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Abstract
We investigate the formation and propagation of bright and dark three-dimensional unstaggered spatial solitons with cylindrical

symmetry in a nonlinear nanowire metamaterial. The metamaterial is formed by metallic nanowires embedded in a Kerr-type

dielectric host and is modeled using an effective medium approach. Unlike conventional Kerr media, the metamaterial supports

bright solitons when the host is a self-defocusing material and dark solitons when the host is a self-focusing material. Our numerical

calculations show that the confinement of the spatial-solitons results from the interplay of the host nonlinear response strength and

the hyperbolic dispersion of the photonic states in the nanowire array. Subwavelength solitary beams may be observed for

sufficiently strong nonlinearities.
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1. Introduction

In the recent years there has been a growing interest in

reducing the characteristic size of photonic devices, as

the race for small operating devices, compared to the

operation wavelength, is always in demand. In this

context, metallic nanowire arrays provide many oppor-

tunities for the manipulation of electromagnetic radiation

on a subwavelength scale [1–4]. It was predicted that

subwavelength stable spatial solitons can be formed in a

metallic nanowire array embedded in a nonlinear Kerr-

type dielectric [5–7]. Other families of plasmonic lattice

solitons were investigated in Refs. [8,9]. The theoretical

framework of these studies is based on coupled mode
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theory, which provides a somewhat limited physical

understanding of the formation mechanism of the

solitons in the metamaterial. More recently, Ref. [10]

put forward an effective medium model for the nonlinear

nanowire metamaterial. This approach regards the

structure as a continuous medium characterized by a

few effective parameters [10]. Based on such a theory, it

was demonstrated in Ref. [7] that two-dimensional (2-D)

unstaggered (i.e. modes that vary slowly in the scale of

the period of the metamaterial) bright spatial solitons can

only be formed if the host medium is a self-defocusing

material. Here, we will show that this analysis can be

further extended to characterize the propagation of three-

dimensional (3-D) spatial solitons with cylindrical

symmetry and dark solitons. Dark temporal and dark

spatial solitons consist of dip-like shapes in the amplitude

of a constant wave background [11–15]. The phase of

spatial dark solitons has odd symmetry, and depending on
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the dip amplitude in the constant wave background, they

can be classified as either ‘‘black’’ dark spatial solitons,

when the dip drops to zero and the phase is flat, or ‘‘gray’’

if the dip does not go to zero and the phase is not flat

[12,13]. Bright and dark temporal solitons in metama-

terial structures were reported in [16–18].

The organization of the article is as follows. In

Section 2, we review the effective medium model of the

nonlinear wire metamaterial and the conditions for the

formation of solitary waves. In Section 3 we present

numerical calculations for two distinct families of

bright spatial solitons with cylindrical symmetry,

highlighting the impact that structural parameters and

losses have on wave propagation. A similar study is

reported in Section 4, but for dark spatial solitons. In

Section 5 the conclusions are drawn. This work assumes

a time variation of the type e�ivt, with v the oscillation

frequency.

2. Effective medium model and trapped states

The uniaxial wire medium is formed by a set of

infinitely long parallel metallic wires, typically

arranged in a square lattice with period a. The wires

have radius rw and complex permittivity em. Here, we

consider that the host medium is a nonlinear Kerr-type

dielectric material such that the electric permittivity, for

a fixed frequency, can be expressed as e ¼ e0
hð1þ deÞ,

where de = ae*�e is a nonlinear function of the

microscopic electric field and a ¼ 3xð3Þ=e0
h;r is propor-

tional to the third order electric susceptibility x(3) of the

host medium. The metamaterial geometry is sketched in

Fig. 1.

In the homogenization model developed in Ref. [10],

the dynamics of the electromagnetic field is described[(Fig._1)TD$FIG]
Fig. 1. Geometry of the periodic array of metallic nanowires embed-

ded in a nonlinear Kerr-type host material.
by an eight component state vector ðE;H;’w; IÞ that

satisfies a nonlinear first-order partial-differential

system of equations. Here, E and H represent the

macroscopic electromagnetic field (after spatial aver-

aging of the microscopic fields e and h), I is the current

that flows along the nanowires (interpolated in a such a

manner that it is defined over all the space) [19] and ’w

is a quasistatic potential defined as the average potential

drop measured from the center of the wire to the

boundary of the unit cell [19].

