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Abstract
Here, we develop a comprehensive quantum theory for the phenomenon of
quantum friction. Based on a theory of macroscopic quantum electrodynamics
for unstable systems, we calculate the quantum expectation of the friction force
at zero temperature, and link the friction effect to the emergence of system
instabilities related to the Cherenkov effect. These instabilities may occur due to
the hybridization of particular guided modes supported by the individual moving
bodies, and selection rules for the interacting modes are derived. It is proven that
the quantum friction effect can take place even when the interacting bodies are
lossless and made of nondispersive dielectrics.

Keywords: quantum friction, Cherenkov effect, Smith–Purcell effect, plasma
instabilities

1. Introduction

Quantum friction is a theory that predicts that two uncharged polarizable bodies moving relative
to each other experience a force of quantum origin that tends to work against the relative motion
[1–8]. This effect is predicted to take place even at zero temperature and when the surfaces of
the moving bodies are flat and perfectly smooth (the materials are regarded as continuous
media). A physical depiction is that the electric dipoles created by the quantum fluctuations in
one of the surfaces induce image electric dipoles on the other surface, which, when the bodies
are in relative parallel motion, lag behind and originate a van der Waals type attraction [1].
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The quantum friction theory is not consensual and has been recently debated [4, 9, 10].
Quantum friction has also been studied in rotating dielectric bodies [11–13].

For many authors, quantum friction is understood as a purely quantum effect with no
classical analogue. Recently, it was shown in reference [8] that for the case of sliding
monoatomic surfaces, the effect of friction is associated with electromagnetic instabilities in
moving media that can lead to the creation of polaritons. Very interestingly, these
electromagnetic instabilities are partly connected to the Cherenkov [14] and Smith–Purcell
effects [15], and can be predicted by classical electrodynamics. Related electromagnetic
instabilities have been discussed in the context of plasma physics, with application in the design
of terahertz traveling-wave oscillators and amplifiers [16]. These electromagnetic instabilities
are manifested in the fact that the system may support natural modes of oscillation that grow
exponentially with time [8, 16, 17], even in the presence of material loss [18]. In this article, we
establish the definite and missing link between this classical effect and quantum friction.

Most of the available theories of quantum friction are based either on semi-classical
arguments or on first order perturbation quantum theory. In reference [17], we developed (in the
framework of macroscopic quantum electrodynamics) a theory for the quantization of the
electromagnetic field in moving media systems with electromagnetic instabilities. Using this
formalism, here we derive the quantum friction force from first principles at zero temperature,
and prove that it has a dynamical character, i.e. the expectation of the friction force varies with
time. We prove that in the ‘pseudo-ground’ state of the system [17], i.e. in the state wherein the
oscillations of the quantum fields in the two moving bodies are minimal, the expectation of the
friction force vanishes. However, as time passes, the friction force builds up exponentially as
long as the velocity of the bodies is enforced to be constant through the application of an
external force. Interestingly, we establish a precise connection between our theory and the semi-
classical theory of Pendry [1, 4]. We prove that Pendry’s friction force corresponds to our
dynamic friction force calculated at the time instant wherein the first ‘excitation’ is generated.

The usual explanation found in the literature for quantum friction is related to material
loss, such that the frictional work done on a given body is dissipated in the electrical resistance
of the dielectric [3–5]. For example, in reference [8] it was found that the friction force vanishes
in the lossless limit wherein the material responds instantaneously to the local fields. However,
the analysis of reference [8] ignores the retardation effects due to the finite speed of light
( → ∞c ), and thus in the absence of material dispersion, the interaction between different
electric dipoles is effectively instantaneous. Moreover, it is impossible to surpass the Cherenkov
critical velocity when → ∞c . Here, we prove that when wave retardation is properly taken into
account, it is possible to have a frictional force even when the local material response is
instantaneous. This demonstrates that the friction effect does not require material loss. Thus,
surprisingly, the friction force can be nonzero even when the interacting bodies are made of
nondispersive lossless dielectrics. In a recent work [19], Maghrebi et al have independently
demonstrated (based on a scalar field theory) a connection between noncontact friction and
Cherenkov radiation, consistent with our studies [8, 17] (see also reference [20]). The
emergence of electromagnetic instabilities above the threshold velocity for quantum Cherenkov
emission was, however, not discussed by the authors of reference [19].

The article is organized as follows. In section 2, we review and extend the formalism
developed in reference [17], which is the basis of our theory. In section 3, the friction force
quantum operator is derived. In section 4, the selection rules for guided modes that originate
system instabilities are obtained. These selection rules complement the findings of reference
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[17]. In section 5, we compute the quantum expectation of the friction force, and section 6
reports several numerical examples and an explicit comparison with the theory of Pendry. The
conclusion is drawn in section 7.

2. Waves in moving media

2.1. Material bodies coupled by the electromagnetic field

We are interested in the dynamics of a set of rigid lossless non-magnetic material bodies (i = 1,2,
…) coupled by the electromagnetic field. Let vi be the velocity of the ith body center of mass.
Consistent with our previous work [17], it is shown in appendix A that provided ≪v c 1i the
total energy (Htot) of the system can be written as:

⎜ ⎟⎛
⎝

⎞
⎠∑= ⋅ − +H

M
Hv p

v

2
, (1)tot

i
i can i

i i
EM P, ,

where Mi is the mass of the ith body, p
can i,

is the total canonical momentum of the ith body, and

HEM P, is by definition the ‘wave energy’:

∫= ⋅ + ⋅H d r B H D E
1
2

. (2)EM P,
3

As is well known, for charged particles the canonical momentum (p
can
) differs from the

kinetic momentum ( = Mp v
kin

). The canonical momentum is the conjugate quantity to the
position vector [21]. For relatively weak field amplitudes, the general term of the sum in
equation (1) is approximately equal to p M2

can i i,
2 . We show explicitly in appendix A that the

total energy is always nonnegative, ⩾H 0tot .
From equation (1), it is seen that the total energy has a wave part (HEM P, ), as well as a part

related to the canonical momentum of the moving bodies. The wave energy (HEM P, ) is not purely
electromagnetic and includes also part of the energy stored in matter (e.g. the energy associated
with dipole vibrations and part of the energy associated with the translational motion) [17]. It is
proven in appendix A that our system satisfies exactly the following conservation law:

∫∑= ⋅ − ⋅
dH

dt
dF v E j r, (3)tot

i
tot i
ext

i ext,
3

where j
ext

is an hypothetical external electric current density (in this work =j 0
ext

), and Ftot i
ext

, is

the external force acting on the ith moving body. For a closed system =j 0
ext

and =F 0tot i
ext

, , and
hence in that case Htot is conserved, even in the presence of the wave instabilities discussed
ahead.

In appendix A (see also reference [17]), it is demonstrated that when the considered bodies
are invariant to translations along the x-direction, the time derivative of the x-component of the
total momentum = +p p p

i kin i EM i, ,
associated with the ith body satisfies:

≡ + = +
dp

dt

dp

dt

dp

dt

dp

dt
F . (4)i kin i EM i w i

i x
ext, , ,
,
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In the above, Fi x
ext
, represents the x-component of Ftot i

ext
, , p

kin i,
is the x-component of the

kinetic momentum of the ith body, and the electromagnetic momentum (p
EM i,

) and the wave

momentum (p
w i,
) are defined by:

∫ ˆ= × ⋅( )p
c

d aE H x r
1

, (5 )
EM i

V
, 2

3

i

∫ ˆ= × ⋅( )p d bD B x r, (5 )
w i

V
,

3

i

where Vi is the volume of the pertinent body. Furthermore, the time derivative of the canonical
momentum equals the external force (see appendix A):

=dp dt F . (6)
can i i x

ext

, ,

Thus, equation (4) is compatible with the decompositions for the total momentum
= + = +p p p p p

i kin i EM i can i wv i, , , ,
[22–24].

2.2. Material bodies with time independent velocities

Next, we consider a system of polarizable non-dispersive moving bodies invariant to
translations along the x and y directions (figure 1(a)). It is supposed that the relevant bodies
move with a time independent velocity ˆ= v zv x( ) along the x direction. We allow v to depend
on z because different bodies can have different velocities. Each body is characterized by the
material parameters ε ε= z( ) and μ μ=

0
in the respective co-moving frame. In this work, we
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Figure 1. (a) Two dielectric slabs move with different velocities with respect to a certain
laboratory frame. The system is invariant to translations along the x-direction. In this
sketch, it is assumed that the dielectric slabs are backed by perfect electric conductors
(PEC). The slabs are made of nondispersive dielectrics and are separated by a vacuum
gap. (b) Sketch of the typical time evolution of the (quantum expectation of the) friction
force (in arbitrary units) acting on each body when the velocity of the two bodies does
not vary appreciably in the considered time interval. The system is in the pseudo-ground
state Ω at =t 0 and >v v2 1 in this example. For simplicity, we consider only the
contribution of a pair of oscillators associated with the complex valued frequencies
ω ω λ= ′ ± ic so that λ~ ( )F tsinh 2i

tot (equation (22)).



are interested in velocities larger than the Cherenkov emission threshold ( >v c n, with

ε ε=n z z( ) ( )/ 0 the refractive index in the co-moving frame), and thus it is required that

≫n 1 so that the condition ≪v c 1 is observed.
One crucial point is that when the velocities of the moving bodies are time independent,

the dynamics of the electromagnetic field becomes decoupled from the dynamics of the
canonical momenta (p

can i,
), and hence it can be studied based simply on the Maxwell equations

and on constitutive relations of the polarizable bodies (equations (A1) and (A4) of appendix A).
Moreover, in such a case, the wave part of the system energy and momentum is conserved [17].
Indeed, from equations (1), (3) and (6) and =j 0

ext
, it is seen that when the velocities of the

moving bodies are time independent, the wave energy satisfies =dH dt 0EM P, .
In particular, in a generic reference frame, a moving material is seen as a non-reciprocal

bianisotropic medium [25]. Thus, in a fixed reference frame (laboratory frame) the moving
bodies are characterized by a 6 × 6 material matrix = zM M ( ), which relates the classical

