather large
when compared to the period of oscillation.
The force acting on the dipole also has a z component

given by Fz ¼ peð∂Eloc;z=∂zÞ, with a magnitude that is
roughly 15% of Fx. As shown in Fig. 3(a), this force acts to
pull the neutral particle towards the silver slab, and, hence,
it is an attractive force analogous to the van der Waals–type
forces arising from quantum and thermal fluctuations. The
z component of the force also exhibits an exponential
growth. From a classical point of view, the emergence of
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this force is also rather surprising and is another fingerprint
of the optical instability. In a realistic experiment, this
attractive force may limit the time that a small particle can
travel above the metal surface without colliding with it.

VI. WHICH OF THE BODIES EMITS THE
ELECTROMAGNETIC ENERGY?

As previously discussed, the radiation stress necessarily
does somework when the metal slab is sheared with respect
to the dipole, and in a closed system, this implies a transfer
of kinetic energy to the radiation field. Very importantly,
the source of the light generation is perceived differently by
observers in different reference frames. If the initial
electromagnetic field energy is vanishingly small in the
reference frame comoving with a given body (body A), the
source of radiation must be the other body (body B).
Indeed, only body B has kinetic energy to give away in the
frame comoving with body A. Thus, from a classical point
of view, the dynamics of the process is perceived by an
observer comoving with a given object as radiation by the
other object in relative motion. This is consistent with the
fact that the optical instability results from the interaction of
two oscillators [in the case of Fig. 1(a), the dipole resonator
and a surface plasmon] that should be treated on the same
footing, and which generate radiation only when they
interact with each other.

In particular, from the point of view of the dipole, the
energy that pumps the system is radiated by the moving
slab. A clue for where the energy comes from is given by
Eq. (19), which gives the energy density flux (Sav) created
by an incident plane wave with transverse wave vector
ðkx; kyÞ. For an evanescent wave with real-valued fre-
quency ω impinging on a moving slab (with velocity v
in the considered reference frame), Sav reduces to

Sav ¼
jEincj2
η0

1

γ0

−ω
c

ImfRp;coðω − vkx; kx; kyÞg: ð24Þ

The condition (18) ensures that Sav > 0 when v ¼ 0.
Surprisingly, one sees that when the velocity is sufficiently
large so that ~ω ¼ ω − vkx and ω satisfy ~ωω < 0, then
Sav < 0. This striking result confirms that, rather than
absorbing energy, the material medium can generate
electromagnetic energy that flows away from the interface
towards the source and explains why it can be seen by the
dipole as some kind of energy reservoir. Indeed, when
Sav < 0, the electric dipole can extract energy from the
moving medium, and if the distance between the dipole and
the moving medium is sufficiently small and the loss is
sufficiently low, it is possible to have a positive feedback
and the generation of growing oscillations. Crucially, this
requires that the relative velocity is comparable to the wave
phase velocity so that the neutral particle can be coherently

FIG. 3. (a) Normalized optical force as a function of time acting on an electric dipole standing 1 nm (ωspd=c ¼ 0.0135) above a thick
silver slab. Fx;av;1 and Fx;av;2 represent the two components of the time-averaged optical force (see the main text), and Fz;av is the time-
averaged z component of the force. The velocity of the silver slab is v ¼ 5.26ωspd ¼ 0.07c. The time axis is normalized to T0 ¼ λ0=c,
where λ0 ¼ 671 nm is the resonant wavelength of the electric dipole. (b) z component of the local field in arbitrary units [arb.units]
(backscattered by the moving silver slab) at y ¼ z ¼ 0 for an electric dipole positioned at ð0; 0; dÞ and oscillating with ω ¼ ωsp.
(c) Density plot of the real part of the local field for the same scenario as in (b). Reddish (bluish) colors represent positive (negative)
values of the electric field. Greenish colors (as in the region x < 0) represent field amplitudes near zero.
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pumped by the moving medium. We numerically con-
firmed that when relativistic corrections are considered, it is
still possible to have Sav < 0 (not shown).
Importantly, the possibility of having Sav < 0 does not

imply any intrinsic instability of the moving slab, or that it
will start spontaneously emitting light by itself. The insta-
bility is triggered only through the interaction with sources
(e.g., the electric dipole) that can efficiently excite the
evanescent waves that permit Sav < 0. For example, if in
the frame comoving with a given source there is the
opportunity to excite an evanescent wave that creates a
negative power flow Sav < 0, the instability can be revealed.
The condition to have Sav < 0 is jvj > jω=kxj ¼ jvphj. As
previously discussed, for SPPs the phase velocity can be
arbitrarily small in the lossless limit, and, hence, in theory the
requiredvelocity tohaveSav < 0 canbemuchsmaller thanc.
Evidently, if the source is at rest in the frame comoving