From Ref. [7,10] it is known that in the absence of

external optical sources and for paraxial (quasi-

transverse) optical beams propagating along the z-

direction, ðE;’wÞ satisfy the following second-order

nonlinear partial-differential system:

r�r� E� k2
hn2

e f ;hE ¼
b2

p

zw

@’w

@z
� Ez

� �
ẑ; (1)

@2’w

@z2
þ k2

hzwn2
e f ;h’w ¼

@Ez

@z
; (2)

where k2
h ¼ v2e0

hm0, zw ¼ 1� ðZw=ivLÞ, Zw ¼
�ð1=ivpr2

wðem � e0
hÞÞ is the per unit length (p.u.l.)

self-impedance of the nanowires [19], L ¼
ðm0=2pÞlogða2=4rwða� rwÞÞ is the p.u.l. inductance

of the wires [19] and b p ¼ a�1
ffiffiffiffiffiffiffiffiffiffiffi
m0=L

p
is the geometri-

cal component of the plasma wave-number of the

effective medium [19]. The parameter n2
e f ;h is the

effective (squared) normalized refractive index of the

host medium defined by:

n2
e f ;h � 1þ aE�t � Et (3)

where Et ¼ Exx̂þ Eyŷ is the transverse component of

the electric field. Even though we are interested in

paraxial beams, it is not possible to neglect Ez because

in wire media the permittivity along the z direction can

be extremely large, and thus the normalized z-compo-

nent of the electric displacement Dz/e0 typically has a

magnitude comparable to Et. It is useful to note

that for waves such that the variation along z is of

the form eikzz, Eq. (1) can be written as

r�r� E� v2m0
¯̄ee f f v; kzð Þ � E ¼ 0 (4)

where we introduced a nonlocal dielectric function
¯̄ee f f ðv; kzÞ that satisfies:

1

e0
h

¯̄ee f f ðv; kzÞ ¼ n2
e f ;h

¯̄I� 1

zw

b2
p

ðk2
h � k2

z =n2
wÞ

ẑ ẑ: (5)

The parameter n2
w � zwn2

e f ;h is the slow-wave factor

[10,19], such that an increase in n2
w reduces the effects

of spatial dispersion. Note that ¯̄ee f f ðv; kzÞ is a nonlinear
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function of the transverse electric field because

n2
e f ;h also is. In this level of approximation, the

nonlinear effects in the host medium are manifested

in the macroscopic response simply by replacing

the microscopic expression of the host permittivity

eh ¼ e0
hð1þ ae� � eÞ by the macroscopic formula

eh ¼ e0
hð1þ aE�t � EtÞ.

From here, it should be evident that the characteristic

equation for the TM (Transverse Magnetic)-polarized

photonic modes is (i.e. for waves with a uniform field

amplitude and a spatial variation eik�r, where k ¼
kt þ kzẑ is the wave vector) [10]:

k2
t

ezz
þ k2

z ¼ n2
e f ;hk2

h; with ezz� 1�
b2

p

zwn2
e f ;hk2

h � k2
z

:

(6)

The dispersion of the photonic states depends on

n2
e f ;h and thus on the intensity of the optical field. For a

fixed transverse component kt of the wave vector, the

dispersion relation (6) can be reduced to a quadratic

polynomial equation in k2
z . Thus, there are two different

propagating eigenmodes: a q-TEM (quasi-Transverse

Electromagnetic) mode and a TM mode [19,20]. In our

study we are only interested in the q-TEM mode, as it

has no cutoff frequency and is the only mode that

propagates below the plasma frequency of the effective

medium (frequency wherein ezz(v, kz) = 0). Using

Eq. (6) it is possible to calculate the isofrequency

contours of the q-TEM mode. As is well-known, these

curves correspond to hyperbolic contours [20,21] that

depend on the structural parameters of the metamaterial
[(Fig._2)TD$FIG]