= ( )G D B
T
fields and the classical = ( )F E H

T
fields as = ⋅G M F [17, 22, 25]. In a

relativistic framework, the material matrix zM ( ) is written in terms of the material parameters in
the co-moving frame (ε ε= z( ) and μ μ=

0
) and of the velocity ( ˆ= v zv x( ) ) as detailed in

reference [17]. In the absence of radiation sources, the electromagnetic fields satisfy:




⎜ ⎟
⎛
⎝

⎞
⎠ˆ ⋅ = ⋅ ∂

∂
ˆ = ×

− ×N i
t

N i
i

F M
F

, with 0
0

. (7)

We suppose that our system is effectively homogeneous for translations along x (the slabs
are infinitely wide), and thus the spatial-domain is terminated with periodic boundary
conditions. Hence, the natural modes of oscillation of the electromagnetic field (i.e. waves with

a time dependence ω−e i t) vary as ⋅eik r with x and y, being = ( )k kk , ,0x y a real-valued wave

vector, and satisfy:

ωˆ ⋅ = ⋅ω ωN F M F . (8)

The material matrix M is symmetric and real-valued. Moreover, the matrix zM ( ) is
positive definite when <v z c n z( ) ( ). However, when >v z c n z( ) ( ), i.e. if a given body has a
velocity larger than the Cherenkov emission threshold, the material matrix zM ( ) becomes
indefinite. The fact that zM ( ) can be an indefinite matrix has important implications. Indeed, the

stored wave energy (2) can be written in terms of M as =H F FEM P, where we put:

∫= ⋅ ⋅*d zF F r F M F
1
2

( ) . (9)2 1
3

2 1

Thus when zM ( ) is indefinite, the stored wave energy can be negative and has no lower
bound [17]. Related to this result, in reference [7], it was found that the Hamiltonian of a system
with parts in relative motion contains negative-energy normal modes. This property can have
dramatic consequences. It was proven in reference [17] that the interaction between two moving
bodies, such that the wave energies stored in each of the bodies have opposite signs, can
originate system instabilities so that the electromagnetic field may support natural modes of
oscillation with ω ω λ= ′ + i complex valued. In particular, when λ > 0 the electromagnetic
field oscillations may grow exponentially in time, as long as the velocity of the moving bodies
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is kept constant [17]. These instabilities take place even though there is no explicit source of
excitation and in the presence of strong material loss [18].

2.3. The force acting on a moving slab

As already discussed in reference [17], the wave instabilities imply the emergence of a friction
force associated with the radiation drag whose effect is to act against the relative motion of the
bodies. For closed systems ( =j 0

ext
and =F 0tot i

ext
, ), this feedback mechanism results in a

decrease of the relative velocity of the bodies, and this ultimately prevents the continued
exponential growth of the fields. From equation (4), one sees that in the absence of an external
force the time rate of change of total momentum (i.e. the sum of the matter and electromagnetic
momenta) enclosed in the ith slab is dp dt

wv i,
. Thus, dp dt

wv i,
is a stress associated with the wave

flow:

=F
dp

dt
. (10)i

tot w i,

It will be seen that in the quantum vacuum this stress acts against the relative motion, and will
be responsible by a friction force. Thus, in the absence of an external force the velocity of the
moving bodies typically changes with time.

Thus, the velocities can remain constant—as will be assumed in this article—only at the
expense of applying an external action that counterbalances the friction force. It is seen from
equation (4) that the external force required to maintain the velocity of the ith body constant
( =dp dt 0

kin i,
) is given by = −F dp dti x

ext
ps i, ,

, where = −p p p
ps i wv i EM i, , ,

is the x-component of the

pseudo-momentum of the ith slab. Thus, dp dt
ps i,

is the friction force acting on the matter

enclosed in the ith slab:

⎜ ⎟⎛
⎝

⎞
⎠∫ ˆ= = × − × ⋅F

dp

dt
p

c
dD B E H x r, with

1
. (11)i

mat ps i

ps i
V

,

, 2
3

i

Evidently, in general the two forces are different ≠F Fi
tot

i
mat, but it can be seen later that

≈F Fi
mat

i
tot. Note that Fi

mat represents the force acting exclusively on the matter enclosed in the
slab, whereas in a closed system Fi

tot represents the time rate of change of the total momentum
within the slab.

When the velocity of the moving bodies is enforced to be a constant through the
application of an external force ( = −F dp dti x

ext
ps i, ,

), there is evidently a power flow into the

system (see equation (3) with =j 0
ext

) and hence it is understandable that the fields may grow

exponentially. Note that in the presence of an exponentially growing oscillation, ∑ ⋅F v
i tot i

ext
i, is

also exponentially growing. Hence, ∑ ⋅F v
i tot i

ext
i, must be positive because otherwise Htot would

become negative for sufficiently large t, which contradicts ⩾H 0tot (see appendix A). Thus, for
a growing oscillation, there is a continuous power flow into the system. Therefore, despite HEM P,

being time independent, the total energy (including the degrees of freedom associated with the
translational motion of the system) increases with time. Moreover, even though the wave energy
associated with a specific body can be negative (when M is indefinite) it turns out that the total
energy stored in the body is always positive (see equation (A10) of appendix A) [17].
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3. Friction force operator

In order to determine the friction force, we expand the electromagnetic field in terms of natural
modes of oscillation. It was proven in reference [17], under the assumption that the velocities
are enforced to be constant, that the eigenmodes of the system are either associated with real-
valued frequencies ( ω↔Fn nk k) or with complex-valued frequencies ( ω ω λ↔ = +′ ifn c n n nk k k k,

and ω ω λ↔ = −* ′ ien c n n nk k k k, ). The eigenmodes Fnk, fnk and enk are normalized to satisfy the
orthogonality conditions:

= = = = ae e f f e F f F 0, (12 )n m n m n m n mk q k q k q k q

δ δ= be f , (12 )n m n mk q k q, ,

δ δ= ± cF F , (12 )n m n mk q k q, ,

where . . denotes the indefinite inner product of equation (9). The electromagnetic modes fnk

and enk are related by ˜=e fn nk k with f̃ defined by:

⎛
⎝⎜

⎞
⎠⎟

˜ = ⋅ ⋅ =
−

*
π

π

π
( )f r U f R r U

R

R
( ) with

0

0
, (13)z

z

z
,

,

,

where ˆ ˆ ˆ ˆ ˆ ˆ= − + +π ( )R xx yy zzz, is the transformation matrix associated with the 180° rotation
around the z-axis. The electromagnetic field in the cavity can be expanded as
ˆ ˆ ˆ ˆ ˆ= = +( )F E H F F

T

R C with:

∑ ωˆ =
ℏ

ˆ + ˆ *ω ω

∈

− † +( )c e c e aF F F
2

(14 )R
n E

n
n

i t
n n

i t
n

k

k
k k k k

R

n nk k

∑ β χ β χˆ = ˆ + ˆ + ˆ + ˆ* *ω ω ω ω

∈

− − * † * †( )e e e e bF f e f e . (14 )C
n E

n
i t

n n
i t

n n
i t

n n
i t

n
k

k k k k k k k k

C

c n c n c n c nk k k k, , , ,

The coefficients of the expansion are ĉnk, β̂
nk
, and χ̂

nk
. The hat ‘ˆ’ indicates that in the

framework of a quantum theory, the pertinent symbol should be understood as an operator. In the

framework of a classical theory, the coefficients ĉnk, β̂
nk
, and χ̂

nk
are scalars. The summations

associated with the real-valued (complex-valued) eigenvalues are restricted to the sets ER (EC)

such that 〈 〉ω= >{( ) }E n k F F, : 0R n n nk k k and λ ω= = > >{( ) { } }E n kk, : Im 0 and 0C n c n xk k, .
In appendix B, we calculate the contribution of a generic term of the series (14) to the friction
force. As could be anticipated, oscillators associated with real valued frequencies (in the set ER)
do not contribute to the force. On the other hand, a pair of oscillators associated with the complex-
valued frequencies ωc and ω*

c exerts a friction force over the ith body given by (for simplicity the
index nk is omitted below) (see equation (B8) in appendix B):
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⎡
⎣⎢

⎤
⎦⎥λ ββ β β χ χ χ χ

ˆ
= ˆ ˆ + ˆ ˆ − ˆ ˆ + ˆ ˆ

=

λ λ† † − † †( ) ( )
dp

dt
p e e

u wm ps

f2 ( ) ,

, (15)

u i

u i

t t,

,
2 2

where ∫ ˆ= × + × ⋅* *( )p df D B D B x r( )
wv i V f f f f,

1

2
3

i

is the wave momentum associated with the

complex-valued field, ∫ ˆ= × + × ⋅* *( )p df E H E H x r( )
EM i c V f f f f,

1

2

3

i
2 is the electromagnetic

momentum, and = −p p pf f f( ) ( ) ( )
ps i wm i EM i, , ,

. We recall that ˆdp dt
ps i,

is the friction force acting

on the matter enclosed in the ith slab, whereas in a closed system ˆdp dt
wv i,

is the time rate of

change of the total momentum within the slab. Hence, provided ≠p f( ) 0
wv i,

( ≠p f( ) 0
ps i,

), it is

evident that Fi
tot (Fi

mat) does not vanish in the presence of system instabilities associated
with complex-valued frequencies of oscillation. It should be emphasized that this conclusion is
valid for both classical and quantum systems, and thus the friction force has a classical
counterpart.