with the medium, the condition (18) guarantees that
Sav > 0 for any incident wave. Yet, because an incident
evanescent plane wave is also seen in another reference
frame as an incident evanescent wave, it may seem
paradoxical that Sav can switch sign from one reference
frame to another.
To make sense of this, let us consider a specific incident

evanescent wave such Sav < 0 in a reference frame where
the slab has velocity v ≠ 0 (for definiteness, we designate
this frame as the laboratory frame). Next, we note (similar
to what was already discussed in Sec. V) that the incident
field can create an x-directed force that acts to change the
velocity of the material slab. Clearly, in the reference frame
comoving with the slab, the energy coming from the source
either can be absorbed by the material medium or, alter-
natively, it can be used to increase the kinetic energy of the
slab. Thus, Sav is necessarily non-negative in the comoving
frame. However, in the laboratory frame, where v ≠ 0, the x
component of the optical force can do some work, and
consequently, in a closed system, the slab can give away its
kinetic energy in the form of radiation leading to Sav < 0.
When the velocity of the slab is enforced to remain constant
through the application of an external force, the flux of
energy towards the source is still caused by the work done
by the optical force.
The optical force can be determined with the Maxwell

stress tensor ¯̄T [28]. For a p-polarized incident wave with
ky ¼ 0, the nonzero components of the electromagnetic
field in the region z > 0 (above the metal slab) are Ex, Ez,
Hy. Thus, in a steady state (ω is real valued), the time-
averaged x component of the Lorentz force per unit of area
FL
x;av=A0 acting on the metal semispace is

FL
x;av

A0

¼ ε0
2
RefExE�

zg: ð25Þ

Using Ex ¼ ð1þ Rp;coÞEinc and Ez ¼ ð−ikx=γ0Þ×
ð1 − Rp;coÞEinc, it is found that, for an incident evanescent
wave (γ0 > 0),

FL
x;av

A0

¼ 1

c
jEincj2
η0

−kx
γ0

ImfRp;coð ~ω; kxÞg: ð26Þ

The work done by the optical force is FL
x;avv, and, hence,

Ps=A0 ¼ −vFL
x;av=A0 is the power emitted per unit of area

due to the conversion of kinetic energy into electromagnetic
radiation:

Ps

A0

¼ 1

c
jEincj2
η0

kxv
γ0

ImfRp;coð ~ω; kxÞg: ð27Þ

Note that Ps ¼ 0 in the comoving frame, and, hence, Ps
is observer dependent. The conservation of energy requires
that Ps=A0 − Sz ≥ 0, where Sz ¼ −Sav is the z component
of the Poynting vector at the interface. From Eqs. (18) and
(24), it is seen that this condition is indeed satisfied:

Ps

A0

− Sz ¼
1

c
jEincj2
η0

− ~ω

γ0
ImfRp;coð ~ω; kxÞg ≥ 0: ð28Þ

Thus, the finding that the sign of Sav can be observer
dependent is totally acceptable from a physical point of
view, and does not violate energy conservation in any
manner. Moreover, this property is absolutely essential so
that the interpretation of the phenomenon can be observer
dependent, and that an instability is understood by an
observer comoving with one the bodies as being the result
of light emission by the other body. This is actually not any
different from Cherenkov radiation: If an electric charge
moves at a certain distance from a metal half-space [similar
to Fig. 1(a) but for a charged particle], the generated light is
perceived as being radiated by the charge in the medium
comoving frame. However, for another observer comoving
with the charge, the generated light will be perceived as
being emitted by the dipoles induced in the moving
medium by the static electric field distribution created
by the charge. Thus, the direction of energy flow must be
observer dependent.

VII. COLLECTIVE RESPONSE OF MANY
ELECTRIC DIPOLES

By considering many identical electric dipoles, it may be
possible to significantly enhance the Cherenkov-type
instabilities, because the optical field emitted by a generic
dipole may serve to drive the oscillations of other dipoles.
To prove this, we consider the scenario of Fig. 1(b) wherein
two identical silver slabs are separated by a distance d.
Thus, now we have a huge collection of coupled electric
dipoles (the silver slab at rest), rather than a single electric
dipole. In the nonrelativistic regime, the natural oscillations
of this system can be found by solving the characteristic
equation (see Appendix D)

1 − e−2γ0dRp;coðω − kxvÞRp;coðωÞ ¼ 0; ð29Þ
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where Rp;co is the reflection coefficient introduced
previously. Again using the near-field approximation
γm ≈ γ0 ≈ kjj and Eq. (12), the characteristic equation
can be rewritten as