Fig. 2. Formation mechanism of the spatial solitons. Panel (i) Isofrequency

amplitudes (solid blue line, n = 1) and for strong field amplitudes (long dashed b

with the q-TEM mode in a silver nanowire material at l0 = 1550 nm. The nan

period is a = 200 nm, and the wire radius is rw = 0.1a. The contours are calculat

a self-defocusing host material (long dashed black curves, n2
e f ;h2 ¼ 0:8) and f

trapped state associated with kz = kz0 that is allowed only in case of sufficiently

(For interpretation of the references to color in this figure legend, the reader
[10]. So, to a first approximation, the effective medium

can be regarded as a hyperbolic medium. Hyperbolic

metamaterials are of great interest due to their

applications in the negative refraction of light [22],

optimization of radiative heat transfer [23], enhance-

ment of Casimir interaction [24], novel light sources

based on the Cherenkov effect [25,26], amongst many

others [27]. In our case, since n2
e f ;h is a function of the

electric field amplitude, the dispersion of the photonic

states also depends on the strength of the nonlinear

effects.

From a qualitative point of view, the isofrequency

contours are of particular importance to understand the

formation mechanism of the self-trapped states. As

already discussed in Ref. [7], for a fixed frequency v0, a

bright spatial-soliton associated with the generic z-

propagation constant kz0 is only allowed when (i) for a

sufficiently strong field amplitude the medium supports

photonic states with kz = kz0, and (ii) for weak field

amplitudes there are no photonic states with kz = kz0

available. For instance, in standard self-focusing Kerr-

type dielectrics the dispersion of the photonic states is

k2c2 = v2n2, where c is the speed of light in a vacuum

and n is the refractive index. For self-focusing materials

n grows with the optical field amplitude and the

isofrequency surfaces are spherical, such that the radius

of the surfaces increases with the field strength

[Fig. 2i)]. Therefore, provided kz0 > n0v/c, being n0

the refractive index for weak field amplitudes, it is

possible to fulfill simultaneously the aforementioned

conditions (i) and (ii), and thus to have spatial solitons.

This is illustrated in Fig. 2i), where it is seen that the
contours of a conventional self-focusing Kerr dielectric for weak field

rown line, n = 1.2). Panel (ii) Dispersion of the photonic states associated

owires are embedded in a dielectric background with e0
h ¼ e0, the lattice

ed for: a self-focusing host material (dashed brown curves, n2
e f ;h1 ¼ 1:2),

or a linear host (blue curves, n2
e f ;h ¼ 1:0). The red dots correspond to a

strong fields. For clarity, in the figures we consider large variations of n2.

is referred to the web version of the article.)
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green dashed horizontal line (photonic states with

kz = kz0) only intersects the isofrequency contour

associated with a strong field intensity (red dots in

the picture).

A similar analysis can be done for the nanowire

metamaterial. We start by reviewing the impact of the

nonlinear response in the isofrequency contours of the

effective medium. Using Eq. (6) we calculated the q-

TEM modes dispersion for several values of n2
e f ;h at

l0 = 1550 nm. The metamaterial structural parameters

are given in the caption of Fig. 2. It is supposed that the

nanowires are made of silver. In the infrared domain, the

complex permittivity em of silver may be described by a

Drude model, such that em � e0
h� e0ð�v2

m=vðvþ iGÞÞ
with a plasma frequency vm/2p = 2175 THz and a

collision frequency G/2p = 4.35 THz [31]. In Fig. 2ii

the hyperbolic isofrequency contours of the photonic

states are shown for the case of a weak field intensity

(i.e. in the linear regime) [curve with n2
e f ;h ¼ 1:0], and

for the case of a strong field intensity. In the latter case,

we consider two possibilities: (a) a self-focusing host

medium, such that the third order electric susceptibility

is positive, i.e. a > 0 in Eq. (3) [curve with n2
e f ;h > 1:0],

and (b) a self-defocusing host medium, such that a < 0

[curve with n2
e f ;h < 1:0]. In these plots, the material loss

was neglected. The change of topology of the

isofrequency surfaces in this example as compared to

Fig. 2i has notable consequences in the formation of

bright spatial solitons. Indeed, it is geometrically

evident that to fulfill the conditions (i) and (ii)