In quantum theory, the field amplitudes β̂ , and χ̂ associated with a pair of complex-valued

frequencies are written in terms of annihilation and creation operators ˆ ˆa b,c c and ˆ ˆ† †
a b,c c , satisfying

the standard commutation relations (shown below) [17]:

β ω

χ ω

ˆ = ℏ ˆ + ˆ

ˆ = ℏ ˆ − ˆ*

†

†

( )
( )
a b

a b a

1
2

,

1
2

(16 )

c c c

c c c

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

ˆ ˆ = ˆ ˆ =

ˆ ˆ = ˆ ˆ =

† †

†

a a b b

a b a b b

, , 1,

, , 0. (16 )

c c c c

c c c c

Substituting this result in equation (15) and summing over all the complex-valued
oscillators (crossed terms associated with possible contributions from oscillators nk and mk,

with ≠n m, are neglected; the ground quantum expectation of F̂i

tot
is independent of the crossed

terms) it is found that (see also equation (B10) in appendix B):

⎡
⎣⎢

⎤
⎦⎥

∑ λ ω

λ λ

ˆ = ℏ

× ˆ ˆ + ˆ ˆ + ˆ ˆ + ˆ ˆ

λ > >

† † † †( ) ( )

( )F p

a a b b t a b b a t

f2

sinh 2 cosh 2 . (17)

i

tot

k
n c n wv i n

c n c n c n c n n c n c n c n c n n

k k k

k k k k k k k k k k

0 and 0
, ,

, , , , , , , ,

n xk

The friction force acting on the matter enclosed by the ith slab is given by a similar
formula with ( )p f

wv i nk,
replaced by ( )p f

ps i nk,
. It is important to stress that this result is derived

under the hypothesis that the velocity of the moving slabs is kept constant in the time window
of interest. This can be ensured either by applying an external force ( = −F dp dti x

ext
ps i, ,

), or by

considering very massive bodies such that a change in the kinetic momentum results in an
insignificant change of the velocity.
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4. Selection rules

As demonstrated in the previous section, the friction force is a consequence of system
instabilities manifested in the form of natural modes of oscillation with complex valued
frequencies. In our previous work [17], we have shown, using perturbation theory, that these
modes are the result of the interaction of guided waves supported by the moving bodies. In
appendix C, considering the limit of a weak interaction and that ≪v c 1i , we further develop
these ideas and obtain ‘selection rules’ for the interacting guided modes that give rise to
oscillations with complex valued frequencies. The picture that emerges from our model reveals
that the system instabilities are the result of the hybridization of two guided waves (each
attached to a given body) such that (i) the interacting guided waves are associated with the same

frequency of oscillation ω and the same wave vector ( )k k,x y in a fixed reference frame, and 2nd

(ii) the frequencies of oscillation of the guided modes, when calculated in the frame co-moving
with the relevant dielectric body, are such that they have opposite signs.

Specifically, let ω ω= ˜ + vkx1 1 1 and ω ω= ˜ + v kx2 2 2 be the Doppler shifted frequencies (as

measured in the lab frame), where ω ω˜ = ˜ ( )k k,i i x y represents the dispersion of a guided mode in

the frame co-moving with the ith slab. In the non-relativistic limit kx stays invariant under a
change of the reference frame. It is demonstrated in appendix C (equations (C4) and (C5)) that
the hybridization of the two guided modes results in a natural mode with a complex valued
frequency, provided the following selection rules are satisfied:

ω ω˜ + = ˜ +v k v k a(18 )x x1 1 2 2

ω ω˜ ˜ < b0. (18 )1 2

Note that it is implicit that ( )k k,x y is the same for the two interacting guided modes. Let us

denote the ‘phase’ refractive index associated with the guided mode of the ith slab in the

respective co-moving frame as ω= ˜n c kph i i, , where = +k k kx y
2 2 . Then, the selection rule

(18a) implies that:

⎛
⎝
⎜

⎞
⎠
⎟− = −

+
−( )

c
v v

k k

k n n

1 1 1
. (19)

x y

x ph ph
2 1

2 2

,2 ,1

Note that nph i, may be either positive or negative depending on the sign of ω̃i, and because

of equation (18b) <n n 0ph ph,1 ,2 . For waveguides based on non-dispersive materials (e.g. a

grounded dielectric slab), nph i, is always smaller than the refractive index of the dielectric:

<n nph i i, . Thus, the minimum of the absolute value of the right-hand side of equation (19) is

attained for =k 0y and = ±n nph i i, . Hence, to have a friction force, the velocities of the two

moving slabs must satisfy:

⎛
⎝⎜

⎞
⎠⎟− ⩾ + ( )v v c

n n

1 1
threshold for friction . (20)2 1

2 1

Thus, at least one of the bodies moves with a velocity larger than the corresponding Cherenkov
threshold in the laboratory frame.
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To further develop these ideas, we consider the particular case wherein the dielectric slabs
are identical. For each slab, the guided modes are characterized in a co-moving frame by the
dispersion branches ω+ ˜ n( ) (positive frequencies) and ω− ˜ n( ) (negative frequencies). The index n
labels the guided modes branches. The simplest possibility (but not the only one) to satisfy the
selection rules (18) is to consider the interaction of modes associated with the same n such that

ω ω˜ = ± ˜ n
1

( ) and ω ω˜ = ∓ ˜ n
2

( ). In that case, equation (19) implies that = ±
+

−nph

k k

k

c

v v

2x y

x

2 2

2 1
being

ω= ˜n c kph
n( ). Noting that nph depends on ( )k k,x y as = +( )n n k kph ph x y

2 2 , it can be verified

that the previous equation always has a solution when ⩾ −n c v v2ph 2 1 . This demonstrates

that when ⩾ −n c v v2ph 2 1 there is always a suitable ( )k k,x y that satisfies the selection rules.

To illustrate the discussion, we show in figure 2(a) the dispersion of the guided modes
supported by a single (non-magnetic) dielectric slab with thickness hs with refractive index

=n 14d surrounded by a vacuum. The dielectric slab is backed by a PEC ground plane, as

illustrated in figure 1(a). Consistent with the previous discussion, it is seen that < <n n1 ph d

and that the guided modes have several dispersion branches. In figure 2(b) we represent n1 ph as

a function of k, showing also the negative frequency branches. If the vertical distance between
two branches associated with the same k and having nph with different signs is smaller than

−( )v v c2 1 , then the hybridization of the corresponding modes may result in a system
instability.

This property is demonstrated in figures 2(c) and (d). They depict the dispersion of the
λ > 0 mode associated with the hybridization of the two p-polarized guided modes of the
individual slabs with = ±n 10ph (the relevant mode with =n 10ph is marked in figure 2(a) with

an orange circle) for the case = − =v v c 102 1 and two values of the slabs distance d. The
dispersion of the hybridized guided mode is computed using equation (C1) of appendix C. The
plots show that when the selection rules are satisfied (this corresponds to the condition

=k k 1x x0 ) the hybridized modes have ω ω λ= ′ + i such that λ ≠ 0. The value of λ is larger for
smaller d, i.e. in a case of a stronger modal interaction. When k kx x0 is slightly different from the
unity, the selection rules are not satisfied and thus the hybridized modes have λ = 0. Note that
in the laboratory frame ω′ ≈ 0 because of the Doppler effect, i.e.
ω ω ω ω˜ + = ≈ = − ˜ + ≈vk v k 0x x1 1 2 2 . This is a general consequence of the selection rule
(18a) when ω ω˜ = − ˜1 2 and = −v v1 2. We verified (not shown here) that if the effect of loss is
considered in the material response, it is still possible to have natural modes associated with
growing oscillations (see also reference [18]). This result is also evident because of analytic
continuation arguments. We also verified that relativistic corrections result in a small shift of the
modal diagrams.

For future reference, it is mentioned that the sign of the pseudo-momentum associated with
a system instability is such that in the ith slab:

= − − = ≠( ) ( )p v v i j i jsgn sgn , where , 1,2 and . (21)
ps i i j,

The proof is given in appendix D.
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5. Quantum expectation of the friction force

In the framework of a quantum theory, a generic state of the system is a superposition of states

of the type ( )m m m..., , ,..., ,...c n
a

c n
b

n
c

k k k, , , where ( )m m,c n
a

c n
b

k k, , are the occupation numbers of the

oscillators associated with ˆ ˆa b,c n c nk k, , , and mn
c
k is the occupation number associated with the

oscillators associated with real-valued frequencies (ĉnk) [17]. When the ‘wave part’ of the
system is electromagnetically unstable, it has a peculiar property: there are no stationary states,
and in particular there is no ground state [17]. However, it was shown in reference [17] that—
provided enk is chosen as in equation (13)—the state wherein all the occupation numbers (for
oscillators associated with either real-valued or complex valued frequencies) vanish,

Ω = ( )..., 0 ,0 ,...c n
a

c n
b

k k, , is such that the oscillations of the quantized fields are minimal.
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Figure 2. (a) Dispersion diagram ( ω= ˜n ckph vesus ω̃) for the p-polarized guided
modes (solid green curves) and s-polarized guided modes (dashed black curves)
supported by a grounded dielectric slab with thickness hs and refractive index =n 14d .
The frequency ω̃ is measured in the co-moving frame. The guided modes lying above
the dot-dashed blue horizontal line ( =n 10ph ) in the dispersion diagram are the ones
responsible for the friction force when two identical slabs are in relative motion with

= − =v v c 102 1 . (b) Similar to (a) for p-polarized waves, but n1 ph is plotted as a
function of k. (c) Dispersion of the natural mode (ω ω λ= ′ + i vs kx with =k 0y )
resulting from the hybridization of two p-polarized guided modes of the individual slabs
with = ±n 10ph (the pertinent mode with =n 10ph is marked in panel a with an orange
circle; =k h1.598x s0 is the wave number associated with this mode) for

= − =v v c 102 1 and =d hs. (d) Similar to (c) but for =d h2 s.