1 − e−2kjjd
ω2
sp

ðω − kxvÞðω − kxvþ iΓÞ − ω2
sp

×
ω2
sp

ωðωþ iΓÞ − ω2
sp
¼ 0; ð30Þ

which can be further reduced to a polynomial equation of
degree four in ω. We numerically solve this equation with
ky ¼ 0 to obtain ω ¼ ωðkxÞ. We find out that for suffi-
ciently large velocities, it is possible to have complex-
valued solutions ω ¼ ω0 þ iω00, such that ω0 ∼ ωsp and ω00
can be either positive or negative. The dispersion of the
relevant solutions is depicted in Figs. 4(a) and Fig. 4(b)
(solid lines) for the case wherein d ¼ 10 nm, v ¼ 2ωspd,
and Γ ¼ 0.2ωsp. As seen, the system supports instabilities
associated with ω00 > 0, and in addition, it supports
natural oscillations with finite lifetime (ω00 < 0). This truly
remarkable result is robust to changes in the relative
velocity and occurs even in the case of strong material
absorption [Figs. 4(c) and 4(d)]. Moreover, relativistic
corrections and the effects of time retardation (dashed lines

in Fig. 4) result only in small shifts in the dispersion
diagrams. The details of the relativistic calculation are
given in Appendix D [see Eq. (D1)].

VIII. CONCLUSION

In summary, we theoretically demonstrate that two neutral
closely spaced polarizable bodies in relative motion can start
spontaneously emitting light if their relative velocity is
sufficiently large, even if the initial optical field is vanish-
ingly small. This effect occurs due to the conversion of
kinetic energy into optical energy, similar to the well-known
Vasilov-Cherenkov effect, but here for neutral matter. This
instability can be understood as being the result of the
hybridization of resonances with frequencies (as seen in the
respective comoving frames) with opposite signs. While in
the Cherenkov effect the recoil force is constant, in our
system, quite dramatically, the force builds up exponentially
with time. The exponentially growing oscillations may lead
to the emergence of strong nonlinear effects and, for
sufficiently large field amplitudes, to tunnel ionization.
Moreover, as illustrated by the example of Fig. 4, the reported
instabilities occur even in the case of a “continuous beam” of
moving particles, quite different from the Cherenkov phe-
nomenon, which takes place only for modulated beams.
Crucially, the analysis of this paper is completely classical,

FIG. 4. Two silver semispaces separated by d ¼ 10 nm (ωspd=c ¼ 0.135) are in relative motion. (a) Real part and (b) imaginary part of
oscillation frequencies of two “twin” natural modes (black lines and green lines) as a function of the normalized kx for Γ ¼ 0.2ωsp, and
v ¼ 2ωspd. The transverse wave number is normalized to k0x ¼ 2ωsp=v. (c) Effect of loss: Imaginary part of the natural oscillation
frequencies as a function of the normalized collision frequency Γ of silver for kx ¼ 0.9k0x. (d) Effect of changing the relative velocity:
Imaginary part of the natural oscillation frequencies as a function of the relative velocity for kx ¼ 2ωsp=v and Γ ¼ 0.2ωsp. In all the
plots, ky ¼ 0, the solid lines represent the nonrelativistic calculation, and the dashed lines represent the exact relativistic calculation.
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but the reported effects may lead to exciting developments in
the framework of quantum electrodynamics, particularly, in
the context of noncontact quantum friction [24–27].
Furthermore, the present theory (see also Ref. [25]) raises
the question of whether or not there is anything specifically
“quantum” in some phenomena involving the quantum
vacuum [10–24] and suggests that “quantum friction” and
related effects may eventually be explained with classical
arguments with the additional ingredient of a spectrum of
random electromagnetic radiation [37].
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APPENDIX A: REFLECTION MATRIX

Here, we derive the reflection matrix Rðω; kx; kyÞ for a
moving slab surrounded by a vacuum. The reflection
matrix is such that, for an incident plane wave propagating
in the vacuum region with transverse wave vector ðkx; kyÞ
and transverse fields Einc

x , Einc
y , the corresponding reflected

fields satisfy

�
Eref
x

Eref
y

�
¼ Rðω; kx; kyÞ ·

�
Einc
x

Einc
y

�
: ðA1Þ

It is assumed that the interface is normal to the z direction
so that the transverse components of the electric field are
tangential to the interface.
Suppose that the pertinent body moves with velocity v ¼

vx̂ in the laboratory frame. It is possible to relate
Rðω; kx; kyÞ with Rcoð ~ω; ~kx; ~kyÞ, which is defined in the
same manner as Rðω; kx; kyÞ, but for the frame comoving
with the body:

�
~Eref
x
~Eref
y

�
¼ Rcoð ~ω; ~kx; ~kyÞ ·

�
~Einc
x
~Einc
y

�
: ðA2Þ

All of the quantities with tildes are calculated in the
comoving frame. The electromagnetic fields in the two
frames are related by [28]

~Ex ¼ Ex; ðA3aÞ

~Ey ¼ gðEy − vBzÞ; ðA3bÞ

where g ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
, with β ¼ v=c. In the vacuum

region, iωBz ¼ ð∂Ey=∂xÞ − ð∂Ex=∂yÞ, and, hence, for a
plane wave, Bz ¼ −ðky=ωÞEx þ ðkx=ωÞEy. Thus, it
follows that