enunciated earlier it is necessary that the line kz = kz0

is below the vertex of the hyperbola (point of the

hyperbola where kt = 0) associated with the linear

regime (solid blue line). Therefore, under an effective

medium framework, self-trapped states can only be

formed when the dielectric host is a self-defocusing

material [7]. Interestingly, even though the dielectric

host medium is a self-defocusing material, the effective

medium behaves as a self-focusing medium. However,

it should be mentioned that it is possible to have

staggered solitons when the host is a self-focusing

material, but such solitary waves vary quickly on the

scale of the unit cell of the metamaterial, and thus

cannot be described using effective medium methods

[6]. Examples of self-defocusing materials include the

sodium vapor, some organic compounds, and some

polymers [28–30].

The mechanism of formation of dark spatial solitons

can also be understood with the help of the isofrequency

contours. A dark spatial soliton may be seen as weakly

guided mode with most of the field energy in the

‘‘cladding region’’, i.e. in the region with lowest
refractive index. Thus, in conventional Kerr-type media,

dark solitons are only allowed in case of a self-

defocusing material [12–15]. For nanowire metamater-

ials the situation is exactly the opposite. Because the

self-trapped state is weakly guided by ‘‘the core, now’’

one needs to impose that for low field intensities (core

region) there are photonic states, while for strong field

intensities (cladding region) photonic states are

forbidden. The two conditions can be satisfied

simultaneously only if the line kz = kz0 is above the

vertex of the blue hyperbola in Fig. 2ii and below the

vertex of the hyperbola associated with a strong field

intensity. Evidently, this is only possible when the host

is a self-focusing material. Thus, to have dark spatial

solitons it is necessary that kh < kz0 < khnef ,h1 [see

Fig. 2ii].

3. Bright spatial solitons

Next, we characterize two families of 3-D bright

spatial solitons with cylindrical symmetry. Detailed

parametric studies are presented to assess the confine-

ment of the solitary waves and the impact of dielectric

and metal absorption. It is supposed that the wires are

made of silver and the losses in the dielectric are

modeled by the loss tangent tan d, such that

e0
h ¼ e0ð1þ itan dÞ. Because we are interested in spatial

solitons with cylindrical symmetry, it is convenient to

use cylindrical coordinates, such that the transverse

electric field is Et ¼ Err̂þ Eff̂, where Er, Ef are the

radial and azimuthal components of the electric field

[Fig. 1].

3.1. Spatial solitons with cylindrical symmetry and

Et ¼ Err̂ and @/@f = 0

First, we consider a family of solitons such that the

transverse electric field only has a radial component and

a radial variation, i.e. Ef = 0 and @/@f = 0. In these

conditions it can be checked that r̂ � r2E ¼
r2Er � Er=r

2. Thus, calculating the inner product of

both sides of Eq. (4) with r̂ we get:

@

@r
r � E�r2Er þ

Er

r2
¼ k2

hn2
e f ;hEr: (7)

From Eq. (4) it follows that r � ½¯̄ee f f ðv; kzÞ � E	 ¼ 0

with kz = � i@z (@u � @/@u). Neglecting the spatial

variation of n2
e f ;h, this implies that r � E ¼

r�1@rðrErÞð1� e�1
zz Þ where ezz(v, kz) is defined as in

Eq. (6). Substituting this result into Eq. (7), and writing

Er ¼ Ẽrðr; zÞeikzz, where the envelope Ẽrðr; zÞ is
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Fig. 3. Normalized field envelope Ẽr

�� �� ffiffiffiffiffiffi
aj j

p
(panel i) and profile of the refractive index (panel ii) associated with a spatial soliton with kz = 0.995kh.