Thus, Ω is a pseudo-ground because it corresponds to the state of minimal disturbance of the
‘wave part’ of the system (in the sense that the oscillation amplitudes are minimal), despite the

fact that it is not the state of minimal wave energy. Using the formula for F̂i

tot
(equation (17)) we

can determine the expectation of the operator ˆ( )Fi

tot
supposing that the system is prepared in

the pseudo-ground Ω at t= 0. We find that:

∑ λ ω λˆ = ℏ ⩾
λ > >

( )F p t tf2 sinh 2 , 0. (22)i

tot

k
n c n wv i n nk k k k

0 and 0
, ,

n xk

It is proven in appendix D that since the moving bodies have a large refractive index ( ≫n 1i )
the force acting on the matter enclosed by the ith slab is only marginally smaller than the rate of

change of the total momentum the ith slab, so that ˆ ≈ ˆF Fi

mat

i

tot
. The correction factor is of

the order of − n1 1 i
2 (equation (D6)) at the friction force threshold. Thus, we can identify F̂i

tot

with the friction force, and this is done in what follows.
Notably, it is seen that at =t 0, the expectation of the friction force vanishes:

ˆ =
=

F 0i

tot

t 0
. This is consistent with our picture of the pseudo-ground as the state of minimal

interaction of the moving bodies. However, the pseudo-ground is analogous to a point of
unstable equilibrium. As time passes, the system is pushed away from the pseudo-ground and
the friction forces builds up exponentially due to the generation of electromagnetic quanta (i.e.

in the Schrödinger picture the occupation numbers associated with the operators ˆ ˆa b,c n c nk k, ,

increase with time [17]). This picture of the friction force provided by our quantum theory
(illustrated in figure 1(b)) differs markedly from the semi-classical theory of Pendry and from
other approaches based on first order perturbation theory, wherein the friction force is constant
and independent of time [1, 4, 8]. It is emphasized that the exponential growth of the force can
only be sustained provided the velocity of the moving bodies is kept constant, which, as
discussed previously, requires an external action. In general, the friction force provides the
feedback mechanism that prevents the indefinite growth of the oscillations of the
electromagnetic field.

It is possible to reconcile our quantum theory with the results of Pendry. To do this, we
start by noting that in Pendry’s approach [1, 4] the friction force is computed based on Fermi’s
golden rule and on the number of excitations generated per unit of time. It was shown in our

previous article [17] that supposing the initial state is the pseudo-ground 0 ,0c n
a

c n
b

k k, , the

probability of the system being in the state 0 ,0c n
a

c n
b

k k, , at a later time instant is exactly

λ( )tsech nk
2 [17, equation (66)]. Here, we consider a single pair of coupled oscillators associated

with ˆ ˆa b,c n c nk k, , . This shows that the average time to generate an excitation is of the order

λ~ ( )t 1 2 nk , which can be regarded as the ‘lifetime’ of the initial state. Thus, the rate of
excitations for the considered pair of oscillators is equal to λ=R 2g n nk k, . This rate should be

comparable with what is obtained with Fermi’s golden rule in Pendry’s approach. Now, one
crucial point is that in Pendry’s theory it is implicit that the lifetime of the generated excitations
is very short (e.g. they are quickly absorbed due to loss in the system) as compared to λ( )1 2 nk ,
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because the system is assumed to be always in the ground state. Quite differently, in our
approach the dielectrics are lossless and hence the generated excitations stay in the system and
promote new excitations, making Rg nk, effectively time dependent. This is why in our theory the

force grows exponentially, whereas in Pendry’s theory the force is constant.
Since the average time to generate an excitation is of the order of λ( )1 2 nk , we see that

Pendry’s force (for each pair of oscillators) should be identified with the force calculated with
our theory at the time instant λ≈ ( )t 1 2 nk . Hence, supposing for simplicity that the ground
states of all the relevant oscillators have similar lifetimes, and using = ≈sinh 1 1.18 1, we get
the following formula for the friction force:

∑ λ ωˆ ≈ ℏ
λ > >

( )F p f2 . (23)i

tot

g k
n c n wv i nk k k

1, 0 and 0
, ,

n xk

The force F̂i

tot

g1,
can be regarded as the force calculated at the time instant corresponding to

the creation of the first excitation. Using equations (21) and (D5), it is also possible to write
that:

∑ λ ωˆ ≈ − − ℏ
λ > >

( ) ( )F v v p fsgn 2 (24)i

tot

g
i j

k
n c n wv i nk k k

1, 0 and 0
, ,

n xk

where and ≠i j. This confirms that the friction force acts against the relative motion of the two

slabs. In appendix C, we give a detailed proof that F̂i

tot

g1,
exactly coincides with the

calculation of Pendry in the limit of a weak interaction between the moving bodies [1, 4]. This
validates the previous discussion, and demonstrates that the semi-classical theory of Pendry can
be recovered from our dynamic quantum theory.

It is interesting to mention that the absolute value of F̂i

tot

g1,
is exactly coincident with the

variance of the force, ˆ = ˆ
=

( )F Fi

tot

i

tot

t

2

0

1 2

, calculated at =t 0. Indeed, straightforward

calculations show that:

∑ λ ωˆ = ℏ = ˆ
λ > >

( )F p Ff2 . (25)i

tot

k
n c n wv i n i

tot

g
k k k

0 and 0
, ,

1,
n xk

To numerically evaluate F̂i

tot
we need to know all natural modes associated with complex

valued frequencies ( ω ω λ↔ = +′ ifn c n n nk k k k, ). It is proven in appendix D (equation (D1)) that

for the geometry of figure 1(a) and weakly interacting slabs ω≈( )p kf 2
wv i n x c nk k, , . Hence,

in this limit, and assuming also that the slabs are infinitely wide so that ( )k k,x y varies in a

continuum ( ∬∑ →
π( ) dk dk

( )k k

A
x y, 2x y

0
2 , being A0 the transverse area of the slabs in the xoy plane), we

find that:
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⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫ ∫ ∑

π
λ

ˆ
= ℏ

λ−∞

+∞ +∞

>( )

F

A
dk dk k

2
. (26)

i

tot

y x x nk
0

2
0 0nk

Thus, the friction force per unit of area depends mainly on the imaginary part of the
frequencies of oscillation. It is possible to evaluate the sum in inner brackets in the previous
formula with the help of the argument principle of complex analysis. Specifically, let ω( )D k,

be such that ω =( )D k k, , 0x y is the characteristic equation for the natural modes of the system.

A formal expression for D is given in appendix C for the problem of two interacting moving
bodies backed with a perfectly electrical conducting layer. The argument principle—also widely
used in calculations of the Casimir force [26–29]—implies that:

⎧⎨⎩
⎫⎬⎭∮∑ λ

π
ω
ω

ω ω=
′

λ >

( )
( )i

D

D
d

k

k
Im

1
2

,

,
(27)n

C
k

0nk

where ′ = ∂ωD D and C is a contour that encircles the upper half plane, passing right above the
real positive axis and that joins ω = +∞ and ω = −∞ with a semicircle of infinite radius. The
integral over the semicircle can be discarded because it does not contribute to the friction force.
Hence, substituting equation (27) into equation (26), we find that:

⎧⎨⎩
⎫⎬⎭∫ ∫ ∫

π
ω ω

ω
ω

ˆ
= −ℏ ′

−∞

+∞ +∞

−∞

+∞

( )
( )
( )

F

A
dk dk d k

D

D

k

k2
Re

,

,
. (28)

i

tot

y x x
0

3
0

It is relevant to mention that even though equation (28) was derived under the assumption
that the considered dielectric bodies are made of dispersionless dielectrics, equations (25)–(28)
can be readily extended to the general case wherein the considered bodies are made of
dispersive lossy dielectrics. This suggests that our theory may apply in a broader context.

6. Numerical examples

To illustrate the application of the theory, we computed F̂i

tot
for the geometry of figure 1(a)

supposing in all the examples that = −v v2 1, and that the two slabs are identical. The slabs are

made of a nonmagnetic material μ μ=( )0
with refractive index nd, and have the thickness

≡ =h h hs 1 2. To have further confidence in the numerical calculations, we computed the force

based on two different formulas: (i) equation (28) calculating the dispersion ω( )D k, of the
hybridized modes with equation (C1) of appendix C, and (ii) equation (C19) derived in
appendix C, wherein the friction force is directly written in terms of the dispersion of the guided
modes supported by the individual slabs in the respective co-moving frames. This latter
approach is less rigorous for small values of d and only takes into account the contributions of
guided modes with ω ω˜ = − ˜1 2. In the non-relativistic limit, the hybridized modes split into p-
polarized and s-polarized waves (see appendix C), and thus the total force can be seen as the

sum of two independent components, = +F F Ftot tot p tot s, , , being Ftot p, ( )Ftot s, the

contribution to the force of p (s) polarized hybridized modes.
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In figure 3, we depict the calculated normalized friction force as a function of the
normalized velocity −v v2 1 for different values of the distance d and of the refractive index nd.
A general observation is that the two formulas used for the computation of the friction force
give very consistent results, particularly when d hs has large values. As expected, the friction
force decreases significantly when the normalized distance between the moving bodies
increases. Also, consistent with equation (20), it is seen that the friction force is non-zero only
for normalized velocities such that − >v v n c2 1d2 1 . Figures 3(c) and (d) also reveal that for

fixed −v v n c2d2 1 the force decreases with increasing nd. However, one should keep in mind

that for a fixed −v v n c2d2 1 , slabs with smaller nd move faster. Typically, for a fixed

−v v c22 1 the force grows with increasing nd.

It is striking from figure 3 that Ftot s, can be several orders of magnitude larger than Ftot p, .