�
~Ex
~Ey

�
¼

�
Ex

Ey

�
þ g

�
0 0

βc ky
ω 1 − 1

g − βc kx
ω

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Aðω;kx;ky;vÞ

�
Ex

Ey

�
:

ðA4Þ
Substituting this result into Eq. (A2), it is found that

ð1þAÞ ·
�
Eref
x

Eref
y

�
¼ Rco;ið ~ω; ~kx; ~kyÞ · ð1þAÞ ·

�
Einc
x

Einc
y

�
;

ðA5Þ

where ð ~ω; ~kx; ~kyÞ are related to the corresponding param-
eters in the laboratory frame through the relativistic
Doppler shift formulas [28]

~ω¼gðω−vkxÞ; ~kx¼ gðkx−ωv=c2Þ; ~ky¼ky: ðA6Þ

Comparing Eqs. (A1) and (A5), we find that

Rðω;kx;kyÞ¼ð1þAÞ−1 ·Rcoð ~ω; ~kx; ~kyÞ ·ð1þAÞ: ðA7Þ

For the case of an unbounded semi-infinite metal slab, it
can be shown using vector transmission line theory that the
matrix Rco is given by

Rcoðω; kx; kyÞ ¼ ðYþ
c0 þ Yþ

c;dÞ−1 · ðYþ
c0 − Yþ

c;dÞ; ðA8Þ

where Yþ
c is defined by

Yþ
c ¼ c

ωμ

1

iγ

�
k2x − γ2 kykx

kykx k2y − γ2

�
;

γ2 ¼ k2x þ k2y − εμω2=c2; ðA9Þ

where ε and μ are the relative permittivity and permeability,
respectively, and γ is the propagating constant for the þz
direction (this determines the branch cut in the definition of
γ). The subscripts “0” and “d” indicate whether ε and μ are
calculated either in the vacuum region (ε ¼ μ ¼ 1) or in the
metal region (ε ¼ εm and μ ¼ μm). Equation (A8) is valid
independent of the direction of propagation of the incoming
wave. Thus, using Eqs. (A7) and (A8), one can easily
determine the reflection matrix R in the laboratory frame.
In the nonrelativistic limit, A ≈ 0 in Eq. (A7), and,

hence, we obtain

Rðω;kx;kyÞ≈Rcoðω−vkx;kx;kyÞ; v=c≪1: ðA10Þ

The eigenvalues Rp;co and Rs;co of Rco are given by

Rl;coðω; kx; kyÞ ¼
Yl
0 − Yl

d

Yl
0 þ Yl

d

; l ¼ s; p; ðA11Þ

where Yp ¼ ðε=iγÞðω=cÞ and Ys ¼ ðc=ωμÞiγ are the nor-
malized wave admittances for p and s polarized waves. The
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corresponding eigenvectors are such that the incoming
wave has electric field either parallel or perpendicular to the
plane of incidence: p- and s-type polarizations.

APPENDIX B: NATURAL OSCILLATIONS OF A
DIPOLE WITH AN ISOTROPIC RESPONSE

In the main text, we assume that the dipole response is
anisotropic so that it can only oscillate along the z direction.
Next, we explain how the theory is modified in the case of a
dipole with an isotropic response and estimate the corre-
sponding threshold for an optical instability.
In general, the local electric field acting on the dipole

is related to the electric dipole moment pe as
Eloc ¼ Cint · pe=ε0, where the interaction constant Cint is
now a 3 × 3 tensor. Proceeding as in the main text, it can be
shown that

Cint ¼
1

ð2πÞ2
ZZ

dkxdky

�
1t þ ẑ

ikt

γ0

�
·Rðω; kx; kyÞ

·

�
iktγ0ẑþ

�
ω2

c2

�
1t − ktkt

�
e−2γ0d
2γ0

; ðB1Þ

where 1t ¼ x̂ x̂þŷ ŷ is the transverse identity matrix and
uv≡ u ⊗ v represents the tensor product of two generic
vectors u and v. Note that ẑ ·Cint · ẑ is the interaction
constant (6) calculated in Sec. II The natural oscillations of
the dipole are now determined by the homogeneous
system:

½α−1e ðωÞ −CintðωÞ� · pe ¼ 0; ðB2Þ

which leads to the dispersion equation det½α−1e ðωÞ−
CintðωÞ� ¼ 0. For near-field interactions, it can be assumed
that kjj ¼ jktj ≫ ω=c, so that γ0 ≈ kjj. This gives

Cint ≈
1

ð2πÞ2
ZZ

dkxdky½1t þ iẑk̂t� ·Rðω; kx; kyÞ

· ½ik̂tẑ − k̂tk̂t�
kjj
2
e−2kjjd; ðB3Þ

where k̂t ¼ kt=jktj. Furthermore, in the nonrelativistic
regime, one can use the approximation (A10). Taking into
account that the eigenvalues of Rco are the reflection
coefficients for p- and s-polarized waves Rp;co and Rs;co
we see that