The silver nanowire array is embedded in a dielectric host with e0
h ¼ e0, the nanowires radius is rw = 20 nm and the lattice period and wavelength are

such that: long dashed green lines: rw/a = 0.15, l0 = 1550 nm; Solid black lines: rw/a = 0.1, l0 = 1550 nm; Dashed-dotted brown lines: rw/a = 0.1,

l0 = 1300 nm; Dashed blue lines: rw/a = 0.15, l0 = 1300 nm. Panel (iii) Normalized field envelope Ẽr

�� �� ffiffiffiffiffiffi
aj j

p
for a spatial soliton with kz = 0.990kh in

a nanowire metamaterial with a dielectric host with e0
h ¼ e0ð1þ itan dÞ and silver nanowires with radius rw = 20 nm, lattice period a = 200 nm, after

a propagation distance of 12l0 with l0 = 1550 nm. Solid blue curves: lossless case; Black dotted curves: with metallic loss; Dot-dashed brown

curves: dielectric loss tangent tan d = 0.01and no metallic loss; Green curves: with dielectric and metallic loss. Panel (iv) Profile of the spatial soliton

as it propagates along the z-direction and both metal and dielectric absorption are considered. The structural parameters are as in panel (iii). (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
supposed to vary slowly compared to the propagation

factor, one finally finds that:

1

ezz v; kzð Þ
@2Ẽr

@r2
þ 1

r

@Ẽr

@r
� Ẽr

r2

� �
þ 2ikz

@

@z
Ẽr

¼ k2
z � k2

hn2
e f ;h

� �
Ẽr: (8)

In the above, we used the approximation

@2=@z2! 2ikzð@=@zÞ � k2
z , which follows from the

hypothesis that the field envelope varies slowly. By

solving the second order nonlinear differential Eq. (8)

with suitable boundary conditions it is possible to

compute the soliton profiles and their spatial evolution.

To determine the spatial solitons profile, we set the

material loss parameters equal to zero and look for

solution of Eq. (8) with @z = 0, i.e. the field envelope is

assumed independent of z. Because Eq. (8) is a second

order differential equation, two initial conditions must be

specified. Since Ef = 0 it is necessary that Ẽr

��
r¼0
¼ 0.
Thus, Eq. (8) is solved with @z = 0 subject to:

Ẽr

��
r¼0þ

¼ 0 and
@Ẽr

@r

����
r¼0þ

¼ A; (9)

where A is a constant that depends on kz and on the

structural parameters of the metamaterial. This constant

is calculated iteratively by imposing that the field

vanishes as r! +1.

Fig. 3(i) shows the calculated soliton profiles for an

array of silver nanowires embedded in a self-defocusing

medium, for kz = 0.995kh and different frequencies of

operation and structural parameters. The electric field

envelope is normalized to the strength of the nonlinear

response (a). The numerical simulations confirm that

bright solitons are allowed when the host medium is a

self-defocusing material. Fig. 3ii shows the correspond-

ing refractive index profiles. Consistent with the host

type, it is seen that the refractive index is depleted in the

regions of strong field intensity. Because the electric
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field symmetry forces the radial component to be null at

the origin, the electric field maximum is not centered at

r = 0. Clearly, the structural parameters and the

oscillation frequency have a significant influence on

the characteristic beamwidth of the solitons [Fig. 3i)].

As already discussed in Ref. [7], typically the spatial

confinement is determined by the degree of hyperbo-

licity of the isofrequency contours, such that for the

same optical field intensity the confinement is poorer for

metamaterials having more pronounced hyperbolic

isofrequency contours. Highly hyperbolic isofrequency

contours are obtained for dilute systems with small rw/a

(thin nanowires) and for short wavelengths of operation.

Moreover, in the limit wherein the metallic wires are

perfectly electric conducting (PEC) (zw ¼ 1:0,

n2
e f ;h ¼ 1:0) the isofrequency contours correspond to

two flat parallel lines. Thus, in the PEC limit it is

possible to have spatial-solitons with a vanishingly

small nonlinear response [7]. Indeed, it is well known

that for PEC nanowires the metamaterial supports

diffractionless beams even in the linear regime [2,7,21].