This is to some extent surprising because the p-polarized modes have a dispersion branch with
no frequency cut-off, unlike the s-polarized modes which can only propagate above a certain
threshold frequency (see figure 2(a)). A consequence of this is that for a fixed −v v c22 1 the
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Figure 3. Normalized friction force as a function of the normalized −v v2 1 for two
identical dielectric moving bodies with velocities = −v v2 1. (a) Component of the force
due to s-polarized waves for several slab distances d. The refracting index of the
dielectrics in the respective co-moving frames is =n 14d . (b) Similar to (a) but for p-
polarized waves. (c) Similar to (a) but for the case =d hs and for several refractive
indices nd. (d) Similar to (c) but for p-polarized waves. In the plots the solid lines refer
to the calculation obtained with the exact formula (28), whereas the dashed lines where
obtained with the simplified formula (C19).



p-polarized modes that contribute to the force have smaller = +k k kx y
2 2 , than the s-

polarized modes that contribute to the force. Because the interaction between the slabs is
mediated by a term of the type −e kd2 (see equation (C1) in appendix C), one might expect that
the friction force would be mainly determined by p-polarized waves, in contradiction with the
numerical results. However, it turns out that the hybridization of the guided modes is much
stronger for s-polarized waves. To explain why in simple physical terms, we consider that the
relevant guided modes propagate along x. Then, the strength of the hybridization is mainly
determined by the interactions of the field Hy of slab 1 and 2 in case of p-polarized waves,

and of Ey in the case of s-polarized waves. The key point is that because ≫n 1d the

dielectric-vacuum interface is effectively seen as a magnetic wall from the dielectric side.
Thus Hy is quite small at the dielectric-vacuum interface, whereas typically Ey has a

maximum at the same interface. As a consequence, the hybridization of s-polarized modes is
more efficient and leads to a larger λ ω= { }Im c , and thus to a stronger force. Note that from
the stress tensor theorem [21] the friction force should be related to the value of ε E Ez x0 for p-
polarized waves, and μ H Hz x0

for s-polarized waves, calculated at the vacuum side of the
interfaces, and thus our results indicate that, in the considered example, the friction force has
a magnetic origin.

To have an idea of the magnitude of the quantum friction force, we consider that =n 14d ,

μ= =d h m1s and − =v v n c2 1.4d2 1 . In such a case, despite the large velocity of the moving
bodies, the force per unit of area due to the interaction of s-polarized waves is only

= × −F A 1.9 10tot s,
0

6Nm−2. For d hs fixed the force scales with h1 s
4.

As mentioned at the end of section 5, there is no difficulty in applying formula (28) to
other physical systems, even if the moving slabs are made of dispersive lossy dielectrics. To
illustrate this, we consider the interaction of two moving metal sheets with = −v v2 1 and

characterized by the reflection coefficient ω = ω

ω ω

−

−
R ( ) sp

sp

2

2 2 , where ωsp is the frequency associated

with the surface plasmon resonance. For simplicity, in this example the dependence of R on the
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Figure 4. Normalized friction force as a function of −v v2 1 for two identical moving
metal sheets with velocities = −v v2 1, for different normalized values of the distance d
between the bodies. Solid lines: results obtained with the theory of this work (equation
(28)). Dashed lines: results obtained with the theory of Pendry [4].



wave vector ( )k k,x y is ignored, similar to what was done in reference [4]. In figure 4, we plot the

friction force variance computed using the theory of this work [equation (28) using
⎤⎦ω ω ω= − − −− ( ) ( )( )D e R k v R k vk, 1 kd

x x
2

1 2 . We compare the result with the force

computed based on the theory of Pendry (equation (15) of reference [4] multiplied by ¼; the
reason for this multiplicative factor is that apparently equation (15) of reference [4] was derived

assuming ω = ω

ω ω

−

−
R ( )

2 sp

sp

2

2 2 , as equation (14) of the same article indicates). As seen, the two

approaches concur rather well, particularly for larger values of d when the interaction between
the moving metal sheets is weaker.

7. Conclusion

A first principles derivation of the quantum friction force was presented. It was proven that the
expectation of the quantum friction force vanishes at the initial time instant for a system of non-
dispersive moving bodies prepared in the ‘pseudo-ground’ state. However, as time passes, the
expectation of the quantum friction force exponentially grows, as long as the change in the
velocity of the moving bodies is insignificant. We calculated the quantum friction force at the
time instant corresponding to the generation of the first excitation for each pair of unstable
oscillators, and demonstrated that in the limit of a weak interaction it is coincident with the
semi-classical result of Pendry [1, 4]. The velocity threshold above which quantum friction can
take place was derived, and the effect of quantum friction was linked to system instabilities that
may occur when at least one of the dielectric bodies has a velocity larger than the Cherenkov
emission threshold. These instabilities are due to the hybridization of guided modes supported
by the individual bodies, and take place when the guided modes satisfy certain selection rules.
We numerically estimated the quantum friction when two non-magnetic grounded dielectric
slabs are in relative motion, and demonstrated that, surprisingly, in the non-relativistic limit, the
quantum friction is mainly determined by s-polarized waves. It is relevant to mention that the
friction mechanism described in this article cannot be used to extract an infinite amount of
energy from the system, or achieve a ‘perpetuum mobile’ [10]. Indeed, the ‘perpetuum mobile’
argument of reference [10] relies on the hypothesis that we can have an ordinary passive
magneto-electric material with the same constitutive relations as those of a moving slab.
Clearly, in the presence of wave instabilities, this is impossible unless the magneto-electric
material is active.
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Appendix A

In this appendix, we study the electrodynamics of moving rigid bodies in the non-relativistic
limit. The analysis is in part related to reference [30], which investigates the same problem but
for moving electric dipoles, while here we consider the continuous limit.
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As a starting point, we note that the electromagnetic field dynamics is determined by:



 ρ

× = −∂
× = ∂ +
⋅ = a

E B
H D j

D

,

,

, (A1 )

t

t ext

ext

where j
ext

is an hypothetical external electric current density, and ρ
ext

is the corresponding

external electric charge density, with  ρ⋅ + ∂ =j 0
ext t ext

. We consider a set of rigid material
bodies that only have an electric response. Let tu ( )i be the coordinates of the center of mass of
the ith body, and = d dtv ui i be the center of mass velocity. For simplicity, we neglect possible
torques, and thus only translational motions are allowed.

Let the electric polarization vector of the ith body in the respective co-moving frame be
denoted by ( )tP R,e i

co
, . Here, = −R r ui are the local coordinates in the co-moving frame. It is

understood that ( )tP R,e i
co
, vanishes outside the volume of the ith body. Then, within a non-

relativistic approximation, the electric displacement and the magnetic field in the laboratory
frame are given by:

ε

μ μ

= +
= −− −

( ) ( ) ( )
( ) ( ) ( )

t t t

t t t b

D r E r P r

H r B r P r

, , , ,

, , , . (A1 )

e

m

0

0
1

0
1

where = ∑ −( )( )t t tP r P r u, ( ),e i e i
co

i, and μ = ∑ − ×− ( )( )t t tP r P r u v, ( ),m i e i
co

i i0
1

, is the magne-
tization vector.

Generalizing equation (3.12) of reference [30] to the continuous limit and to the case of
rigid bodies, we find that:

=
d

dt
a

u
v , (A2 )i

i

 ⎡⎣ ⎤⎦∫= + ⋅ + + × +( ) ( ) ( )
d

dt
t t t d b

p
F P R E R u v B R u R, , , , (A2 )can i

tot i
ext

e i
co

i i iu
,

, ,
3

i

where p
can i,

is the canonical momentum of the ith material body,

∫
∫

= − ×

= − × +

( ) ( )

( ) ( )

M t t d

M t t d

p v P r B r r

v P R B R u R

, ,

, , , (A3)

can i i i
V

e

i i e i
co

i

,
3

,
3

i

Mi is the total mass of the body, Ftot i
ext

, is an hypothetical external force acting on the moving
body, andVi is the volumetric region occupied by the body in the lab frame (which may change
with time). In the limit of no material dispersion (when the reduced mass of the moving dipoles
is negligible) we can write:

⎡⎣ ⎤⎦ε χ= + + × +( ) ( ) ( )t t tP R R E R u v B R u, ( ) , , , (A4)e i
co

e i
co

i i i, 0 ,

where χ > 0
e i
co
,

is the electric susceptibility of the moving body in its rest frame. Note that

+ ×E v Bi is the electric field in the co-moving frame.
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Equations (A1)–(A4) completely determine the dynamics of the fields and of the moving
bodies. Straightforward manipulations of equations (A1) show that:


⎡
⎣⎢

⎤
⎦⎥∑

⋅ × + ∂ + ⋅

= ⋅ ∂ + × ∂ − ⋅ + × + ⋅ ×( )

( )

( ) ( )

W

d

dt

d

dt

E H E j

P E v B
P

E v B
v

P B
1
2

, (A5)

t EM P ext

i
e i
co

t i t
e i
co

i
i

e i
co

,

,
,

,

where = ⋅ + ⋅W D E B HEM P,
1

2

1

2
is the wave energy density. From equation (A4),

⎡⎣ ⎤⎦ε χ− = − + ×( ) ( ) ( ) ( )t t tP r u r u E r v B r, , ,e i
co

i e i
co

i i, 0 ,
and hence we can also write:

 
⎡
⎣⎢

⎤
⎦⎥

∑ χ ε⋅ × + ∂ + ⋅ = ⋅ − + ×

+ ⋅ ×( )

( ) ( )W

d

dt

E H E j v r u E v B

v
P B

1
2

. (A6)

t EM P ext
i

i e i
co

i i

i
e i
co

r, , 0

2

,

Thus, integrating over any volume V that completely contains all the bodies (so that χ
e i
co
,

vanishes at the boundary ∂V of the volume) we find after integration by parts:





⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢ ⎡⎣ ⎤⎦

⎤
⎦⎥

∫ ∫ ∫

∫ ∫

∫

∫

∑

∑

ˆ ⋅ × + + ⋅

= − ⋅ ⋅ + × + ⋅ ×

= − ⋅ ⋅ + + × +

+ ⋅ × +

∂
( )

( ) ( )

( ) ( )

( )

ds
d

dt
W d d

d
d

dt
d

d

d

dt
d

n E H r E j r

P v E v B r
v

P B r

v P R E R u v B R u r

v
P R B R u R

( )