Rco ¼ Rp;cok̂t ⊗ k̂t þ Rs;coðẑ × k̂tÞ ⊗ ðẑ × k̂tÞ: ðB4Þ

Hence, in the nonrelativistic regime, we obtain the
following simplified formula for the interaction tensor:

CintðωÞ ≈
−1
ð2πÞ2

ZZ
dkxdkyRp;coð ~ω; kx; kyÞ

kjj
2
e−2kjjd

× ½k̂t ⊗ k̂t þ ẑ ⊗ ẑ − ik̂t ⊗ ẑþ iẑ ⊗ k̂t�;
ðB5Þ

where ~ω ¼ ω − vkx. Because Rp;coð ~ω; kx; kyÞ is an even
function of ky, it is clear that Cint;xy ¼ Cint;yx ¼
Cint;yz ¼ Cint;zy ¼ 0, where Cint;ij represents the ij element
of the tensor. Therefore, for oscillations with pe ¼ pe;xx̂þ
pe;zẑ, the homogeneous equation (B2) reduces to�

Cint;xx − α−1e Cint;xz

Cint;zx Cint;zz − α−1e

��
pe;x

pe;z

�
¼ 0: ðB6Þ

As discussed in Sec. IV, CintðωÞ is mainly determined by
the poles of the reflection coefficient, specifically by the
guided modes with ky ≈ 0. The integrand of (B5) when
evaluated in the vicinity of a pole with ðkx; kyÞ ≈ ðkx;g; 0Þ
has the following symmetries: cint;xx ≈ cint;zz and
cint;xz ¼ −cint;zx ≈ −iscint;zz. Here, cint;ij denotes the ij
element of the integrand of Eq. (B5) and s ¼ sgnðkx;gÞ.
Based on this discussion, we obtain the following estima-
tions for the interaction constant elements Cint;xx ≈ Cint;zz ¼
Cint and Cint;xz ¼ −Cint;zx ≈ −isCint, where Cint is the
interaction constant calculated in the main text [Eq. (6)]
and s ¼ sgnðkx;gÞ is determined by the dominant pole.
Within the validity of these approximations, nontrivial
solutions of Eq. (B6) can occur only when
ðCint − α−1e Þ2 − C2

int ¼ 0, which is equivalent to say that
either 2Cint − α−1e ¼ 0 or α−1e ¼ 0. The first case is the
interesting one and corresponds to oscillations with
pe ¼ peðx̂þ isẑÞ, i.e., to a circular polarization. This is
consistent with the fact that highly confined SPPs are
circularly polarized. Thus, within the validity of our
analysis, in the isotropic case, the interaction constant is
multiplied by a factor of 2, as compared to the anisotropic
case. In particular, for ω ¼ ωsp, v ¼ 5.26ωspd, and Γ ¼ 0þ
the condition to have an optical instability is now
−1=6πðωsp=cÞ3 þ 2 × 10−4=d3 > 0, which for a silver film
imposes that d < 11.2 nm, which is slightly less restrictive
than in the anisotropic case.

APPENDIX C: OPTICAL FORCE ON THE
ELECTRIC DIPOLE

As we discuss in the main text, the instantaneous optical
force acting on the electric dipole satisfies

Fx ¼
d
dt

ð−peBloc;yÞ þ pe
∂Eloc;z

∂x ; ðC1Þ

where Eloc;z ¼ Es
z and Bloc;y ¼ Bs

y. For time harmonic
fields (with time variation of the type e−iωt), the
fields scattered by the moving slab are given by Eqs. (3)
and (4). Hence, using ∇ × E ¼ iωB, we obtain
cBy ¼ ð1=ik0Þð∂zEx − ∂xEzÞ, with k0 ¼ ω=c, so that the
scattered magnetic field is
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cBs
y ¼

1

k0

pe

ε0

1

ð2πÞ2
Z Z

dkxdky½−γ20x̂ ·Rðω; kx; kyÞ · kt þ kxkt ·Rðω; kx; kyÞ · kt�
e−γ0ðdþzÞ

2γ0
eiðkxxþkyyÞ: ðC2Þ

Let us introduce constants CB;int and ~Cint;x such that the fields calculated at the position of the dipole satisfy
ð∂Eloc;z=∂xÞ ¼ ~Cint;xðpe=ε0Þ and cBloc;y ¼ CB;intðpe=ε0Þ. It is evident that