To characterize the effect of loss, we solve again

Eq. (8), now including the term 2ikz@zẼr and the

parameters associated with dielectric and metal

dissipation. The pertinent boundary conditions are such

that Ẽrðr; z ¼ 0Þ is taken equal to the profile of the

spatial soliton calculated in the absence of loss, and

Ẽrðrmax; zÞ ¼ 0 where rmax >> W and W is the

characteristic half-power beamwidth of the soliton

[7]. In Fig. 3iii–iv we report the spatial evolution of a

self-trapped wave with kz = 0.990kh at l0 = 1550 nm for

several lossy scenarios. Metal loss is modeled by setting

the collision frequency parameter of the silver Drude

model equal to G/2p = 4.5 THz [31], whereas dielectric

loss is modeled by the loss tangent tan d, as discussed

previously. Consistent with Ref. [7], it is seen that the

dominant absorption mechanism of the optical field is

dielectric heating. Indeed, the effect of metallic loss

may be negligible at l0 = 1550 nm, at least for the

considered level of dielectric loss (tan d = 0.01). One of

the reasons for this is that the light beam is a q-TEM

beam, such that its energy is mostly concentrated in the

dielectric region. Therefore, the optical field is much

more sensitive to the absorption in the host medium

rather than to the absorption in the metal.

3.2. Spatial solitons with cylindrical symmetry and

Et ¼ Err̂þ Eff̂

The soliton family studied in the previous subsection

is such that the optical field vanishes at the beam center.

This follows from the assumption that Ef = 0. Next, we
investigate another soliton family where the optical field

has a maximum at the beam center. Specifically, now we

consider that Et ¼ Err̂þ Eff̂ with @f = im and

m = 
1.

To begin with, it is convenient to write the transverse

part of the electric field as the gradient of a scalar

potential c, such that,

rtc ¼ Err̂þ Eff̂ (10)

where rt ¼ @xx̂þ @yŷ. Thus, in these conditions

the electric field is given by E ¼ rtcþ Ezẑ ¼
rcþ ðEz � @zcÞẑ. Substituting this formula into

Eq. (4), neglecting the spatial derivatives of n2
e f ;h,

and using @zEz ¼ �ð1=ezzÞr2
t c [which follows from

r � ¯̄ee f f v; kzð Þ � E
� 	

¼ 0], it is possible to prove that

Eq. (4) reduces to:

rt
1

ezz
r2

t cþ
@2

@z2
þ k2

hn2
e f ;h

� �
c


 �
¼ 0; (11a)

1

ezz
r2

t Ez þ
@2

@z2
þ k2

hn2
e f ;h

� �
Ez ¼ 0: (11b)

In the above we put r2
t ¼ @2

x þ @2
y . Evidently, the

obtained equations are nonlinear because from Eq. (3)

we have n2
e f ;h ¼ 1þ a rtcj j2. We are interested in

optical beams with an angular variation of the form eimf

where m = 
1 and f is the azimuthal angle, such that

the potential is written as c ¼ c̃ rð Þeikzzeimf. Using

again the approximation @2=@z2! 2ikz@z � k2
z , it is

found from Eq. (11a) that:

1

ezz

@2

@r2
þ 1

r

@

@r
� m2

r2

� �
c̃þ 2ikz

@

@z
� k2

z þ k2
hn2

e f ;h

� �
c̃

¼ 0;

(12a)

n2
e f ;h ¼ 1þ a @rc̃

�� ��2 þ mr�1c̃
�� ��2� �

: (12b)

In order that the optical field is an analytic function

of the spatial coordinates when m = 
1 all the even

derivatives of c̃ with respect to r are required to vanish.

Moreover, in order that the electric field is finite at the

origin it is necessary that Ef = imEr at the origin or

equivalently that:

c̃
��
r¼r0¼0þ

¼ Ar0 and

@c̃

@r

����
r¼r0¼0þ

¼ A; ðm ¼ 
1Þ:
(13)

Thus, to find the spatial solitons Eq. (12) is solved

with @z = 0 subject to the above boundary conditions.
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We also require that E! 0 in the limit r! +1, which

is tantamount to saying that @rc̃! 0 as r! +1. For

the bright soliton families studied in Ref. [7] and in the

previous subsection, each value of kz < kh corresponds a

self-trapped wave, associated with a very specific value

of the parameter A. We found out that for the family of

solitons with @f = 
 i the situation is quite different. In

fact, our numerical calculations show that all the bright

solitons (i.e. the solutions of Eq. (12) with @rc̃! 0 as

r! +1) occur for kz = kh. Moreover, when kz = kh any

value of A yields a spatial soliton, such that as

jAj ! 1 the solitons become more and more

confined. Notably, the point kz = kh is coincident with

the vertex of the isofrequency hyperbola in the linear

regime (blue line in Fig. 2ii) [7]. It should be noted

that the azimuthal variation of the optical field implies

that kt 6¼ 0, and hence there are no photonic states in

the weak field regions when kz = kh. Thus the

conditions (i) and (ii) enunciated in Section 2 are

satisfied, as they should.