( ) (A7)

V V
EM P

V
ext

i V
e i
co

i i
i

V
e i
co

i
i e

co
i i i

i
e i
co

i

r

u

,
3 3

,
3

,
3

3

,
3

i

where n̂ is the outward unit vector normal to the surface. But straightforward manipulations of
equations (A2) and (A3) show that the right hand side of the previous formula equals

⎡⎣ ⎤⎦− ∑ − ⋅ + ∑ ⋅( )Mp v v F vd

dt i can i i i i i tot i
ext

i,

1

2 , . Therefore, we demonstrated the energy conserva-

tion law:

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥∫ ∫

∫

∑

∑

ˆ ⋅ × + + − ⋅

= ⋅ − ⋅

∂
( ) ds

d

dt
W d

d

dt
M

d

n E H r p v v

F v E j r

1
2

. (A8)

V V
EM P

i
can i i i i

i
tot i
ext

i
V

ext

,
3

,

,
3

In case V is taken as all space, this result reduces to equation (3), being Htot, defined as in
equation (1), the total energy of the system. It interesting to note that the energy stored in the ith
body can be identified with:
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⎜ ⎟⎛
⎝

⎞
⎠ ∫

∫

∫

ε μ

= ⋅ − +

= ⋅ + ⋅ + ⋅ + ⋅ −

+ ⋅ − ⋅ ×

− ( )

( )

H
M

W d

M d M

d

v p
v

r

v v E E B B r v p v

E P B P v R

2
1
2

1
2

1
2

. (A9)

tot i i can i
i i

V
EM P

i i i
V

i can i i i

e i
co

e i
co

i

, , ,
3

0 0
1 3

,

, ,
3

i

i

Using equations (A3) and (A4) this can also be written as:

∫ ∫ε μ
ε χ

= ⋅ + ⋅ + ⋅ + ⋅ ⩾−H M d dv v E E B B r P P R
1
2

1
2

1
2

1
0. (A10)tot i i i i

V
e i
co e i

co
e i
co

, 0 0
1 3

0 ,

, ,
3

i

This confirms that the energy stored in the ith body is always positive, even in the presence of
system instabilities. Moreover, this result also implies that ⩾H 0tot .

Up to now the formalism is completely general. Next, we analyze the situation wherein the
relevant bodies move along the x-direction ( ˆ= vv xi i ), and are invariant to translations along x
( χ∂ = 0x e i

co
,

). In such a case, substituting equation (A4) into (A2b), we get:

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∫
∫
∫

∫

ε χ

= + − ⋅ ∂
∂

+ ×

= + − + × ⋅ ∂
∂

+ ×

= + ∂
∂

− ⋅ + ×

= + ∂
∂

⋅ + × =

( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

dp

dt
F t

x
t t d

F t t
x

t t d

F
x

t t t d

F
x

t t t d F

P r u E r v B r r

r u E r v B r E r v B r r

P r u E r v B r r

P r E r v B r r

, , ,

, , , ,

1
2

, , ,

1
2

, , , (A11)

can i
i x
ext

e i
co

i i

i x
ext

e i
co

i i i

i x
ext

e i
co

i i

i x
ext

e i i x
ext

,
, ,

3

, 0 ,
3

, ,
3

,
3

,

where p
can i,

is the x-component of the canonical momentum and Fi x
ext
, is the x-component of the

force. The last identity is obtained by assuming that the fields satisfy periodic boundary
conditions in the spatial domain of interest. Thus, consistent with reference [17], we find that

= F
dp

dt i x
ext
,

can i, . Differentiating both sides of equation (A3) with respect to time, we can write:

∫ ˆ= + × ⋅( )( ) ( )
dp

dt
F

d

dt
t t dP r B r x r, , , (A12)kin i

i x
ext

V
e

,
,

3

i

where =p Mv
kin i i i,

is x-component of the kinetic momentum. The integral in the right-hand side
can be identified with the pseudo-momentum introduced in the main text. Indeed, in the non-
relativistic limit and for bodies that only have an electric response in the rest frame, the pseudo-
momentum satisfies:

⎜ ⎟
⎛
⎝

⎞
⎠

∫

∫
∫

ε= × + ×

= × + × ×

≈ ×

d

c c
d

d

p P B E P r

P B E P
v

r

P B r

1

. (A13)

ps i
V

e m

V
e e i

co i

V
e

, 0
3

,
3

3

i

i

i
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The last identity follows from the fact that ≪v c 1i and that cE can be estimated to be of the
same order of magnitude as B. Thus, equations (A12) and (A13) imply that the x-component of
the momentum can be decomposed as in equation (4) of the main text.

Appendix B

Here, we compute the contribution from a generic term of the series (14) to the friction force.
For convenience, we introduce the following bilinear forms:

∫ ˆ= × + × ⋅( ) ( )p
c

d aF F r E H E H x,
1
2

1
, (B1 )

EM i
V

, 1 2 2
3

1 2 2 1
i

∫ ˆ= × + × ⋅( ) ( )p d bF F r D B D B x,
1
2

, (B1 )
wv i

V
, 1 2

3
1 2 2 1

i

= −( ) ( ) ( )p p p cF F F F F F, , , . (B1 )
ps i wm i EM i, 1 2 , 1 2 , 1 2

Evidently, the electromagnetic momentum, the wave momentum, and the pseudo-momentum
stored in the ith slab for a real-valued field distribution F are = ( )p p F F,

EM i EM i, ,
,

= ( )p p F F,
wm i wm i, ,

and = ( )p p F F,
ps i ps i, ,

, respectively. Let us first consider a generic term of

the series (14a) associated with real-valued frequencies of oscillation. Because the spatial
variation along x and y is of the form ⋅eik r it is simple to check that

= = * *( )( )p pF F F F, 0 ,
u i n n u i n nk k k k, ,

, with u =EM, wv, ps. Hence, it follows that:

⎡⎣ ⎤⎦
ω

=
ℏ

ˆ ˆ + ˆ ˆ* *† †( ) ( )p c c p c c pF F F F
2

, , . (B2)
u i

n
n n u i n n n n u i n n

k
k k k k k k k k, , ,

Thus, p
u i,
is independent of time, and so it does not contribute to the friction force =dp dt 0

u i,
.

Next, we consider a generic term of the series (14b), β χˆ = ˆ + ˆ +ω ω− − *
e eF f eC n

i t
n n

i t
nk k k k

c n c nk k, ,

β χˆ + ˆ* *ω ω† †*
e ef e

n
i t

n n
i t

nk k k k
c n c nk k, , , associated with a pair of complex-valued frequencies of oscillation.

Proceeding as in the previous case, it is straightforward to prove that:

β χ β χ

β χ β χ

= ˆ + ˆ ˆ + ˆ

+ ˆ + ˆ ˆ + ˆ

* *

* *

ω ω ω ω

ω ω ω ω

− − * † * †

† * † − − *

( )
( )

p p e e e e

p e e e e

f e f e

f e f e

,

, (B3)

u i u i n
i t

n n
i t

n n
i t

n n
i t

n

u i n
i t

n n
i t

n n
i t

n n
i t

n

k k k k k k k k

k k k k k k k k

, ,

,

c n c n c n c n

c n c n c n c n

k k k k

k k k k

, , , ,

, , , ,

Thus, using ω ω λ= +′ ic n n nk k k, one sees that the time derivative of the pertinent momentum
(u=EM, wv, ps) is given by:

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

β β χ χ

β β χ χ

= ˆ ˆ + ˆ ˆ

+ ˆ ˆ + ˆ ˆ

* *

* *

λ λ

λ λ

† − †

† − †

( ) ( )

( ) ( )

dp

dt

d

dt
e p e p

d

dt
e p e p

f f e e

f f e e

, ,

, , . (B4)

u i t
n n u i n n

t
n n u i n n

t
n n u i n n

t
n n u i n n

k k k k k k k k

k k k k k k k k

, 2
,

2
,

2
,

2
,

n n

n n

k k

k k

From the definition of the bilinear forms (B1) =* *( ) ( )p pf f f f, ,
u i n n u i n nk k k k, ,

is real-valued.

Moreover, using equation (13) in equation (B1a) it is found that if = ( )f E H
T
then:
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⎡⎣ ⎤⎦∫ ˆ= × − + × − ⋅* * *
π π π π( ) ( ) ( )( ) ( )p de e r R E R H R E R H x,

1
2

. (B5)
EM i

V
z z z z,

3
, , , ,

i

But for generic vectors v1 and v2, one has × − = − ⋅ ×π π π( ) ( ) ( )R v R v R v vz z z, 1 , 2 , 1 2 , and hence:

∫ ˆ= × + × ⋅ =* * * *( ) ( ) ( )p
c

d pe e r E H E H x f f,
1

2
, . (B6)

EM i
V

EM i, 2
3

,
i

On the other hand, equation (13) and the properties = ⋅π( )M r M R r( ) z, and ⋅ =U U 1, imply

that ˜ ˜≡ ⋅g r M r f r( ) ( ) ( ) can be written as ˜ = ⋅ ⋅ ⋅ ⋅ ⋅ * ⋅π π( ) ( )g r U U M R r U f R r( ) z z, , .