~Cint;x¼− 1

ð2πÞ2
Z Z

dkxdkykt ·Rðω;kx;kyÞ ·kt
ikx
2γ0

e−2γ0d; ðC3Þ

CB;int ¼
1

k0

1

ð2πÞ2
Z Z

dkxdky½−γ20x̂ ·Rðω; kx; kyÞ · kt þ kxkt ·Rðω; kx; kyÞ · kt�
1

2γ0
e−2γ0d: ðC4Þ

In a nonrelativistic approximation [Eq. (A10)], it is possible to write

~Cint;x ≈ − 1

ð2πÞ2
Z Z

dkxdky
ikxk2jj
2γ0

Rp;coðω − vkx; kx; kyÞe−2γ0d; ðC5Þ

CB;int ≈
1

ð2πÞ2
Z Z

dkxdky
k0kx
2γ0

Rp;coðω − vkx; kx; kyÞe−2γ0d: ðC6Þ

Thus, the instantaneous optical force acting on the dipole for a real-valued time harmonic field associated with the complex-
valued oscillation frequency ω ¼ ω0 þ iω00 is

Fx ¼ Refpee−iωtgRe
�
~Cint;x

pe

ε0
e−iωt

�
− 1

c
d
dt

�
Refpee−iωtgRe

�
CB;int

pe

ε0
e−iωt

��

¼ p2
e

ε0d4

�
e2ω

00t Refe−iω0tgRef ~Cint;xd4e−iω
0tg − d

c
d
dt

ðe2ω00t Refe−iω0tgRefCB;intd3e−iω
0tgÞ

�
; ðC7Þ

where we assume without loss of generality that pe is real valued. The force Fx changes very rapidly on the scale of one
period, T0 ¼ 2π=ω0. For ω00 ≪ ω0, the force averaged over a time scale of the order of T0 is given by

Fx;av ¼
p2
e

ε0d4
e2ω

00t
�
1

2
Ref ~Cint;xd4g − ω00d

c
RefCB;intd3g

�
: ðC8Þ

Similarly, the z component of the force Fz ¼ peð∂Eloc;z=∂zÞ can be written as

Fz ¼ Refpee−iωtgRe
�
~Cint;z

pe

ε0
e−iωt

�
; with ~Cint;z ¼

1

ð2πÞ2
Z Z

dkxdkykt ·Rðω; kx; kyÞ · kt
1

2
e−2γ0d: ðC9Þ

Thus, the time-averaged Fz is given by

Fz;av ¼
p2
e

ε0d4
e2ω

00t 1

2
Ref ~Cint;zd4g: ðC10Þ

APPENDIX D: NATURAL OSCILLATIONS
IN A CAVITY FORMED BY TWO BODIES

IN RELATIVE MOTION

Here, we obtain the dispersion equation for the natural
modes of oscillation in a cavity formed by two bodies in

relative motion separated by a vacuum gap [Fig. 1(b)]. Let
Riðω; kx; kyÞ (i ¼ 1, 2) be the reflection matrix associated
with the ith body, defined as in Appendix A. Evidently, the
natural modes of oscillation satisfy the characteristic
equation Dðω; kx; kyÞ ¼ 0, with

Dðω; kx; ky; v1; v2Þ ¼ detð1 − e−2γ0dR1 ·R2Þ; ðD1Þ

where γ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y − ω2=c2

q
, 1 is the identity matrix,

and d is the distance between the moving bodies. The
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matrices R1 and R2 are computed using Eqs. (A7) and
(A8). It can be checked that Dðω; kx; ky; v1; v2Þ is relativ-
istically invariant; i.e., it has the same value in any frame
when the frequency, the wave vector, and the velocities are
relativistically transformed.
In the nonrelativistic limit, vi=c ≪ 1, R1 and R2 are

diagonalizable in the same basis [see Eq. (A10)] and,
hence, the characteristic equation for the natural modes
of oscillation [Eq. (D1)] reduces to Dpðω; kx; kyÞ×
Dsðω; kx; kyÞ ¼ 0, with

Dlðω; kx; kyÞ ¼ 1 − e−2γ0dRl
co;1ðω − v1kx; kx; kyÞ

× Rl
co;2ðω − v2kx; kx; kyÞ;

l ¼ s; p; ðD2Þ

where Rl
co;1 represent the eigenvalues of the reflection

matrices [Eq. (A11)].

[1] P. A. Cherenkov, Visible Emission of Clean Liquids by
Action of γ Radiation, Dokl. Akad. Nauk SSSR 2, 451
(1934).

[2] V. L. Ginzburg, Radiation by Uniformly Moving Sources,
Phys. Usp. 39, 973 (1996).

[3] S. J. Smith and E. M. Purcell, Visible Light from Localized
Surface Charges Moving across a Grating, Phys. Rev. 92,
1069 (1953).

[4] S. A. Fulling and P. C. W. Davies, Radiation from a Moving
Mirror in Two Dimensional Space-Time: Conformal
Anomaly, Proc. R. Soc. A 348, 393 (1976).

[5] G. Barton and C. Eberlein, On Quantum Radiation from a
Moving Body with Finite Refractive Index, Ann. Phys.
(N.Y.) 227, 222 (1993).

[6] J. Schwinger, Casimir Energy for Dielectrics, Proc. Natl.
Acad. Sci. U.S.A. 89, 4091 (1992).

[7] G. Barton, The Quantum Radiation from Mirrors Moving
Sideways, Ann. Phys. (N.Y.) 245, 361 (1996).