From a mathematical point of view it is also

understandable that the solitons propagation constant is
[(Fig._4)TD$FIG]

Fig. 4. Panel (i) Amplitude of the scalar potential c̃=a
�� �� ffiffiffiffiffiffi

aj j
p

(dot-dashed c

radial component Ẽr

�� �� ffiffiffiffiffiffi
aj j

p
(solid lines) and azimuthal component Ẽf

�� �� ffiffiffiffiffiffi
aj j

p
the refractive index. The spatial soliton has kz = 1.0kh and propagates in a nan

The silver nanowires have radius rw = 30 nm and the lattice period is a = 150

n2
e f ;hðr ¼ 0Þ. Panel (iv) Refractive index n2

e f ;hðr ¼ 0Þ required to have a s
kz = kh. Indeed, taking the limit r! +1 of both sides

of Eq. (12a), and using @z = 0, n2
e f ;h! 1, @rc̃! 0 we

find that ð�k2
z þ k2

hÞc̃! 0. This is only possible if

kz = kh because c̃ does not have to approach zero in

order that E! 0. Actually, our numerical simulations

show that c̃ converges to a constant when r! +1.

Fig. 4i depicts the calculated profile for a spatial

soliton with kz = 1.0kh at the wavelength l0 = 1550 nm.

The silver nanowires have radius rw = 30 nm and the

lattice period is a = 150 nm. The absorption effects

were discarded in the calculation. As expected, for this

family of solitons the electric field does not vanish at the

origin and the two components of the transverse electric

field have the same amplitude at r = 0, such that the

field is circularly polarized along the z-axis. As

previously discussed, the auxiliary potential c̃
approaches a non-zero constant as r! +1. Indeed

to have E! 0 it is sufficient that @rc̃! 0 and c̃=r! 0

for large radial distances. Because the envelope of the

scalar potential tends to a fixed value, the radial electric

field Ẽr ¼ @c̃=@r tends to zero faster than the azimuthal

component which decays more slowly as 1/r. Thus, the
urves) and normalized amplitude of the electric field envelope for the

(dashed lines) as a function of the radial coordinate. Panel (ii) Profile of

owire array embedded in a self-defocusing dielectric host with e0
h ¼ e0.

nm. Panel (iii) Normalized half-power beamwidth W as a function of

ubwavelength confinement (W = 1.0l0) as a function of rw/a.
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characteristic beamwidth of the azimuthal component

of the electric field is significantly broader than that of

the radial component.

Similar to the previous subsection, the confinement

of the spatial solitons depends on the strength of the

nonlinear effects. In Fig. 4iii we depict the half-power

beamwidth of the spatial solitons as a function of the

required value for n2
e f ;h at r = 0. To have a subwave-

length modal size (W < l0) it is necessary that

n2
e f ;h � 0:987. In practice, such a large perturbation

of the refractive index may be rather challenging to

obtain. Fig. 4iv shows that the value of n2
e f ;h that gives

W = l0 depends significantly on the ratio rw/a (in this

plot the radius of the wires is varied and the remaining

structural parameters are kept invariant). Consistent

with the previous subsection, it is seen that nanowires

with larger radius require weaker nonlinear effects for a

comparable modal size. For instance for rw/a = 0.25

subwavelength solitons can be achieved for

n2
e f ;h � 0:994. The effects of metal and dielectric[(Fig._5)TD$FIG]
Fig. 5. Profile of (i) the radial electric field envelope Ẽr

�� �� ffiffiffiap and (ii) refracti

nanowire array is embedded in a self-focusing dielectric host with e0
h ¼ e

wavelength of operation are such that: Dot-dashed green lines: rw = 20 nm, l

lines: rw = 30 nm, l0 = 1550 nm; Dashed brown lines: rw = 20 nm, l0 = 1550

soliton with kz = 1.005kh in a nanowire metamaterial with a dielectric host

lattice period a = 150 nm, after a propagation distance of 5l0 with l0 = 1550

Dot-dashed brown curves: dielectric loss tangent tan d = 0.01 and no metallic

Profile of the spatial soliton as it propagates along the z-direction and both me

are as in panel (iii). (For interpretation of the references to color in this fig
absorption are qualitatively analogous to what already

reported in the previous subsection [not shown].