Taking into account the explicit form of the material matrix M, which can be found in
reference [17], it is possible to show that, because our system is invariant to a 180° rotation

around the z-axis, = ⋅ ⋅M U M U. Thus, this shows that ˜ = ⋅ * ⋅π( )g r U g R r( ) z, . Therefore,

the D and B fields associated with ˜=e f are related to the D and B fields associated with f , in
the same manner as the E and H fields associated with ˜=e f are related to the E and H fields
associated with f . This implies that:

∫ ˆ= × + × ⋅ =* * * *( ) ( ) ( )p d pe e r D B D B x f f,
1
2

, . (B7)
wm i

V
wm i,

3
,

i

Equations (B6)–(B7) also make obvious that =* *( ) ( )p pe e f f, ,
ps i ps i, ,

. Substituting these results
into equation (B4) we find that:

⎡
⎣⎢

⎤
⎦⎥λ β β β β χ χ χ χ= ˆ ˆ + ˆ ˆ − ˆ ˆ + ˆ ˆ* λ λ† † − † †( )( ) ( )

dp

dt
p e ef f2 , . (B8)u i

n u i n n
t

n n n n
t

n n n nk k k k k k k k k k k

,

,
2 2n nk k

In the framework of the quantum theory, β̂
nk

and χ̂
nk

are operators. Using

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦β β χ χˆ ˆ = = ˆ ˆ
† †, 0 ,

n n n nk k k k
and the decomposition (16) one can write:

⎡
⎣⎢

⎤
⎦⎥

ω λ= ℏ

× ˆ + ˆ ˆ + ˆ − ˆ − ˆ ˆ − ˆ

*

λ λ† † − † †( ) ( )( ) ( )

( )
dp

dt
p

e a b a b e a b a b

f f,

. (B9)

u i
c n n u i n n

t
c n c n c n c n

t
c n c n c n c n

k k k k

k k k k k k k k

,
, ,

2
, , , ,

2
, , , ,

n nk k

After straightforward simplifications, we finally obtain:

⎡
⎣⎢

⎤
⎦⎥

ω λ

λ λ

= ℏ

× ˆ ˆ + ˆ ˆ + ˆ ˆ + ˆ ˆ

*

† † † †( ) ( )
( )

dp

dt
p

a a b b t a b b a t

f f2 ,

sinh 2 cosh 2 . (B10)

u i
c n n u i n n

c n c n c n c n n c n c n c n c n n

k k k k

k k k k k k k k k k

,
, ,

, , , , , , , ,

Appendix C

Here, we prove that in the limit of a weak slab interaction and for ≪v c 1i , it is possible to write

F̂i

tot
in terms of the imaginary part of the reflection coefficients, establishing in this manner a

connection with the original theory of Pendry [1, 4].
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For ≪v c 1i the characteristic equation for the natural modes of oscillation of the system

depicted in figure 1(a) can be written as ω ω =( ) ( )D k k D k k, , , , 0p
x y

s
x y being ω( )D k k, ,l

x y given

by [18]:

ω ω ω= − − − =γ−( ) ( ) ( )D k k e R v k k k R v k k k l s p, , 1 , , , , , , (C1)l
x y

d
co
l

x x y co
l

x x y
2

,1 1 ,2 2
0

where p and s specify the wave polarization, and d is the distance between the two interacting

bodies. In the above, ω̃( )R k k, ,co
p

x y and ω̃( )R k k, ,co
s

x y represent the reflection coefficients

calculated in the pertinent co-moving frame, supposing that a plane wave propagating in

vacuum with transverse wave vector ( )k k,x y illuminates the pertinent slab. For the particular

geometry of figure 1(a), one has:

ω
γ

γ
=

−

+
=( ) ( )

( )
R k k

Y h Y

Y h Y
l s p, ,

coth

coth
, , . (C2)co

l
x y

l
d d

l

l
d d

l

0

0

where = ε
γ

ωY p
i c

and γ= ωμY is c are the normalized wave admittances for p and s polarized

waves. In the above, ε and μ are the relative permittivity and permeability, respectively, and

γ εμ ω= + −k k cx y
2 2 2 2 is the propagation constant along the +z direction. The subscripts ‘0’

and ‘d’ indicate if ε and μ are either calculated in the vacuum region (ε μ= = 1) or in dielectric
region (ε ε= d and μ μ=

d
).

To make further progress, we note that for a weak interaction the coupling term
≈γ− −e ed kd2 20 in equation (C1) is vanishingly small. Here, we neglect the effects of time

retardation in the vacuum layer, and thus γ ≈ ≡ +k k kx y0
2 2 . Hence, possible solutions of

ω =( )D k k, , 0l
x y necessarily occur in the vicinity of the poles of Rco i

l
, . The poles of Rco i

l
,

determine the guided modes of the ith slab.
We are interested in the modes of oscillation with ω complex-valued. The poles of Rco i

l
, are

real-valued in the absence of material loss in the dielectrics. Moreover, because the complex
zeros of Dl necessarily occur in pairs ω ω λ= ′ ± i , they must be the result of the interaction of
two poles of R Rco

l
co
l

,1 ,2. In other words, the emergence of complex zeros ω ω λ= ′ ± i requires

that R Rco
l

co
l

,1 ,2 has two closely spaced poles, because otherwise =D 0l has a single real valued

zero. Supposing, for simplicity, that Rco i
l

, has only simple poles (of order one) it follows that

system instabilities are a consequence of the interaction of a pole of Rco
l

,1 and a pole of Rco
l

,2, or,
in other words, of the interaction of a guided mode of the first slab and a guided mode of the
second slab.

For a fixed ( )k k,x y , let ω̃1 be a pole of ω̃( )R k k, ,co
l

x y,1 and ω̃2 be a pole of ω̃( )R k k, ,co
l

x y,2 . In

the vicinity of the poles, we can write:

ω
ω ω

˜ ≈
˜ − ˜( )R k k

b
, , (C3)co i

l
x y

i

i
,

where bi is the residue of the pole. Taking into account the Doppler shifts, one sees that in order
that these two poles can generate a natural mode with complex-valued ω ω λ= ′ ± i , it is
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necessary that ω ω≈1 2 where ω ω= ˜ + vkx1 1 1 and ω ω= ˜ + v kx2 2 2 are the Doppler shifted poles.
It is interesting to note that the condition of the two Doppler-shifted poles being closely spaced,
ω ω≈1 2, yields a ‘selection rule’ for kx:

ω ω
= − ˜ − ˜

−
k

v v
. (C4)x

2 1

2 1

One should keep in mind that, in general, both ω̃1 and ω̃2 may depend on ( )k k,x y . Only

poles ω̃1 and ω̃2 that satisfy approximately this selection rule can generate modes of
oscillation with λ ≠ 0. Moreover, to have system instabilities, a second selection rule needs to
be satisfied:

ω ω˜ ˜ < 0, (C5)1 2

i.e. the poles must be associated with frequencies (as calculated in the respective co-moving
frames) with different signs. To derive this second selection rule, we note that for ω in the
vicinity of ω ω≈1 2 the characteristic equation is simplified to:

ω
ω ω ω ω

= −
− −

−( )D k k e
b b

, , 1 . (C6)l
x y

kd2 1

1

2

2

To calculate λ, we solve this equation with respect to ω:

⎜ ⎟
⎛
⎝

⎞
⎠ω

ω ω ω ω
=

+
± +

−−e b b
2 2

. (C7)kd1 2 2
1 2

1 2
2

Thus, in order to have complex-valued solutions ω ω λ= ′ + i it is necessary that the residues
satisfy:

<b b a0. (C8 )1 2

ω ω λ λ− < = −e b b b2 , with . (C8 )kd
1 2 0 0 1 2

1 2

It can be checked using equation (C2) that in the lossless limit, the sign of the residue bi is
strictly linked to the sign of the corresponding pole ω̃i, such that the condition <b b 01 2 is
equivalent to ω ω˜ ˜ < 01 2 . This justifies the second selection rule (equation (C5)). On the other
hand, in the limit of a weak interaction condition (C8b) implies that ω ω≈1 2, and thus it
provides a more strict formulation of the first selection rule (equation (C4)).

For complex-valued poles the imaginary part λ satisfies:

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

λ
ω ω

λ
ω ω

λ

= −
−

= −
−

−e b b
2

1
2

. (C9)

kd2
1 2

1 2
2

0
1 2

0

2

Because ω ω= ˜ +( )k k vk,i i x y i x and = ( )b b k k,i i x y , i= 1,2, depend on k k,x y we can regard λ as a

function of k k,x y. From the previous discussion, it can be seen that λ =( )k k, 0x y , except in the

region of the ( )k k,x y plane wherein the conditions (C8) are simultaneously satisfied. For a weak
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interaction, this (two-dimensional) region is certainly confined to the close proximity of the
(one-dimensional) curve wherein the selection rule (C4) is exactly satisfied, i.e. wherein

ω ω=1 2. Thus, we can approximate λ ( )k k,x y by:

λ δ ω ω≈ −( ) ( )k k B, , (C10)x y 2 1

where = ( )B B k k,x y is some function to be determined. Specifically, we impose that B is such

that ∬ λ ( )k k dk dk,x y x y is the same, independent of one using the exact formula for λ (equation

(C9)) or the approximate formula (equation (C10)), similar to what has been done in reference
[8] for a related problem.