[8] C. Eberlein, Sonoluminescence as Quantum Vacuum Radi-
ation, Phys. Rev. Lett. 76, 3842 (1996).

[9] V. V. Dodonov, Current Status of the Dynamical Casimir
Effect, Phys. Scr. 82, 038105 (2010).

[10] J. B. Pendry, Shearing the Vacuum—Quantum Friction, J.
Phys. Condens. Matter 9, 10301 (1997).

[11] J. B. Pendry, Can Sheared Surfaces Emit Light?, J. Mod.
Opt. 45, 2389 (1998).

[12] A. I. Volokitin and B. N. J. Persson, Theory of Friction: The
Contribution from a Fluctuating Electromagnetic Field, J.
Phys. Condens. Matter 11, 345 (1999).

[13] A. I. Volokitin and B. N. J. Persson, Dissipative van der
Waals Interaction between a Small Particle and a Metal
surface, Phys. Rev. B 65, 115419 (2002).

[14] A. I. Volokitin and B. N. J. Persson, Near-field Radiative
Heat Transfer and Noncontact Friction, Rev. Mod. Phys.
79, 1291 (2007).

[15] T. G. Philbin and U. Leonhardt, No Quantum Friction
between Uniformly Moving Plates, New J. Phys. 11,
033035 (2009).

[16] G. Barton, On van der Waals Friction. II: Between
Atom and Half-Space, New J. Phys. 12, 113045
(2010).

[17] J. B. Pendry, Quantum Friction—Fact or Fiction?, New J.
Phys. 12, 033028 (2010).

[18] A. Manjavacas and F. J. García de Abajo, Vacuum Friction
in Rotating Particles, Phys. Rev. Lett. 105, 113601
(2010).

[19] M. F. Maghrebi, R. L. Jaffe, and M. Kardar, Spontaneous
Emission by Rotating Objects: A Scattering Approach,
Phys. Rev. Lett. 108, 230403 (2012).

[20] S. A. R. Horsley, Canonical Quantization of the Electro-
magnetic Field Interacting with a Moving Dielectric
Medium, Phys. Rev. A 86, 023830 (2012).

[21] M. F. Maghrebi, R. Golestanian, and M. Kardar, Quantum
Cherenkov Radiation and Noncontact Friction, Phys. Rev.
A 88, 042509 (2013).

[22] M. F. Maghrebi, R. Golestanian, and M. Kardar, Scattering
Approach to the Dynamical Casimir Effect, Phys. Rev. D,
87, 025016 (2013).

[23] M. F. Maghrebi, R. L. Jaffe, and M. Kardar, Nonequilibrium
Quantum Fluctuations of a Dispersive Medium: Sponta-
neous Emission, Photon Statistics, Entropy Generation, and
Stochastic Motion, arXiv:1401.0701 [Phys. Rev. A (to be
published)].

[24] G. Pieplow and C. Henkel, Cherenkov Friction on a
Neutral Particle Moving Parallel to a Dielectric,
arXiv:1402.4518.

[25] S. I. Maslovski and M. G. Silveirinha, Quantum Friction on
Monoatomic Layers and Its Classical Analog, Phys. Rev. B
88, 035427 (2013).

[26] M. G. Silveirinha, Quantization of the Electromagnetic
Field in Nondispersive Polarizable Moving Media
above the Cherenkov Threshold, Phys. Rev. A 88,
043846 (2013).

[27] M. G. Silveirinha, Theory of Quantum Friction, New J.
Phys. 16, 063011 (2014).

[28] J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1998).

[29] J. Sipe and J. V. Kranendonk,Macroscopic Electromagnetic
Theory of Resonant Dielectrics, Phys. Rev. A 9, 1806
(1974).

[30] P. B. Johnson and R.W. Christy, Optical Constants of the
Noble Metals, Phys. Rev. B 6, 4370 (1972).

[31] E. A. Power and T. Thirunamachandran, Optical Activity
as a Two-State Process, J. Chem. Phys. 55, 5322 (1971);
R. Loudon and S. M. Barnett, Theory of the Linear
Polarizability of a Two-Level Atom, J. Phys. B 39, S555
(2006).

[32] W. L. Wiese and J. R. Fuhr, Accurate Atomic Transition
Probabilities for Hydrogen, Helium, and Lithium, J. Phys.
Chem. Ref. Data 38, 565 (2009).