4. Dark spatial solitons

In this section we use the effective medium model to

characterize 3-D dark spatial solitons with cylindrical

symmetry. We are interested in dark spatial solitons

with Ef = 0 and @f = 0. The pertinent formalism is

exactly as in Section 3-A, except that now we need to

assume that the host material is a self-focusing Kerr

dielectric with a > 0. In particular, the dark spatial

solitons satisfy Eq. (8). The boundary conditions (9) are

also the same. However, now the parameter A is

iteratively tuned so that the electric field tends to a non-

zero constant value as r! +1. Using the effective

medium theory we calculated the dark solitons

associated with kz = 1.005kh for different structural

parameters and wavelengths of operation. The corre-

sponding spatial soliton profiles are depicted Fig. 5.
ve index associated with a spatial soliton with kz = 1.005kh. The silver

0, has a lattice period a = 200 nm and the nanowire radius and the

0 = 1300 nm; Dotted black lines: rw = 30 nm, l0 = 1300 nm; Solid blue

nm. Panel (iii) Normalized field envelope Ẽr

�� �� ffiffiffiffiffiffi
aj j

p
for a dark spatial

with e0
h ¼ e0 1þ itandð Þ and silver nanowires with radius rw = 30 nm,

nm. Solid blue curves: lossless case; Green curves: with metallic loss;

loss; Black dotted curves: with dielectric and metallic loss. Panel (iv)

tal and dielectric absorption are considered. The structural parameters

ure legend, the reader is referred to the web version of the article.)
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Fig. 6. Normalized half-power beamwidth Wof 3-D spatial solitons as

a function of the peak value of aj j Ej j2. The nanowire array is formed

by lossless silver nanowires with radius rw = 30 nm, lattice period

a = 150 nm embedded in a dielectric host with e0
h ¼ e0 at the wave-

length l0 = 1550 nm. Solid curve: bright solitons family; Dashed

curve: dark solitons family.
As expected, the solitons consist of a dip-like shape

in a constant wave background [12,13]. Moreover,

because the electric field is null at the origin and the

profile of the envelope phase is flat, these solitons are of

the ‘‘black’’ type. Similar to Section 3-A, it is seen in

Fig. 5i that the solitons characteristic size increases for

thinner nanowires and shorter wavelengths of operation.

The effect of dielectric and metal loss is illustrated in

Fig. 5iii–iv, and is qualitatively analogous to what was

found in Section 3 for the bright solitons. The strength

of the nonlinear effects required to obtain a ‘‘black’’

dark soliton is also comparable to what is required by

the bright solitons families previously studied. This is

shown in Fig. 6 which depicts the half-power

beamwidth of the spatial solitons as a function of the

peak value of aj j Ej j2. The same figure also reports the

beamwidth of the bright solitons family studied in

Section 3-A. As seen, the beamwidth W is rather similar

in the two cases.

5. Conclusions

Building on our previous studies [7,10], we

investigated the formation and propagation of both

dark and bright three dimensional spatial solitons in a

nanowire array embedded in a Kerr-type nonlinear

medium. It was demonstrated that within an effective

medium framework, dark (bright) solitons can be

formed only when the host medium is a self-focusing

(defocusing) Kerr dielectric. We reported a numerical

analysis that illustrates how the structural parameters

of the metamaterial and the oscillation frequency

affect the confinement of the solitary waves. It was
confirmed that the main decay channel of the solitons

is associated with dielectric absorption and that metal

loss is typically of secondary importance. For a

sufficiently large optical field intensity, the solitons

can, in theory, become subwavelength. However, the

required field strength may be rather difficult to

achieve, especially for structures with thin nanowires

(rw/a� 1). The developed methods and ideas pave the

way for further studies of nonlinear optics in nanowire

structures.
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