Let ( )k k,x y
0 0 be some point lying in the curve determined by (C4), and let us consider a

small interval of area Δ Δ×k kx y centered at this point. The integral of λ ( )k k,x y calculated over

this interval using (C10) gives:

∬ λ
ω ω

Δ≈
∂ − ∂

( )k k dk dk
B

k, , (C11)x y x y

k k

y

2 1x x

where the right-hand side is evaluated at ( )k k,x y
0 0 . On the other hand, the same integral

calculated using equation (C9) gives:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∬ ∬

∬

∫

λ λ
ω ω

λ

λ
ω ω

λ

π
ω ω

λ

λ
πλ

ω ω
Δ

≈ −
−

≈ −
∂ − ∂

−

=
∂ − ∂

=
∂ − ∂

( )

( )

k k dk dk dk dk

k k dk dk

dk k

, 1
2

1
2

2
1

2

, (C12)

x y x y x y

k k

x x x y

k k
y

k k

y

0
1 2

0

2

0

1 2

0

2

0 2

1 2

0

0
0
2

1 2

x x

x x
x x

where we used ∫ − − = π( )A k k dk1 x x x A
2 0 2

2

1 , and the rightmost expression is evaluated at

( )k k,x y
0 0 . Comparing the results of the integration in equations (C11), (C12) it follows that

πλ=B 0
2, and substituting this result into equation (C10) we find that:

∫
λ π δ ω ω

π ω δ ω ω δ ω ω

≈ −

= − − −

−

−

( )

( ) ( )

e b b

e d b b . (C13)

kd

kd

k
2

1 2 2 1

2
1 1 2 2

In the second identity we used the fact that <b b 01 2 , and it is implicit that only a pair of poles
with ω ω˜ ˜ < 01 2 gives a nonzero λ. From equation (C3) one has

ω π δ ω ω˜ ≈ − ˜ − ˜{ }( ) ( )R k k bIm , ,co i
l

x y i i, in the vicinity of ω ω˜ = ˜i. Thus, one can take into

account the interaction of all poles of ω̃( )R k k, ,co
l

x y,1 and ω̃( )R k k, ,co
l

x y,2 simply by replacing

equation (C13) (which takes into account the contribution of a single pair of poles) by:
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∫λ
π

ω ω

ω

= − −

× −

ω ω

−

− − <
{ }

{ }

( )

( )

e d R k v k k

R k v k k

1
Im , ,

Im , , . (C14)

( ) ( )

kd

k v k v
co
l

x x y

co
l

x x y

k
2

0
,1 1

,2 2

x x1 2

The integration region was restricted to ω ω− − <( ) ( )k v k v 0x x1 2 to ensure that only pairs of
poles with ω ω˜ ˜ < 01 2 are considered. This can also be rewritten as:

∫λ
π

ω ω

ω

= − − −

× −

− { }
{ }

( )

( )

( )( )e k v v d R k v k k

R k v k k

1
sgn Im , ,

Im , , (C15)

kd
x

k v

k v

co
l

x x y

co
l

x x y

k
2

1 2 ,1 1

,2 2

x

x

2

1

As expected, when =v v1 2 the above formula gives λ = 0k .
We are now ready to compute the friction force variance per unit of area when the system

is in the pseudo-ground state. From equations (26) and (C15), we can write:

⎡⎣
⎤
⎦⎥

∫ ∫

∫
π

ω ω ω

ˆ
= − − ℏ

× − −

−∞

+∞ +∞
−

{ } { }( ) ( )

( )
F

A
v v dk dk k e

d R k v k k R k v k k

sgn
4

Im , , Im , , . (C16)

i

tot l

y x x
kd

k v

k v

co
l

x x y co
l

x x y

,

0
1 2 3

0

2

,1 1 ,2 2
x

x

2

1

This result is coincident with Pendry’s friction formula when the contributions from multi-
scattering are neglected [1, 4], as we wanted to prove (see in particular equation (12) of
reference [4]; note that a factor of ½ was inserted by Pendry in equation (12) of reference [4] to
correct the original theory of reference [1]).

It is interesting to note that if we substitute equation (C10) with πλ π= = −B e b bkd
0
2 2

1 2

into equation (26) we obtain:

∫
π

π
ω ω

ˆ
= ℏ

∂ − ∂−∞

+∞
−

( )

F

A
dk k e

b b

2
, (C17)

i

tot

y x
kd

k k0
2

2 1 2

1 2x x

where ( )k k,x y is a generic wave vector that satisfies the selection rules (C4) and (C5) with
>k 0x , and ω ω= ˜ +( )k k vk,i i x y i x and = ( )b b k k,i i x y are defined, as outlined previously. In the

case of identical slabs, the dominant contribution to the friction force is due to branches with
ω ω˜ = − ˜2 1. Neglecting all the other friction force channels, and assuming without loss of
generality that − >v v 02 1 , so that the condition >k 0x implies ω̃ > 01 , we see that the selection
rules reduce to:

ω
ω= ˜

−
˜ >k

v v

2
and 0. (C18)x

1

2 1
1

Using these results and − =b b b1 2 1
2 in equation (C17), it is found that:

∫
π

π
ω

ˆ
= ℏ

∂ ˜ − −−∞

+∞
−

( ) ( )

F

A

c
dk k e

b c

c c
v v2 2

1 1
. (C19)

i

tot

y x
kd

k
0

2
2 1

2 2

1 2 1x
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This formula gives the friction force directly in terms of the dispersion of the guided modes of a

single slab, as seen in the co-moving frame ω̃( )( )k k,x y1 and in terms of the associated residue

of the reflection coefficient =( )( )b b k k,x y1 1 . The integration should be done over all the

‘curves’ in the ( )k k,x y plane that satisfy equation (C18), for both s- and p-polarized waves.

Appendix D

Here, we estimate the relation between the forces Fi
tot and Fi

mat near the friction force threshold
for the case of two moving dielectric bodies with refractive indices (in the respective co-moving
frames) n1 and n2. The bodies have velocity v1 and v2 with respect to the lab frame, and are
separated by a vacuum gap with thickness d, as in figure 1(a).

To begin with, we calculate the wave- and pseudo-momentum of the moving bodies in the
limit of a weak coupling. Let the mode f be associated with a complex-valued frequency of

oscillation ω ω λ= ′ + i with λ > 0 and the mode ˜=e f [equation (13)] be associated with
ω ω λ= ′ − i . The natural modes are associated with the real-valued transverse wave vector

= ( )k kk , ,0x y (variation along x and y coordinates is of the form ⋅eik r). As usual the modes f and

e satisfy the normalization conditions = =e e f f 0 and =e f 1. Following reference

[17, equation (24)], the wave momentum of the ith body (at t = 0) satisfies:

ω ω
≡ ≈

′
≈ ±*( ) ( )p p

k
E

k
f f,

1
2

sgn
1
2

, (D1)
wv i wv i

x
s i

x
, , ,

where = ±( )Esgn 1s i, depending on the sign of the wave energy Es i, stored in the ith slab, and

( )p . , .
u i,

is the bilinear form introduced in appendix B [equation B1]. Note that in the presence

of wave instabilities <E E 0s s,1 ,2 , and thus = −p p
wv wv,1 ,2

, i.e. the two bodies have symmetric

wave momenta [17].
On the other hand, again from the results of reference [17, equations (24)–(25)] it is

possible to write:

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

≡

= −

= −
+

+
+

+

*

*

*

( )

( )

( )

p p

p
v v

c

p
c

v v

v v c

v v

v v c

f f

f f

f f

,

, 1

, 1
1

1 1
. (D2)

ps i ps i

wv i

ph i g i

wv i

ph i
co

i

ph i
co

i

g i
co

i

g i
co

i

, ,

,

, ,

2

, 2

,

,
2

,

,
2

In the above, ω= ′v kph i i x, and ω= ∂ ∂′v kg i i x, are the phase and group velocities in the lab frame,

vph i
co

, and vg i
co
, are the corresponding parameters calculated in the co-moving frame, and

ω ω=′ ′ ( )k k v, ,i i x y i is understood as the dispersion of the guided mode supported by the ith slab

in the absence of interaction.
As discussed in section 4, at the friction force threshold it is expected that the modes of the

individual slabs that originate system instabilities have =k 0y and ≈ ±n nph i i, , where
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ω= ˜n ckph i i, is the ‘phase’ refractive index for the ith slab (calculated in the co-moving frame),

being = +k k kx y
2 2 . It is known that when ≈n nph i i, the group and phase velocities of the

guided modes (for slabs made of nondispersive materials) are nearly identical: ≈v vg i
co

ph i
co

, , (see

figure 2(a)). Therefore, from equation (D2), it follows that (supposing that ≫n 1i so that
≪v c 1i ):

⎛
⎝⎜

⎞
⎠⎟ω≈ − ˜ +* *( ) ( ) ( )p p

c k
vkf f f f, , 1

1
. (D3)

ps i wv i
x

i i x, , 2 2

2

In particular, because of the selection rules (18) and because = −p p
wv wv,1 ,2

it follows that:

= −p p , (D4)
ps ps,1 ,2

i.e. the two interacting slabs also have symmetric pseudo-momenta. Thus, provided the
velocities of the slabs are not too far from the friction threshold (so that ω̃ ≈k c ni x i.), we can
write:

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟≈ − ± +p p

n

v

c
1

1
. (D5)

ps i wv i
i

i
, ,

2

Taking into account that Fi
tot is given by equation (17) and Fi

mat is given by a similar formula

with ( )p f
wv i nk,

replaced by ( )p f
ps i nk,

, we can also write ⎜ ⎟
⎛
⎝

⎞
⎠≈ − +±( )F F 1i

mat
i
tot

n

v

c

1
2

i

i . In the

particular case wherein the first slab is at rest in the lab frame ( =v 01 ), it follows that:

⎛
⎝⎜

⎞
⎠⎟≈ −F F

n
1

1
. (D6)i

mat
i
tot

1
2

Thus, since by assumption ≫n 1i , the two friction forces do not differ appreciably.
It is useful to find explicitly the sign of p

ps i,
. To do this, we use another result of reference

[17, equation (C3)] and equations (D1), (D2) to write:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟= = −

p

V

p

V v

v v

c

E

V

1
1 (D7)

ps i

i

ps i

i

co

ph i
co

ph i
co

g i
co

s i

i

co
, ,

,

, ,

2

,

where Vi is the volume of the body, and as before the superscript co indicates that a given
quantity is calculated in the co-moving frame of the ith body. It is simple to prove that the

guided modes in our non-dispersive waveguides satisfy <v v c nph i
co

g i
co

i, ,
2 2. Hence, because in the

co-moving frame >E 0s i
co
, , we conclude that:

=( ) ( )p vsgn sgn (D8)
ps i ph i

co

, ,

Finally, from the selection rules (18) it follows that:

+ = + <v v v v v v, with 0. (D9)ph
co

ph
co

ph
co

ph
co

,1 1 ,2 2 ,1 ,2

This implies that = − −( ) ( )v v vsgn sgnph i
co

i j, where =j 1 if =i 2, and =j 2 if =i 1. Using this
property in equation (D8) we obtain equation (21).
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