[33] The response of a neutral atom can be modeled semiclassi-
cally by α−1e ≈ ðℏω0ε0=d2eÞ½ð1=2ω2

0Þðγ2 þ ω2
0 − ω2Þ−

iγðω=ω2
0Þ�, with ω0 the transition frequency, de the

real transition dipole moment, γ ¼ Rsp=2, and Rsp ¼
ð1=3πε0ℏÞd2eðω0=cÞ3 the spontaneous emission rate

OPTICAL INSTABILITIES AND SPONTANEOUS LIGHT … PHYS. REV. X 4, 031013 (2014)

031013-13

http://dx.doi.org/10.1070/PU1996v039n10ABEH000171
http://dx.doi.org/10.1103/PhysRev.92.1069
http://dx.doi.org/10.1103/PhysRev.92.1069
http://dx.doi.org/10.1098/rspa.1976.0045
http://dx.doi.org/10.1006/aphy.1993.1081
http://dx.doi.org/10.1006/aphy.1993.1081
http://dx.doi.org/10.1073/pnas.89.9.4091
http://dx.doi.org/10.1073/pnas.89.9.4091
http://dx.doi.org/10.1006/aphy.1996.0013
http://dx.doi.org/10.1103/PhysRevLett.76.3842
http://dx.doi.org/10.1088/0031-8949/82/03/038105
http://dx.doi.org/10.1088/0953-8984/9/47/001
http://dx.doi.org/10.1088/0953-8984/9/47/001
http://dx.doi.org/10.1080/09500349808231248
http://dx.doi.org/10.1080/09500349808231248
http://dx.doi.org/10.1088/0953-8984/11/2/003
http://dx.doi.org/10.1088/0953-8984/11/2/003
http://dx.doi.org/10.1103/PhysRevB.65.115419
http://dx.doi.org/10.1103/RevModPhys.79.1291
http://dx.doi.org/10.1103/RevModPhys.79.1291
http://dx.doi.org/10.1088/1367-2630/11/3/033035
http://dx.doi.org/10.1088/1367-2630/11/3/033035
http://dx.doi.org/10.1088/1367-2630/12/11/113045
http://dx.doi.org/10.1088/1367-2630/12/11/113045
http://dx.doi.org/10.1088/1367-2630/12/3/033028
http://dx.doi.org/10.1088/1367-2630/12/3/033028
http://dx.doi.org/10.1103/PhysRevLett.105.113601
http://dx.doi.org/10.1103/PhysRevLett.105.113601
http://dx.doi.org/10.1103/PhysRevLett.108.230403
http://dx.doi.org/10.1103/PhysRevA.86.023830
http://dx.doi.org/10.1103/PhysRevA.88.042509
http://dx.doi.org/10.1103/PhysRevA.88.042509
http://dx.doi.org/10.1103/PhysRevD.87.025016
http://dx.doi.org/10.1103/PhysRevD.87.025016
http://arXiv.org/abs/1401.0701
http://arXiv.org/abs/1401.0701
http://arXiv.org/abs/1402.4518
http://dx.doi.org/10.1103/PhysRevB.88.035427
http://dx.doi.org/10.1103/PhysRevB.88.035427
http://dx.doi.org/10.1103/PhysRevA.88.043846
http://dx.doi.org/10.1103/PhysRevA.88.043846
http://dx.doi.org/10.1088/1367-2630/16/6/063011
http://dx.doi.org/10.1088/1367-2630/16/6/063011
http://dx.doi.org/10.1103/PhysRevA.9.1806
http://dx.doi.org/10.1103/PhysRevA.9.1806
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1063/1.1675673
http://dx.doi.org/10.1088/0953-4075/39/15/S04
http://dx.doi.org/10.1088/0953-4075/39/15/S04
http://dx.doi.org/10.1063/1.3077727
http://dx.doi.org/10.1063/1.3077727


(unlike Ref. [31], we do not consider the effect of orientation
averaging). Using Q ¼ ω0=Rsp, it can be checked
that this polarizability response is consistent with that
considered in the main text for ω ∼ ω0. The Li I atom
has a resonance (corresponding to the lowest energy
transition from the ground state) at λ0 ¼ 671 nm and Rsp ¼
0.37 × 108 s−1 [32].

[34] J. P. Gordon, Radiation Forces and Momenta in Dielectric
Media, Phys. Rev. A 8, 14 (1973).

[35] E. A. Hinds, S. M. Barnett, Momentum Exchange between
Light and a Single Atom: Abraham or Minkowski?, Phys.
Rev. Lett. 102, 050403 (2009).

[36] R. Loudon, L. Allen, and D. F. Nelson, Propagation of
Electromagnetic Energy and Momentum through an
Absorbing Dielectric, Phys. Rev. E 55, 1071 (1997).

[37] T. H. Boyer, Any Classical Description of Nature Requires
Classical electromagnetic Zero-Point Radiation, Am. J.
Phys. 79, 1163 (2011).

MÁRIO G. SILVEIRINHA PHYS. REV. X 4, 031013 (2014)

031013-14

http://dx.doi.org/10.1103/PhysRevA.8.14
http://dx.doi.org/10.1103/PhysRevLett.102.050403
http://dx.doi.org/10.1103/PhysRevLett.102.050403
http://dx.doi.org/10.1103/PhysRevE.55.1071
http://dx.doi.org/10.1119/1.3630939
http://dx.doi.org/10.1119/1.3630939

